The robust stability and robust sliding mode control problems are studied for a class of linear distributed time-delay systems with polytopic-type uncertainties by applying the parameter-dependent Lyapunov functional ...The robust stability and robust sliding mode control problems are studied for a class of linear distributed time-delay systems with polytopic-type uncertainties by applying the parameter-dependent Lyapunov functional approach combining with a new method of introducing some relaxation matrices and tuning parameters, which can be chosen properly to lead to a less conservative result. First, a sufficient condition is proposed for robust stability of the autonomic system; next, the sufficient conditions of the robust stabilization controller and the existence condition of sliding mode are developed. The results are given in terms of linear matrix inequalities (LMIs), which can be solved via efficient interior-point algorithms. A numerical example is presented to illustrate the feasibility and advantages of the proposed design scheme.展开更多
The separation of the Lyapunov matrices and system matrices plays an important role when one uses parameter-dependent Lyapunov functional handling systems with polytopic type uncertainties. The delay-dependent robust ...The separation of the Lyapunov matrices and system matrices plays an important role when one uses parameter-dependent Lyapunov functional handling systems with polytopic type uncertainties. The delay-dependent robust stability problem for systems with polytopic type uncertainties is discussed by using parameter-dependent Lyapunov functional. The derivative term in the derivative of Lyapunov functional is reserved and the free weighting matrices are employed to express the relationship between die terms in the system equation such that the Lyapunov matrices are not involved in any product terms with the system matrices. In addition, the relationships between the terms in the Leibniz Newton formula are also described by some free weighting matrices and some delay-dependent stability conditions are derived. Numerical examples demonstrate that the proposed criteria are more effective than the previous results.展开更多
A new fuzzy adaptive control method is proposed for a class of strict feedback nonlinear systems with immeasurable states and full constraints.The fuzzy logic system is used to design the approximator,which deals with...A new fuzzy adaptive control method is proposed for a class of strict feedback nonlinear systems with immeasurable states and full constraints.The fuzzy logic system is used to design the approximator,which deals with uncertain and continuous functions in the process of backstepping design.The use of an integral barrier Lyapunov function not only ensures that all states are within the bounds of the constraint,but also mixes the states and errors to directly constrain the state,reducing the conservativeness of the constraint satisfaction condition.Considering that the states in most nonlinear systems are immeasurable,a fuzzy adaptive states observer is constructed to estimate the unknown states.Combined with adaptive backstepping technique,an adaptive fuzzy output feedback control method is proposed.The proposed control method ensures that all signals in the closed-loop system are bounded,and that the tracking error converges to a bounded tight set without violating the full state constraint.The simulation results prove the effectiveness of the proposed control scheme.展开更多
In this paper,input-to-state stability of nonlinear time-delay systems on time scales is investigated.Due to the advantages of the strict Lyapunov functionals in uncertainty quantification and robustness analysis,one ...In this paper,input-to-state stability of nonlinear time-delay systems on time scales is investigated.Due to the advantages of the strict Lyapunov functionals in uncertainty quantification and robustness analysis,one always prefers to construct the strict Lyapunov functionals to analyse stability of time-delay systems.However,it may be not an easy task to do this for some timedelay systems.This paper proposes an input-to-state stability theorem based on a time-scale uniformly asymptotically stable function.The advantage of this theorem is that it is dependent on the non-strict Lyapunov functional,whose time-scale derivative can be non-negative on some time intervals.Then,some approaches are established to construct the strict Lyapunov functionals based on the non-strict ones.It is shown that input-to-state stability theorems can be also formulated in terms of these strict Lyapunov functionals.Finally,to illustrate the effectiveness of the main results,an example is given.展开更多
This paper focuses on the robust stability for time-delay systems of neutral type. A new complete Lyapunov-Krasovskii function (LKF) is developed. Based on this function and discretization, stability conditions in ter...This paper focuses on the robust stability for time-delay systems of neutral type. A new complete Lyapunov-Krasovskii function (LKF) is developed. Based on this function and discretization, stability conditions in terms of linear matrix inequalities are obtained. A class of time-varying uncertainty of system matrices can be studied by the method.展开更多
