Native dejects in HfSiO4 are investigated by first principles calculations. Transition levels of native detects can be accurately described by employing the nonlocal HSE06 hybrid functional. This methodology overcomes...Native dejects in HfSiO4 are investigated by first principles calculations. Transition levels of native detects can be accurately described by employing the nonlocal HSE06 hybrid functional. This methodology overcomes the band gap problem in traditional functionals. By band alignments among the Si, GaAs and HfSiO4. we are able to determine the position of defect levels in Si and GaAs relative to the HfSiO4 band gap. We evaluate the. possibility of these defects acting as fixed charge. Native defects lead to the change of valence and conduction band offsets. Gate leakage current is evaluated by the band offset. In addition, we also investigate diffusions of native defects, and discuss how they affect the MOS device performance.展开更多
The properties of a metal-oxide-semiconductor device on a single layer MoS_(2)(molybdenum disulfide)semiconductor are determined theoretically utilizing the concept of physics that the carrier effective masses in mate...The properties of a metal-oxide-semiconductor device on a single layer MoS_(2)(molybdenum disulfide)semiconductor are determined theoretically utilizing the concept of physics that the carrier effective masses in materials are related to the intrinsic Fermi energy levels in materials by the universal mass-energy equivalence equation given as dE/E=dm/m,where E is the energy and m is the mass of the free electron.The known parameters of electron effective mass of 0.48 m and the direct bandgap of 1.8 eV for monolayer MoS_(2) semiconductor are utilized to determine the properties of the MOS(metal-oxide-semiconductor)device,with the given previous research consequence that the threshold for electron heating in SiO_(2) is 2 MV/cm-eV.展开更多
A GaAs metal-oxide-semiconductor (MOS) capacitor with HfO2 as gate dielectric and silicon nitride (SiNx) as the interlayer (IL) is fabricated. Experimental results show that the sample with the SiNx IL has an im...A GaAs metal-oxide-semiconductor (MOS) capacitor with HfO2 as gate dielectric and silicon nitride (SiNx) as the interlayer (IL) is fabricated. Experimental results show that the sample with the SiNx IL has an improved capacitance- voltage characteristic, lower leakage current density (0.785 × 10^-6 Alcm^2 at Vfo + 1 V) and lower interface-state density (2.9 × 10^12 eV^-1 ·cm^-2) compared with other samples with N2- or NH3-plasma pretreatment. The influences of post- deposition annealing temperature on electrical properties are also investigated for the samples with SiNx IL. The sample annealed at 600 ℃ exhibits better electrical properties than that annealed at 500 ℃, which is attributed to the suppression of native oxides, as confirmed by XPS analyses.展开更多
GaAs metal–oxide–semiconductor(MOS) capacitors with HfTiO as the gate dielectric and Al2O3 or ZnO as the interface passivation layer(IPL) are fabricated. X-ray photoelectron spectroscopy reveals that the Al2O3 I...GaAs metal–oxide–semiconductor(MOS) capacitors with HfTiO as the gate dielectric and Al2O3 or ZnO as the interface passivation layer(IPL) are fabricated. X-ray photoelectron spectroscopy reveals that the Al2O3 IPL is more effective in suppressing the formation of native oxides and As diffusion than the ZnO IPL. Consequently, experimental results show that the device with Al2O3 IPL exhibits better interfacial and electrical properties than the device with ZnO IPL: lower interface-state density(7.2×10^12 eV1cm^2/, lower leakage current density(3.60×10^7A/cm^2 at Vg D1 V) and good C–V behavior.展开更多
The radiation effects of the metal-oxide-semiconductor (MOS) and the bipolar devices are characterised using 8 MeV protons, 60 MeV Br ions and 1 MeV electrons. Key parameters are measured in-situ and compared for th...The radiation effects of the metal-oxide-semiconductor (MOS) and the bipolar devices are characterised using 8 MeV protons, 60 MeV Br ions and 1 MeV electrons. Key parameters are measured in-situ and compared for the devices. The ionising and nonionising energy losses of incident particles are calculated using the Geant4 and the stopping and range of ions in matter code. The results of the experiment and energy loss calculation for different particles show that different incident particles may give different contributions to MOS and bipolar devices. The irradiation particles, which cause a larger displacement dose within the same chip depth of bipolar devices at a given total dose, would generate more severe damage to the voltage parameters of the bipolar devices. On the contrary, the irradiation particles, which cause larger ionising damage in the gate oxide, would generate more severe damage to MOS devices. In this investigation, we attempt to analyse the sensitivity to radiation damage of the different parameter of the MOS and bipolar devices by comparing the irradiation experimental data and the calculated results using Geant4 and SRIM code.展开更多
