Having the advantage of simplicity, robustness and low computational costs, the particle swarm optimization (PSO) algorithm is a powerful evolutionary computation tool for synthesis and optimization of Reed- Muller ...Having the advantage of simplicity, robustness and low computational costs, the particle swarm optimization (PSO) algorithm is a powerful evolutionary computation tool for synthesis and optimization of Reed- Muller logic based circuits. Exploring discrete PSO and probabilistic transition rules, the discrete ternary particle swarm optimization (DTPSO) is proposed for mixed polarity Reed-Muller (MPRM) circuits. According to the characteristics of mixed polarity OR/XNOR expression, a tabular technique is improved, and it is applied in the polarity conversion of MPRM functions. DTPSO is introduced to search the best polarity for an area of MPRM circuits by building parameter mapping relationships between particles and polarities. The computational results show that the proposed DTPSO outperforms the reported method using maxterm conversion starting from POS Boolean functions. The average saving in the number of terms is about 11.5%; the algorithm is quite efficient in terms of CPU time and achieves 12.2% improvement on average.展开更多
Polarity optimization for mixed polarity Reed-Muller(MPRM) circuits is a combinatorial issue.Based on the study on discrete particle swarm optimization(DPSO) and mixed polarity,the corresponding relation between p...Polarity optimization for mixed polarity Reed-Muller(MPRM) circuits is a combinatorial issue.Based on the study on discrete particle swarm optimization(DPSO) and mixed polarity,the corresponding relation between particle and mixed polarity is established,and the delay-area trade-off of large-scale MPRM circuits is proposed. Firstly,mutation operation and elitist strategy in genetic algorithm are incorporated into DPSO to further develop a hybrid DPSO(HDPSO).Then the best polarity for delay and area trade-off is searched for large-scale MPRM circuits by combining the HDPSO and a delay estimation model.Finally,the proposed algorithm is testified by MCNC Benchmarks.Experimental results show that HDPSO achieves a better convergence than DPSO in terms of search capability for large-scale MPRM circuits.展开更多
基金Project supported by the National Natural Science Foundation of China(No.61076032)the S&T Plan of Zhejiang Provincial Science and Technology Department(No.2010C31012)+2 种基金the S&T Plan of Zhejiang Provincial Education Department(No.Y201016317)the S&T Plan of Ningbo University(No.xk1089)the K.C.Wong Magna Fund in Ningbo University
文摘Having the advantage of simplicity, robustness and low computational costs, the particle swarm optimization (PSO) algorithm is a powerful evolutionary computation tool for synthesis and optimization of Reed- Muller logic based circuits. Exploring discrete PSO and probabilistic transition rules, the discrete ternary particle swarm optimization (DTPSO) is proposed for mixed polarity Reed-Muller (MPRM) circuits. According to the characteristics of mixed polarity OR/XNOR expression, a tabular technique is improved, and it is applied in the polarity conversion of MPRM functions. DTPSO is introduced to search the best polarity for an area of MPRM circuits by building parameter mapping relationships between particles and polarities. The computational results show that the proposed DTPSO outperforms the reported method using maxterm conversion starting from POS Boolean functions. The average saving in the number of terms is about 11.5%; the algorithm is quite efficient in terms of CPU time and achieves 12.2% improvement on average.
基金supported by the National Natural Science Foundation of China(No.61076032)the Natural Science Foundation of Zhejiang Province,China(Nos.Z1111219,LY13F040003,LY 12D06002)+1 种基金the Ningbo Natural Science Fund,China(No.2010A610175)the K. C.Wong Magna Fund in Ningbo University,China
文摘Polarity optimization for mixed polarity Reed-Muller(MPRM) circuits is a combinatorial issue.Based on the study on discrete particle swarm optimization(DPSO) and mixed polarity,the corresponding relation between particle and mixed polarity is established,and the delay-area trade-off of large-scale MPRM circuits is proposed. Firstly,mutation operation and elitist strategy in genetic algorithm are incorporated into DPSO to further develop a hybrid DPSO(HDPSO).Then the best polarity for delay and area trade-off is searched for large-scale MPRM circuits by combining the HDPSO and a delay estimation model.Finally,the proposed algorithm is testified by MCNC Benchmarks.Experimental results show that HDPSO achieves a better convergence than DPSO in terms of search capability for large-scale MPRM circuits.