This paper introduces the quantum control of Lyapunov functions based on the state distance, the mean of imaginary quantities and state errors.In this paper, the specific control laws under the three forms are given.S...This paper introduces the quantum control of Lyapunov functions based on the state distance, the mean of imaginary quantities and state errors.In this paper, the specific control laws under the three forms are given.Stability is analyzed by the La Salle invariance principle and the numerical simulation is carried out in a 2D test system.The calculation process for the Lyapunov function is based on a combination of the average of virtual mechanical quantities, the particle swarm algorithm and a simulated annealing algorithm.Finally, a unified form of the control laws under the three forms is given.展开更多
In this paper, we investigate the stability of a class of impulsive functional differential equations by using Lyapunov functional and Jensen's inequality. Some new stability theorems are obtained. Examples are given...In this paper, we investigate the stability of a class of impulsive functional differential equations by using Lyapunov functional and Jensen's inequality. Some new stability theorems are obtained. Examples are given to demonstrate the advantage of the obtained results.展开更多
An analysis method based on the fuzzy Lyapunov functions is presented to analyze the stability of the continuous affine fuzzy systems. First, a method is introduced to deal with the consequent part of the fuzzy local ...An analysis method based on the fuzzy Lyapunov functions is presented to analyze the stability of the continuous affine fuzzy systems. First, a method is introduced to deal with the consequent part of the fuzzy local model. Thus, the stability analysis method of the homogeneous fuzzy system can be used for reference. Stability conditions are derived in terms of linear matrix inequalities based on the fuzzy Lyapunov functions and the modified common Lyapunov functions, respectively. The results demonstrate that the stability result based on the fuzzy Lyapunov functions is less conservative than that based on the modified common Lyapunov functions via numerical examples. Compared with the method which does not expand the consequent part, the proposed method is simpler but its feasible region is reduced. Finally, in order to expand the application of the fuzzy Lyapunov functions, the piecewise fuzzy Lyapunov function is proposed, which can be used to analyze the stability for triangular or trapezoidal membership functions and obtain the stability conditions. A numerical example validates the effectiveness of the proposed approach.展开更多
The robust admissibility analysis of a class of uncertain discrete-time switched linear singular(SLS) systems for arbitrary switching laws is addressed. The parameter uncertainty is assumed to be norm-bounded. First...The robust admissibility analysis of a class of uncertain discrete-time switched linear singular(SLS) systems for arbitrary switching laws is addressed. The parameter uncertainty is assumed to be norm-bounded. First, by using the switched Lyapunov function approach, some new sufficient conditions ensuring the nominal discrete-time SLS system to be regular, casual and asymptotically stable for arbitrary switching laws are derived in terms of linear matrix inequalities. Then, the robust admissibility condition for the uncertain discrete-time SLS systems is presented. The obtained results can be viewed as an extension of previous works on the switched Lyapunov function approach from the regular switched linear systems to the switched linear singular cases. Numerical examples show the reduced conservatism and effectiveness of the proposed conditions.展开更多
The construction of control Lyapunov functions for a class of nonlinear systems is considered. We develop a method by which a control Lyapunov function for the feedback linearizable part can be constructed systematica...The construction of control Lyapunov functions for a class of nonlinear systems is considered. We develop a method by which a control Lyapunov function for the feedback linearizable part can be constructed systematically via Lyapunov equation. Moreover, by a control Lyapunov function of the feedback linearizable part and a Lyapunov function of the zero dynamics, a control Lyapunov function for the overall nonlinear system is established.展开更多
This paper deals with the stability of systems with discontinuous righthand side (with solutions in Filippov's sense) via locally Lipschitz continuous and regular vector Lyapunov functions. A new type of “set-valu...This paper deals with the stability of systems with discontinuous righthand side (with solutions in Filippov's sense) via locally Lipschitz continuous and regular vector Lyapunov functions. A new type of “set-valued derivative” of vector Lyapunov functions is introduced, some generalized comparison principles on discontinuous systems are shown. Furthermore, Lyapunov stability theory is developed for a class of discontinuous systems based on locally Lipschitz continuous and regular vector Lyapunov functions.展开更多
In this paper, a diffusive predator-prey system with general functional responses and prey-tactic sensitivities is studied. Providing such generality, we construct a Lyapunov function and we show that the positive con...In this paper, a diffusive predator-prey system with general functional responses and prey-tactic sensitivities is studied. Providing such generality, we construct a Lyapunov function and we show that the positive constant steady state is locally and globally asymptotically stable. With an eye on the biological interpretations, a numerical simulation is performed to illustrate the feasibility of the analytical findings.展开更多
In this paper,the stability of a class of impulsive functional differential equations with infinite delays is investigated.A uniform stability theorem and a uniform asymptotic stability theorem are established.