To overcome the floating-body effect and self-heating effect of SOI devices,the drain and source on insulator (DSOI) structure is fabricated and tested.The low dose developed recently and low energy local SIMOX techno...To overcome the floating-body effect and self-heating effect of SOI devices,the drain and source on insulator (DSOI) structure is fabricated and tested.The low dose developed recently and low energy local SIMOX technology combined with the conventional CMOS technology is used to fabricate this kind of devices.Using this method,DSOI,SOI,and bulk MOSFETs are successfully integrated on a single chip.Test results show that the drain induced barrier lowering effect is suppressed.The breakdown voltage drain-to-source is greatly increased for DSOI devices due to the elimination of the floating-body effect.And the self-heating effect is also reduced and thus the reliability increased.At the same time,the advantage of SOI devices in speed is maintained.The technology makes it possible to integrate low voltage,low power,low speed SOI devices or high voltage,high power,high speed DSOI devices on one chip and it offers option for developing system-on-chip technology.展开更多
A simple new method based on the measurement of charge pumping technique is proposed to separate and quantify experimentally the effects of oxide-trapped charges and interface-trapped charges on threshold voltage degr...A simple new method based on the measurement of charge pumping technique is proposed to separate and quantify experimentally the effects of oxide-trapped charges and interface-trapped charges on threshold voltage degradation in p-channel metal-oxide-semiconductor field-effect transistors (pMOSFETs) under hot-carrier stress.Further,the experimental results verify the validness of this method.It is shown that,all three mechanisms of electron trapping effect,hole trapping effect and interface trap generation play important roles in p-channel MOSFETs degradation.It is noted that interface-trapped charge is still the dominant mechanism for hot-carrier-induced degradation in p-channel MOSFETs,while a significant contribution of oxide-trapped charge to threshold voltage is demonstrated and quantified.展开更多
With the combined use of the drift-diffusion (DD) model, experiment measured parameters and small-signal sinusoidM steady-state analysis, we extract the Y-parameters for 4H-SiC buried-channel metal oxide semicon- du...With the combined use of the drift-diffusion (DD) model, experiment measured parameters and small-signal sinusoidM steady-state analysis, we extract the Y-parameters for 4H-SiC buried-channel metal oxide semicon- ductor field effect transistors (BCMOSFETs). Output short-circuit current gain G and Mason's invariant U are cMculated for extrapolating unity current gain frequency in the common-source configuration fT and the maximum frequency of oscillation fmax, respectively. Here fT = 800 MHz and fmax= 5 GHz are extracted for the 4H-SiC BCMOSFETs, while the field effect mobility reaches its peak value 87cm2/Vs when VGs = 4.5 V. Simulation results clearly show that the characteristic frequency of 4H-SiC BCMOSFETs and field effect mobility are superior, due to the novel structure, compared with conventional MOSFETs.展开更多
High-quality dielectric/Ge interface and low gate leakage current are crucial issues for high-performance nanoscaled Ge-based complementary metal–oxide–semiconductor(CMOS) device. In this paper, the interfacial and ...High-quality dielectric/Ge interface and low gate leakage current are crucial issues for high-performance nanoscaled Ge-based complementary metal–oxide–semiconductor(CMOS) device. In this paper, the interfacial and electrical properties of high-k Hf Gd ON/La Ta ON stacked gate dielectric Ge metal–oxide–semiconductor(MOS) capacitors with different gadolinium(Gd) contents are investigated. Experimental results show that when the controlling Gd content is a suitable value(e.g., 13.16%), excellent device performances can be achieved: low interface-state density(6.93 × 10^11 cm^-2·e V-1), small flatband voltage(0.25 V), good capacitance–voltage behavior, small frequency dispersion, and low gate leakage current(2.29× 10^-6 A/cm^2 at Vg = Vfb + 1 V). These could be attributed to the repair of oxygen vacancies, the increase of conduction band offset, and the suppression of germanate and suboxide Ge Ox at/near the high k/Ge interface by doping suitable Gd into Hf ON.展开更多
High electron mobility transistor(HEMT)based on gallium nitride(GaN)is one of the most promising candidates for the future generation of high frequencies and high-power electronic applications.This research work aims ...High electron mobility transistor(HEMT)based on gallium nitride(GaN)is one of the most promising candidates for the future generation of high frequencies and high-power electronic applications.This research work aims at designing and characterization of enhancement-mode or normally-off GaN HEMT.The impact of variations in gate length,mole concentration,barrier variations and other important design parameters on the performance of normally-off GaN HEMT is thoroughly investigated.An increase in the gate length causes a decrease in the drain current and transconductance,while an increase in drain current and transconductance can be achieved by increasing the concentration of aluminium(Al).For Al mole fractions of 23%,25%,and 27%,within Al gallium nitride(AlGaN)barrier,the GaN HEMT devices provide a maximum drain current of 347,408 and 474 mA/μm and a transconductance of 19,20.2,21.5 mS/μm,respectively.Whereas,for Al mole fraction of 10%and 15%,within AlGaN buffer,these devices are observed to provide a drain current of 329 and 283 mA/μm,respectively.Furthermore,for a gate length of 2.4,3.4,and 4.4μm,the device is observed to exhibit a maximum drain current of 272,235,and 221 mA/μm and the transconductance of 16.2,14,and 12.3 mS/μm,respectively.It is established that a maximum drain current of 997 mA/μm can be achieved with an Al concentration of 23%,and the device exhibits a steady drain current with enhanced transconductance.These observations demonstrate tremendous potential for two-dimensional electron gas(2DEG)for securing of the normally-off mode operation.A suitable setting of gate length and other design parameters is critical in preserving the normally-off mode operation while also enhancing the critical performance parameters at the same time.Due to the normallyon depletion-mode nature of GaN HEMT,it is usually not considered as suitable for high power levels,frequencies,and temperature.In such settings,a negative bias is required to enter the blocking condition;however,in the before-mentioned normally-off devices,the negative bias can be avoided and the channel can be depleted without applying a negative bias.展开更多
This review and research study provides conclusive discussion on the electron and hole effective masses in thermal silicon dioxide placing their values at 0.42m and 0.58m,where m is the free electron mass,correct to t...This review and research study provides conclusive discussion on the electron and hole effective masses in thermal silicon dioxide placing their values at 0.42m and 0.58m,where m is the free electron mass,correct to two decimal places.Only one of the masses needs to be determined as the electron and hole masses in materials add up to be equal to free electron mass with the hole effective mass being larger than the electron effective mass.The review also convinces the reader that the CBO(conduction band offset)or the Si-SiO2 barrier height at the oxide/silicon interface of a Si MOS(metal-oxide-semiconductor)device is 3.20 eV.展开更多
Two-dimensional(2D) materials have emerged as attractive mediums for fabricating versatile optoelectronic devices. Recently, few-layer molybdenum disulfide(MoS2), as a shining 2D material, has been discovered to p...Two-dimensional(2D) materials have emerged as attractive mediums for fabricating versatile optoelectronic devices. Recently, few-layer molybdenum disulfide(MoS2), as a shining 2D material, has been discovered to possess both the saturable absorption effect and large nonlinear refractive index. Herein, taking advantage of the unique nonlinear optical properties of MoS2, we fabricated a highly nonlinear saturable absorption photonic device by depositing the few-layer MoS2 onto the microfiber. With the proposed MoS2 photonic device, apart from the conventional soliton patterns, the mode-locked pulses could be shaped into some new soliton patterns, namely,multiple soliton molecules, localized chaotic multipulses, and double-scale soliton clusters. Our findings indicate that the few-layer MoS2-deposited microfiber could operate as a promising highlynonlinear photonic device for the related nonlinear optics applications.展开更多
As the typical material of two-dimensional transition metal dichalcogenides(TMDs), few-layered MoS2 possesses broadband saturable absorption and a large nonlinear refractive index, which could be regarded as a promi...As the typical material of two-dimensional transition metal dichalcogenides(TMDs), few-layered MoS2 possesses broadband saturable absorption and a large nonlinear refractive index, which could be regarded as a promising candidate for dual-function photonic device fabrication. In this work, the coexistence of a bound soliton and harmonic mode-locking soliton was demonstrated in an ultrafast fiber laser based on a MoS2-deposited microfiber photonic device. Through a band-pass filter, each multi-soliton state was investigated separately. The bound soliton has periodic spectral modulation of 1.55 nm with a corresponding pulse separation of 5.16 ps.The harmonic mode-locking soliton has the repetition rate of 479 MHz, corresponding to the 65th harmonic of the fundamental repetition rate. The results indicated that there exist more possibilities of different multi-soliton composites, which would enhance our understanding of multi-soliton dynamics.展开更多
The interracial Si nano-pyralnid-enhanced electroluminescence (EL) of an ITO/SiOx/p-Si/Al metal-oxidesemiconductor (MOS) diode with turn-on voltage of 50 V, threshold current of 1.23 mA/cm^2, output power of 16 nW...The interracial Si nano-pyralnid-enhanced electroluminescence (EL) of an ITO/SiOx/p-Si/Al metal-oxidesemiconductor (MOS) diode with turn-on voltage of 50 V, threshold current of 1.23 mA/cm^2, output power of 16 nW, and lifetime of 10 h is reported.展开更多