It was shown that active queue management schemes implemented in the routers of communication networks sup-porting transmission control protocol (TCP) flows can be modelled as a feedback control system. In this paper ...It was shown that active queue management schemes implemented in the routers of communication networks sup-porting transmission control protocol (TCP) flows can be modelled as a feedback control system. In this paper based on Lyapunov function we developed an optimal controller to improve active queue management (AQM) router’s stability and response time, which are often in conflict with each other in system performance. Ns-2 simulations showed that optimal controller outperforms PI controller significantly.展开更多
Sufficient condition for stochastic unifrom stability of a neutral stochastic functional differential equation is given, especially, new techniques are developed to cope with the neutral delay case, we obtained the su...Sufficient condition for stochastic unifrom stability of a neutral stochastic functional differential equation is given, especially, new techniques are developed to cope with the neutral delay case, we obtained the sufficient condition for asymptotic stability of neutral stochastic differential delay equations. Due to the new techniques developed in this paper, the results obtained arc very general and useful. The theory developed here gives a unified treatment for various asymptotic estimates e.g. exponential and polynomial bounds.展开更多
We consider the topological behaviors of continuous maps with one topological attractor on compact metric space X.This kind of map is a generalization of maps such as topologically expansive Lorenz map,unimodal map wi...We consider the topological behaviors of continuous maps with one topological attractor on compact metric space X.This kind of map is a generalization of maps such as topologically expansive Lorenz map,unimodal map without homtervals and so on.Under the finiteness and basin conditions,we provide a leveled A-R pair decomposition for such maps,and characterize α-limit set of each point.Based on weak Morse decomposition of X,we construct a bounded Lyapunov function V(x),which gives a clear description of orbit behavior of each point in X except a meager set.展开更多
This paper addresses the problem of global practical stabilization of discrete-time switched affine systems via statedependent switching rules.Several attempts have been made to solve this problem via different types ...This paper addresses the problem of global practical stabilization of discrete-time switched affine systems via statedependent switching rules.Several attempts have been made to solve this problem via different types of a common quadratic Lyapunov function and an ellipsoid.These classical results require either the quadratic Lyapunov function or the employed ellipsoid to be of the centralized type.In some cases,the ellipsoids are defined dependently as the level sets of a decentralized Lyapunov function.In this paper,we extend the existing results by the simultaneous use of a general decentralized Lyapunov function and a decentralized ellipsoid parameterized independently.The proposed conditions provide less conservative results than existing works in the sense of the ultimate invariant set of attraction size.Two different approaches are proposed to extract the ultimate invariant set of attraction with a minimum size,i.e.,a purely numerical method and a numerical-analytical one.In the former,both invariant and attractiveness conditions are imposed to extract the final set of matrix inequalities.The latter is established on a principle that the attractiveness of a set implies its invariance.Thus,the stability conditions are derived based on only the attractiveness property as a set of matrix inequalities with a smaller dimension.Illustrative examples are presented to prove the satisfactory operation of the proposed stabilization methods.展开更多
The problem of adaptive stabilization of a class of multi-input nonlinear systems with unknown parameters both in the state vector-field and the input vector-field has been considered. By employing the control Lyapuno...The problem of adaptive stabilization of a class of multi-input nonlinear systems with unknown parameters both in the state vector-field and the input vector-field has been considered. By employing the control Lyapunov function method, a direct adaptive controller is designed to complete the global adaptive stability of the uncertain system. At the same time, the controller is also verified to possess the optimality. Example and simulations are provided to illustrate the effectiveness of the proposed method.展开更多
A method is developed by which control Lyapunov functions of a class of nonlinear systems can be constructed systematically. Based on the control Lyapunov function, a feedback control is obtained to stabilize the clos...A method is developed by which control Lyapunov functions of a class of nonlinear systems can be constructed systematically. Based on the control Lyapunov function, a feedback control is obtained to stabilize the closed-loop system. In addition, this method is applied to stabilize the Benchmark system. A simulation shows the effectiveness of the method.展开更多
基金This work was partially supported by the National Natural Science Foundation of China(No.60504008).