Low-voltage silicon (Si)-based light-emitting diode (LED) is designed based on the former research of LED in Si-based standard complementary metal oxide semiconductor (CMOS) technology. The low-voltage LED is de...Low-voltage silicon (Si)-based light-emitting diode (LED) is designed based on the former research of LED in Si-based standard complementary metal oxide semiconductor (CMOS) technology. The low-voltage LED is designed under the research of cross-finger structure LEDs and sophisticated structure enhanced LEDs for high efficiency and stable light source of monolithic chip integration. The device size of low-voltage LED is 45.85x38.4 (#m), threshold voltage is 2.2 V in common condition, and temperature is 27 ~C. The external quantum efficiency is about 10-6 at stable operating state of 5 V and 177 mA.展开更多
A model has been developed to study the effect of depletion and energy quantization at the poly-silicon /oxide interface on the behavior of a nanometer scale n-MOSFET.A model of inversion charge density,including the ...A model has been developed to study the effect of depletion and energy quantization at the poly-silicon /oxide interface on the behavior of a nanometer scale n-MOSFET.A model of inversion charge density,including the inversion layer quantization using the variation approach in the substrate,has also been produced.Using the exact calculations of the polygate potential under the depletion and quantization conditions,a C-V model has been developed. All the results have been compared with the numerical models reported in existing literature and they show good agreement.展开更多
Frequency synthesizer is an important part of optical and wireless communication system. Low power comsumption prescaler is one of the most critical unit of frequency synthesizer. For the frequency divider, it must be...Frequency synthesizer is an important part of optical and wireless communication system. Low power comsumption prescaler is one of the most critical unit of frequency synthesizer. For the frequency divider, it must be programmable for channel selection in multi-channel communication systems. A dual-modulus prescaler (DMP) is needed to provide variable division ratios. DMP is considered as a critical power dissipative block since it always operates at full speed. This paper introduces a high speed and low power complementary metal oxide semiconductor (CMOS) 15/16 DMP based on true single-phase-clock (TSPC) and transmission gates (TGs) cell. A conventional TSPC is optimized in terms of devices size, and it is resimulated. The TSPC is used in the synchronous and asynchronous counter. TGs are used in the control logic. The DMP circuit is implemented in 0.18 μm CMOS process. The simulation results are provided. The results show wide operating frequency range from 7.143 MHz to 4.76 GHz and it comsumes 3.625 mW under 1.8 V power supply voltage at 4.76 GHz.展开更多
This paper reviews the following electrical characterization techniques for measuring the microscopic bonding structures, impurities, and electrically active defects in advanced CMOS gate stacks: 1) inelastic electr...This paper reviews the following electrical characterization techniques for measuring the microscopic bonding structures, impurities, and electrically active defects in advanced CMOS gate stacks: 1) inelastic electron tunneling spectroscopy (IETS), 2) lateral profiling of threshold voltages, interface-trap density, and oxide charge density distributions along the channel of an MOSFET, and 3) pulse agitated substrate hot electron injection (PASHEI) technique for measuring trapping effects in the gate dielectric at low and modest gate voltages.展开更多
In the past few years, two-dimensional (2D) transition metal dichalcogenide (TMDC) materials have attracted increasing attention of the research community, owing to their unique electronic and optical properties, ...In the past few years, two-dimensional (2D) transition metal dichalcogenide (TMDC) materials have attracted increasing attention of the research community, owing to their unique electronic and optical properties, ranging from the valley-spin coupling to the indirect-to-direct bandgap transition when scaling the materials from multi-layer to monolayer. These properties are appealing for the development of novel electronic and optoelectronic devices with important applications in the broad fields of communication, computation, and healthcare. One of the key features of the TMDC family is the indirect-to-direct bandgap transition that occurs when the material thickness decreases from multilayer to monolayer, which is favorable for many photonic applications. TMDCs have also demonstrated unprecedented flexibility and versatility for constructing a wide range of heterostructures with atomic-level control over their layer thickness that is also free of lattice mismatch issues. As a result, layered TMDCs in combination with other 2D materials have the potential for realizing novel high-performance optoelectronic devices over a broad operating spectral range. In this article, we review the recent progress in the synthesis of 2D TMDCs and optoelectronic devices research. We also discuss the challenges facing the scalable applications of the family of 2D materials and provide our perspective on the opportunities offered by these materials for future generations of nanophotonics technology.展开更多