文摘The robust stability and robust sliding mode control problems are studied for a class of linear distributed time-delay systems with polytopic-type uncertainties by applying the parameter-dependent Lyapunov functional approach combining with a new method of introducing some relaxation matrices and tuning parameters, which can be chosen properly to lead to a less conservative result. First, a sufficient condition is proposed for robust stability of the autonomic system; next, the sufficient conditions of the robust stabilization controller and the existence condition of sliding mode are developed. The results are given in terms of linear matrix inequalities (LMIs), which can be solved via efficient interior-point algorithms. A numerical example is presented to illustrate the feasibility and advantages of the proposed design scheme.
文摘The separation of the Lyapunov matrices and system matrices plays an important role when one uses parameter-dependent Lyapunov functional handling systems with polytopic type uncertainties. The delay-dependent robust stability problem for systems with polytopic type uncertainties is discussed by using parameter-dependent Lyapunov functional. The derivative term in the derivative of Lyapunov functional is reserved and the free weighting matrices are employed to express the relationship between die terms in the system equation such that the Lyapunov matrices are not involved in any product terms with the system matrices. In addition, the relationships between the terms in the Leibniz Newton formula are also described by some free weighting matrices and some delay-dependent stability conditions are derived. Numerical examples demonstrate that the proposed criteria are more effective than the previous results.
基金supported in part by the National Natural Science Foundation of China(6202530361973147)the LiaoNing Revitalization Talents Program(XLYC1907050)。
文摘A new fuzzy adaptive control method is proposed for a class of strict feedback nonlinear systems with immeasurable states and full constraints.The fuzzy logic system is used to design the approximator,which deals with uncertain and continuous functions in the process of backstepping design.The use of an integral barrier Lyapunov function not only ensures that all states are within the bounds of the constraint,but also mixes the states and errors to directly constrain the state,reducing the conservativeness of the constraint satisfaction condition.Considering that the states in most nonlinear systems are immeasurable,a fuzzy adaptive states observer is constructed to estimate the unknown states.Combined with adaptive backstepping technique,an adaptive fuzzy output feedback control method is proposed.The proposed control method ensures that all signals in the closed-loop system are bounded,and that the tracking error converges to a bounded tight set without violating the full state constraint.The simulation results prove the effectiveness of the proposed control scheme.
基金This work was supported by the National Natural Science Foundation of China[61873150]the China Postdoctoral Science Foundation[2020M672110].
文摘In this paper,input-to-state stability of nonlinear time-delay systems on time scales is investigated.Due to the advantages of the strict Lyapunov functionals in uncertainty quantification and robustness analysis,one always prefers to construct the strict Lyapunov functionals to analyse stability of time-delay systems.However,it may be not an easy task to do this for some timedelay systems.This paper proposes an input-to-state stability theorem based on a time-scale uniformly asymptotically stable function.The advantage of this theorem is that it is dependent on the non-strict Lyapunov functional,whose time-scale derivative can be non-negative on some time intervals.Then,some approaches are established to construct the strict Lyapunov functionals based on the non-strict ones.It is shown that input-to-state stability theorems can be also formulated in terms of these strict Lyapunov functionals.Finally,to illustrate the effectiveness of the main results,an example is given.
基金the National High Technology Research and Development Program (863) of China(No. 2006AA05Z148)
文摘This paper focuses on the robust stability for time-delay systems of neutral type. A new complete Lyapunov-Krasovskii function (LKF) is developed. Based on this function and discretization, stability conditions in terms of linear matrix inequalities are obtained. A class of time-varying uncertainty of system matrices can be studied by the method.
基金Project supported by the National Natural Science Foundation of China (Grant No.62176140)。
文摘This paper introduces the quantum control of Lyapunov functions based on the state distance, the mean of imaginary quantities and state errors.In this paper, the specific control laws under the three forms are given.Stability is analyzed by the La Salle invariance principle and the numerical simulation is carried out in a 2D test system.The calculation process for the Lyapunov function is based on a combination of the average of virtual mechanical quantities, the particle swarm algorithm and a simulated annealing algorithm.Finally, a unified form of the control laws under the three forms is given.
基金supported by the National Natural Science Foundation of China (No. 10871063)Scientific Research Fund of Hunan Provincial Education Department (No. 07A038)
文摘In this paper, we investigate the stability of a class of impulsive functional differential equations by using Lyapunov functional and Jensen's inequality. Some new stability theorems are obtained. Examples are given to demonstrate the advantage of the obtained results.
基金Specialized Research Fund for the Doctoral Program of Higher Education ( No. 20090092110051)the Key Project of Chinese Ministry of Education ( No. 108060)the National Natural Science Foundation of China ( No. 51076027, 51036002, 51106024)
文摘An analysis method based on the fuzzy Lyapunov functions is presented to analyze the stability of the continuous affine fuzzy systems. First, a method is introduced to deal with the consequent part of the fuzzy local model. Thus, the stability analysis method of the homogeneous fuzzy system can be used for reference. Stability conditions are derived in terms of linear matrix inequalities based on the fuzzy Lyapunov functions and the modified common Lyapunov functions, respectively. The results demonstrate that the stability result based on the fuzzy Lyapunov functions is less conservative than that based on the modified common Lyapunov functions via numerical examples. Compared with the method which does not expand the consequent part, the proposed method is simpler but its feasible region is reduced. Finally, in order to expand the application of the fuzzy Lyapunov functions, the piecewise fuzzy Lyapunov function is proposed, which can be used to analyze the stability for triangular or trapezoidal membership functions and obtain the stability conditions. A numerical example validates the effectiveness of the proposed approach.
基金The National Natural Science Foundation of China(No.60835001)the Key Project of Ministry of Education of China (No.108060)
文摘The robust admissibility analysis of a class of uncertain discrete-time switched linear singular(SLS) systems for arbitrary switching laws is addressed. The parameter uncertainty is assumed to be norm-bounded. First, by using the switched Lyapunov function approach, some new sufficient conditions ensuring the nominal discrete-time SLS system to be regular, casual and asymptotically stable for arbitrary switching laws are derived in terms of linear matrix inequalities. Then, the robust admissibility condition for the uncertain discrete-time SLS systems is presented. The obtained results can be viewed as an extension of previous works on the switched Lyapunov function approach from the regular switched linear systems to the switched linear singular cases. Numerical examples show the reduced conservatism and effectiveness of the proposed conditions.
基金Supported by Natural Science Foundation of Zhejiang Province P. R. China (Y105141)Natural Science Foundation of Fujian Province P.R.China (A0510025)Technological Project of Zhejiang Education Department,P. R. China(20050291)
文摘The construction of control Lyapunov functions for a class of nonlinear systems is considered. We develop a method by which a control Lyapunov function for the feedback linearizable part can be constructed systematically via Lyapunov equation. Moreover, by a control Lyapunov function of the feedback linearizable part and a Lyapunov function of the zero dynamics, a control Lyapunov function for the overall nonlinear system is established.
文摘This paper deals with the stability of systems with discontinuous righthand side (with solutions in Filippov's sense) via locally Lipschitz continuous and regular vector Lyapunov functions. A new type of “set-valued derivative” of vector Lyapunov functions is introduced, some generalized comparison principles on discontinuous systems are shown. Furthermore, Lyapunov stability theory is developed for a class of discontinuous systems based on locally Lipschitz continuous and regular vector Lyapunov functions.