We demonstrate a sub-nanosecond electro-optical switch with low crosstalk in a silicon-on-insulator (SOI) dual-coupled micro-ring embedded with p-i-n diodes. A crosstalk of -23 dB is obtained in the 20-μm-radius mi...We demonstrate a sub-nanosecond electro-optical switch with low crosstalk in a silicon-on-insulator (SOI) dual-coupled micro-ring embedded with p-i-n diodes. A crosstalk of -23 dB is obtained in the 20-μm-radius micro-ring with the well-designing asymmetric dual-coupling structure. By optimizations of the doping profiles and the fabrication processes, the sub-nanosecond switch-on/off time of 〈400 ps is finally realized under an electrical pre-emphasized driving signal. This compact and fast-response micro-ring switch, which can be fabricated by complementary metal oxide semiconductor (CMOS) compatible technologies, have enormous potential in optical interconnects of multicore networks-on-chip.展开更多
基金Supported by the Science Foundation from Education Department of Liaoning Province under Grant No L2014445
文摘Native dejects in HfSiO4 are investigated by first principles calculations. Transition levels of native detects can be accurately described by employing the nonlocal HSE06 hybrid functional. This methodology overcomes the band gap problem in traditional functionals. By band alignments among the Si, GaAs and HfSiO4. we are able to determine the position of defect levels in Si and GaAs relative to the HfSiO4 band gap. We evaluate the. possibility of these defects acting as fixed charge. Native defects lead to the change of valence and conduction band offsets. Gate leakage current is evaluated by the band offset. In addition, we also investigate diffusions of native defects, and discuss how they affect the MOS device performance.
文摘The properties of a metal-oxide-semiconductor device on a single layer MoS_(2)(molybdenum disulfide)semiconductor are determined theoretically utilizing the concept of physics that the carrier effective masses in materials are related to the intrinsic Fermi energy levels in materials by the universal mass-energy equivalence equation given as dE/E=dm/m,where E is the energy and m is the mass of the free electron.The known parameters of electron effective mass of 0.48 m and the direct bandgap of 1.8 eV for monolayer MoS_(2) semiconductor are utilized to determine the properties of the MOS(metal-oxide-semiconductor)device,with the given previous research consequence that the threshold for electron heating in SiO_(2) is 2 MV/cm-eV.
基金supported by the National Natural Science Foundation of China (Grant No. 61176100)
文摘A GaAs metal-oxide-semiconductor (MOS) capacitor with HfO2 as gate dielectric and silicon nitride (SiNx) as the interlayer (IL) is fabricated. Experimental results show that the sample with the SiNx IL has an improved capacitance- voltage characteristic, lower leakage current density (0.785 × 10^-6 Alcm^2 at Vfo + 1 V) and lower interface-state density (2.9 × 10^12 eV^-1 ·cm^-2) compared with other samples with N2- or NH3-plasma pretreatment. The influences of post- deposition annealing temperature on electrical properties are also investigated for the samples with SiNx IL. The sample annealed at 600 ℃ exhibits better electrical properties than that annealed at 500 ℃, which is attributed to the suppression of native oxides, as confirmed by XPS analyses.
基金Project supported by the National Natural Science Foundation of China(Nos.61176100,61274112)
文摘GaAs metal–oxide–semiconductor(MOS) capacitors with HfTiO as the gate dielectric and Al2O3 or ZnO as the interface passivation layer(IPL) are fabricated. X-ray photoelectron spectroscopy reveals that the Al2O3 IPL is more effective in suppressing the formation of native oxides and As diffusion than the ZnO IPL. Consequently, experimental results show that the device with Al2O3 IPL exhibits better interfacial and electrical properties than the device with ZnO IPL: lower interface-state density(7.2×10^12 eV1cm^2/, lower leakage current density(3.60×10^7A/cm^2 at Vg D1 V) and good C–V behavior.
基金Project supported by the National Basis Research Program of China (Grant No. 61343)
文摘The radiation effects of the metal-oxide-semiconductor (MOS) and the bipolar devices are characterised using 8 MeV protons, 60 MeV Br ions and 1 MeV electrons. Key parameters are measured in-situ and compared for the devices. The ionising and nonionising energy losses of incident particles are calculated using the Geant4 and the stopping and range of ions in matter code. The results of the experiment and energy loss calculation for different particles show that different incident particles may give different contributions to MOS and bipolar devices. The irradiation particles, which cause a larger displacement dose within the same chip depth of bipolar devices at a given total dose, would generate more severe damage to the voltage parameters of the bipolar devices. On the contrary, the irradiation particles, which cause larger ionising damage in the gate oxide, would generate more severe damage to MOS devices. In this investigation, we attempt to analyse the sensitivity to radiation damage of the different parameter of the MOS and bipolar devices by comparing the irradiation experimental data and the calculated results using Geant4 and SRIM code.