文摘In this paper, a diffusive predator-prey system with general functional responses and prey-tactic sensitivities is studied. Providing such generality, we construct a Lyapunov function and we show that the positive constant steady state is locally and globally asymptotically stable. With an eye on the biological interpretations, a numerical simulation is performed to illustrate the feasibility of the analytical findings.
文摘In this paper,the stability of a class of impulsive functional differential equations with infinite delays is investigated.A uniform stability theorem and a uniform asymptotic stability theorem are established.
文摘It was shown that active queue management schemes implemented in the routers of communication networks sup-porting transmission control protocol (TCP) flows can be modelled as a feedback control system. In this paper based on Lyapunov function we developed an optimal controller to improve active queue management (AQM) router’s stability and response time, which are often in conflict with each other in system performance. Ns-2 simulations showed that optimal controller outperforms PI controller significantly.
基金Supported by the National Natural Science Founda-tion of China (19531070) and the Major Project Foundation of HubeiProvince Education Department (2004Z001)
文摘Sufficient condition for stochastic unifrom stability of a neutral stochastic functional differential equation is given, especially, new techniques are developed to cope with the neutral delay case, we obtained the sufficient condition for asymptotic stability of neutral stochastic differential delay equations. Due to the new techniques developed in this paper, the results obtained arc very general and useful. The theory developed here gives a unified treatment for various asymptotic estimates e.g. exponential and polynomial bounds.
基金supported by the National Key Re-search and Development Program of China(2020YFA0714200)supported by the Excellent Dissertation Cultivation Funds of Wuhan University of Technology(2018-YS-077)。
文摘We consider the topological behaviors of continuous maps with one topological attractor on compact metric space X.This kind of map is a generalization of maps such as topologically expansive Lorenz map,unimodal map without homtervals and so on.Under the finiteness and basin conditions,we provide a leveled A-R pair decomposition for such maps,and characterize α-limit set of each point.Based on weak Morse decomposition of X,we construct a bounded Lyapunov function V(x),which gives a clear description of orbit behavior of each point in X except a meager set.
文摘This paper addresses the problem of global practical stabilization of discrete-time switched affine systems via statedependent switching rules.Several attempts have been made to solve this problem via different types of a common quadratic Lyapunov function and an ellipsoid.These classical results require either the quadratic Lyapunov function or the employed ellipsoid to be of the centralized type.In some cases,the ellipsoids are defined dependently as the level sets of a decentralized Lyapunov function.In this paper,we extend the existing results by the simultaneous use of a general decentralized Lyapunov function and a decentralized ellipsoid parameterized independently.The proposed conditions provide less conservative results than existing works in the sense of the ultimate invariant set of attraction size.Two different approaches are proposed to extract the ultimate invariant set of attraction with a minimum size,i.e.,a purely numerical method and a numerical-analytical one.In the former,both invariant and attractiveness conditions are imposed to extract the final set of matrix inequalities.The latter is established on a principle that the attractiveness of a set implies its invariance.Thus,the stability conditions are derived based on only the attractiveness property as a set of matrix inequalities with a smaller dimension.Illustrative examples are presented to prove the satisfactory operation of the proposed stabilization methods.
文摘The problem of adaptive stabilization of a class of multi-input nonlinear systems with unknown parameters both in the state vector-field and the input vector-field has been considered. By employing the control Lyapunov function method, a direct adaptive controller is designed to complete the global adaptive stability of the uncertain system. At the same time, the controller is also verified to possess the optimality. Example and simulations are provided to illustrate the effectiveness of the proposed method.
基金the Natural Science Foundation of Zhejiang Province,China (Y105141)Technological Project of Zhejiang Education Department,China (20050291).
文摘A method is developed by which control Lyapunov functions of a class of nonlinear systems can be constructed systematically. Based on the control Lyapunov function, a feedback control is obtained to stabilize the closed-loop system. In addition, this method is applied to stabilize the Benchmark system. A simulation shows the effectiveness of the method.