文摘To overcome the floating-body effect and self-heating effect of SOI devices,the drain and source on insulator (DSOI) structure is fabricated and tested.The low dose developed recently and low energy local SIMOX technology combined with the conventional CMOS technology is used to fabricate this kind of devices.Using this method,DSOI,SOI,and bulk MOSFETs are successfully integrated on a single chip.Test results show that the drain induced barrier lowering effect is suppressed.The breakdown voltage drain-to-source is greatly increased for DSOI devices due to the elimination of the floating-body effect.And the self-heating effect is also reduced and thus the reliability increased.At the same time,the advantage of SOI devices in speed is maintained.The technology makes it possible to integrate low voltage,low power,low speed SOI devices or high voltage,high power,high speed DSOI devices on one chip and it offers option for developing system-on-chip technology.
文摘A simple new method based on the measurement of charge pumping technique is proposed to separate and quantify experimentally the effects of oxide-trapped charges and interface-trapped charges on threshold voltage degradation in p-channel metal-oxide-semiconductor field-effect transistors (pMOSFETs) under hot-carrier stress.Further,the experimental results verify the validness of this method.It is shown that,all three mechanisms of electron trapping effect,hole trapping effect and interface trap generation play important roles in p-channel MOSFETs degradation.It is noted that interface-trapped charge is still the dominant mechanism for hot-carrier-induced degradation in p-channel MOSFETs,while a significant contribution of oxide-trapped charge to threshold voltage is demonstrated and quantified.
基金Supported by the National Natural Science Foundation of China under Grant No 60606022.
文摘With the combined use of the drift-diffusion (DD) model, experiment measured parameters and small-signal sinusoidM steady-state analysis, we extract the Y-parameters for 4H-SiC buried-channel metal oxide semicon- ductor field effect transistors (BCMOSFETs). Output short-circuit current gain G and Mason's invariant U are cMculated for extrapolating unity current gain frequency in the common-source configuration fT and the maximum frequency of oscillation fmax, respectively. Here fT = 800 MHz and fmax= 5 GHz are extracted for the 4H-SiC BCMOSFETs, while the field effect mobility reaches its peak value 87cm2/Vs when VGs = 4.5 V. Simulation results clearly show that the characteristic frequency of 4H-SiC BCMOSFETs and field effect mobility are superior, due to the novel structure, compared with conventional MOSFETs.
基金Project supported by the National Key Research and Development Program of China(Grant No.2018YFB2200500)the National Natural Science Foundation of China(Grant Nos.61851406 and 61274112)
文摘High-quality dielectric/Ge interface and low gate leakage current are crucial issues for high-performance nanoscaled Ge-based complementary metal–oxide–semiconductor(CMOS) device. In this paper, the interfacial and electrical properties of high-k Hf Gd ON/La Ta ON stacked gate dielectric Ge metal–oxide–semiconductor(MOS) capacitors with different gadolinium(Gd) contents are investigated. Experimental results show that when the controlling Gd content is a suitable value(e.g., 13.16%), excellent device performances can be achieved: low interface-state density(6.93 × 10^11 cm^-2·e V-1), small flatband voltage(0.25 V), good capacitance–voltage behavior, small frequency dispersion, and low gate leakage current(2.29× 10^-6 A/cm^2 at Vg = Vfb + 1 V). These could be attributed to the repair of oxygen vacancies, the increase of conduction band offset, and the suppression of germanate and suboxide Ge Ox at/near the high k/Ge interface by doping suitable Gd into Hf ON.
文摘High electron mobility transistor(HEMT)based on gallium nitride(GaN)is one of the most promising candidates for the future generation of high frequencies and high-power electronic applications.This research work aims at designing and characterization of enhancement-mode or normally-off GaN HEMT.The impact of variations in gate length,mole concentration,barrier variations and other important design parameters on the performance of normally-off GaN HEMT is thoroughly investigated.An increase in the gate length causes a decrease in the drain current and transconductance,while an increase in drain current and transconductance can be achieved by increasing the concentration of aluminium(Al).For Al mole fractions of 23%,25%,and 27%,within Al gallium nitride(AlGaN)barrier,the GaN HEMT devices provide a maximum drain current of 347,408 and 474 mA/μm and a transconductance of 19,20.2,21.5 mS/μm,respectively.Whereas,for Al mole fraction of 10%and 15%,within AlGaN buffer,these devices are observed to provide a drain current of 329 and 283 mA/μm,respectively.Furthermore,for a gate length of 2.4,3.4,and 4.4μm,the device is observed to exhibit a maximum drain current of 272,235,and 221 mA/μm and the transconductance of 16.2,14,and 12.3 mS/μm,respectively.It is established that a maximum drain current of 997 mA/μm can be achieved with an Al concentration of 23%,and the device exhibits a steady drain current with enhanced transconductance.These observations demonstrate tremendous potential for two-dimensional electron gas(2DEG)for securing of the normally-off mode operation.A suitable setting of gate length and other design parameters is critical in preserving the normally-off mode operation while also enhancing the critical performance parameters at the same time.Due to the normallyon depletion-mode nature of GaN HEMT,it is usually not considered as suitable for high power levels,frequencies,and temperature.In such settings,a negative bias is required to enter the blocking condition;however,in the before-mentioned normally-off devices,the negative bias can be avoided and the channel can be depleted without applying a negative bias.
文摘This review and research study provides conclusive discussion on the electron and hole effective masses in thermal silicon dioxide placing their values at 0.42m and 0.58m,where m is the free electron mass,correct to two decimal places.Only one of the masses needs to be determined as the electron and hole masses in materials add up to be equal to free electron mass with the hole effective mass being larger than the electron effective mass.The review also convinces the reader that the CBO(conduction band offset)or the Si-SiO2 barrier height at the oxide/silicon interface of a Si MOS(metal-oxide-semiconductor)device is 3.20 eV.
基金supported in part by the National Natural Science Foundation of China (Grant Nos. 11474108, 61378036, 61307058, 11304101, 11074078)the PhD Start-up Fund of Natural Science Foundation of Guangdong Province, China (Grant No. S2013040016320)+2 种基金the Scientific and Technological Innovation Project of Higher Education Institute, Guangdong, China (Grant No. 2013KJCX0051)the financial support from the Guangdong Natural Science Funds for Distinguished Young Scholarthe Zhujiang New-star Plan of Science & Technology in Guangzhou City (Grant No. 2014J2200008)
文摘Two-dimensional(2D) materials have emerged as attractive mediums for fabricating versatile optoelectronic devices. Recently, few-layer molybdenum disulfide(MoS2), as a shining 2D material, has been discovered to possess both the saturable absorption effect and large nonlinear refractive index. Herein, taking advantage of the unique nonlinear optical properties of MoS2, we fabricated a highly nonlinear saturable absorption photonic device by depositing the few-layer MoS2 onto the microfiber. With the proposed MoS2 photonic device, apart from the conventional soliton patterns, the mode-locked pulses could be shaped into some new soliton patterns, namely,multiple soliton molecules, localized chaotic multipulses, and double-scale soliton clusters. Our findings indicate that the few-layer MoS2-deposited microfiber could operate as a promising highlynonlinear photonic device for the related nonlinear optics applications.
基金partially supported by the National Natural Science Foundation of China(NSFC)(Nos.61307058,61378036,11304101,and 11474108)Guangdong Natural Science Funds for Distinguished Young Scholar(No.2014A030306019)+3 种基金Program for the Outstanding Innovative Young Talents of Guangdong Province(No.2014TQ01X220)Program for Outstanding Young Teachers in Guangdong Higher Education Institutes(No.YQ2015051)Science and Technology Project of Guangdong(No.2016B090925004)Science and Technology Program of Guangzhou(No.201607010245)
文摘As the typical material of two-dimensional transition metal dichalcogenides(TMDs), few-layered MoS2 possesses broadband saturable absorption and a large nonlinear refractive index, which could be regarded as a promising candidate for dual-function photonic device fabrication. In this work, the coexistence of a bound soliton and harmonic mode-locking soliton was demonstrated in an ultrafast fiber laser based on a MoS2-deposited microfiber photonic device. Through a band-pass filter, each multi-soliton state was investigated separately. The bound soliton has periodic spectral modulation of 1.55 nm with a corresponding pulse separation of 5.16 ps.The harmonic mode-locking soliton has the repetition rate of 479 MHz, corresponding to the 65th harmonic of the fundamental repetition rate. The results indicated that there exist more possibilities of different multi-soliton composites, which would enhance our understanding of multi-soliton dynamics.
文摘The interracial Si nano-pyralnid-enhanced electroluminescence (EL) of an ITO/SiOx/p-Si/Al metal-oxidesemiconductor (MOS) diode with turn-on voltage of 50 V, threshold current of 1.23 mA/cm^2, output power of 16 nW, and lifetime of 10 h is reported.
基金supported by the National Natural Science Foundation of China(Nos.61036002,60536030, 60776024,60877035,61076023,and 90820002)the National "863" Program of China(Nos.2007AA04Z329, 2007AA04Z254,2011CB933203,and 2011CB933102)
文摘Low-voltage silicon (Si)-based light-emitting diode (LED) is designed based on the former research of LED in Si-based standard complementary metal oxide semiconductor (CMOS) technology. The low-voltage LED is designed under the research of cross-finger structure LEDs and sophisticated structure enhanced LEDs for high efficiency and stable light source of monolithic chip integration. The device size of low-voltage LED is 45.85x38.4 (#m), threshold voltage is 2.2 V in common condition, and temperature is 27 ~C. The external quantum efficiency is about 10-6 at stable operating state of 5 V and 177 mA.
文摘A model has been developed to study the effect of depletion and energy quantization at the poly-silicon /oxide interface on the behavior of a nanometer scale n-MOSFET.A model of inversion charge density,including the inversion layer quantization using the variation approach in the substrate,has also been produced.Using the exact calculations of the polygate potential under the depletion and quantization conditions,a C-V model has been developed. All the results have been compared with the numerical models reported in existing literature and they show good agreement.
文摘Frequency synthesizer is an important part of optical and wireless communication system. Low power comsumption prescaler is one of the most critical unit of frequency synthesizer. For the frequency divider, it must be programmable for channel selection in multi-channel communication systems. A dual-modulus prescaler (DMP) is needed to provide variable division ratios. DMP is considered as a critical power dissipative block since it always operates at full speed. This paper introduces a high speed and low power complementary metal oxide semiconductor (CMOS) 15/16 DMP based on true single-phase-clock (TSPC) and transmission gates (TGs) cell. A conventional TSPC is optimized in terms of devices size, and it is resimulated. The TSPC is used in the synchronous and asynchronous counter. TGs are used in the control logic. The DMP circuit is implemented in 0.18 μm CMOS process. The simulation results are provided. The results show wide operating frequency range from 7.143 MHz to 4.76 GHz and it comsumes 3.625 mW under 1.8 V power supply voltage at 4.76 GHz.
基金the Semiconductor Research Corporation and the U.S. National Science Foundation (Grant No. MRSEC DMR 0520495)
文摘This paper reviews the following electrical characterization techniques for measuring the microscopic bonding structures, impurities, and electrically active defects in advanced CMOS gate stacks: 1) inelastic electron tunneling spectroscopy (IETS), 2) lateral profiling of threshold voltages, interface-trap density, and oxide charge density distributions along the channel of an MOSFET, and 3) pulse agitated substrate hot electron injection (PASHEI) technique for measuring trapping effects in the gate dielectric at low and modest gate voltages.
文摘In the past few years, two-dimensional (2D) transition metal dichalcogenide (TMDC) materials have attracted increasing attention of the research community, owing to their unique electronic and optical properties, ranging from the valley-spin coupling to the indirect-to-direct bandgap transition when scaling the materials from multi-layer to monolayer. These properties are appealing for the development of novel electronic and optoelectronic devices with important applications in the broad fields of communication, computation, and healthcare. One of the key features of the TMDC family is the indirect-to-direct bandgap transition that occurs when the material thickness decreases from multilayer to monolayer, which is favorable for many photonic applications. TMDCs have also demonstrated unprecedented flexibility and versatility for constructing a wide range of heterostructures with atomic-level control over their layer thickness that is also free of lattice mismatch issues. As a result, layered TMDCs in combination with other 2D materials have the potential for realizing novel high-performance optoelectronic devices over a broad operating spectral range. In this article, we review the recent progress in the synthesis of 2D TMDCs and optoelectronic devices research. We also discuss the challenges facing the scalable applications of the family of 2D materials and provide our perspective on the opportunities offered by these materials for future generations of nanophotonics technology.
基金supported by the State Key Development Program for Basic Research of China(No. 2006CB302803)the National Natural Science Foundation of China(No.60877036)
文摘We demonstrate a sub-nanosecond electro-optical switch with low crosstalk in a silicon-on-insulator (SOI) dual-coupled micro-ring embedded with p-i-n diodes. A crosstalk of -23 dB is obtained in the 20-μm-radius micro-ring with the well-designing asymmetric dual-coupling structure. By optimizations of the doping profiles and the fabrication processes, the sub-nanosecond switch-on/off time of 〈400 ps is finally realized under an electrical pre-emphasized driving signal. This compact and fast-response micro-ring switch, which can be fabricated by complementary metal oxide semiconductor (CMOS) compatible technologies, have enormous potential in optical interconnects of multicore networks-on-chip.