期刊文献+
共找到7,946篇文章
< 1 2 250 >
每页显示 20 50 100
Nontraditional energy-assisted mechanical machining of difficult-to-cut materials and components in aerospace community:a comparative analysis 被引量:2
1
作者 Guolong Zhao Biao Zhao +5 位作者 Wenfeng Ding Lianjia Xin Zhiwen Nian Jianhao Peng Ning He Jiuhua Xu 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第2期190-271,共82页
The aerospace community widely uses difficult-to-cut materials,such as titanium alloys,high-temperature alloys,metal/ceramic/polymer matrix composites,hard and brittle materials,and geometrically complex components,su... The aerospace community widely uses difficult-to-cut materials,such as titanium alloys,high-temperature alloys,metal/ceramic/polymer matrix composites,hard and brittle materials,and geometrically complex components,such as thin-walled structures,microchannels,and complex surfaces.Mechanical machining is the main material removal process for the vast majority of aerospace components.However,many problems exist,including severe and rapid tool wear,low machining efficiency,and poor surface integrity.Nontraditional energy-assisted mechanical machining is a hybrid process that uses nontraditional energies(vibration,laser,electricity,etc)to improve the machinability of local materials and decrease the burden of mechanical machining.This provides a feasible and promising method to improve the material removal rate and surface quality,reduce process forces,and prolong tool life.However,systematic reviews of this technology are lacking with respect to the current research status and development direction.This paper reviews the recent progress in the nontraditional energy-assisted mechanical machining of difficult-to-cut materials and components in the aerospace community.In addition,this paper focuses on the processing principles,material responses under nontraditional energy,resultant forces and temperatures,material removal mechanisms,and applications of these processes,including vibration-,laser-,electric-,magnetic-,chemical-,advanced coolant-,and hybrid nontraditional energy-assisted mechanical machining.Finally,a comprehensive summary of the principles,advantages,and limitations of each hybrid process is provided,and future perspectives on forward design,device development,and sustainability of nontraditional energy-assisted mechanical machining processes are discussed. 展开更多
关键词 difficult-to-cut materials geometrically complex components nontraditional energy mechanical machining aerospace community
下载PDF
Stress-assisted corrosion mechanism of 3Ni steel by using gradient boosting decision tree machining learning method 被引量:2
2
作者 Xiaojia Yang Jinghuan Jia +5 位作者 Qing Li Renzheng Zhu Jike Yang Zhiyong Liu Xuequn Cheng Xiaogang Li 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第6期1311-1321,共11页
Traditional 3Ni weathering steel cannot completely meet the requirements for offshore engineering development,resulting in the design of novel 3Ni steel with the addition of microalloy elements such as Mn or Nb for st... Traditional 3Ni weathering steel cannot completely meet the requirements for offshore engineering development,resulting in the design of novel 3Ni steel with the addition of microalloy elements such as Mn or Nb for strength enhancement becoming a trend.The stress-assisted corrosion behavior of a novel designed high-strength 3Ni steel was investigated in the current study using the corrosion big data method.The information on the corrosion process was recorded using the galvanic corrosion current monitoring method.The gradi-ent boosting decision tree(GBDT)machine learning method was used to mine the corrosion mechanism,and the importance of the struc-ture factor was investigated.Field exposure tests were conducted to verify the calculated results using the GBDT method.Results indic-ated that the GBDT method can be effectively used to study the influence of structural factors on the corrosion process of 3Ni steel.Dif-ferent mechanisms for the addition of Mn and Cu to the stress-assisted corrosion of 3Ni steel suggested that Mn and Cu have no obvious effect on the corrosion rate of non-stressed 3Ni steel during the early stage of corrosion.When the corrosion reached a stable state,the in-crease in Mn element content increased the corrosion rate of 3Ni steel,while Cu reduced this rate.In the presence of stress,the increase in Mn element content and Cu addition can inhibit the corrosion process.The corrosion law of outdoor-exposed 3Ni steel is consistent with the law based on corrosion big data technology,verifying the reliability of the big data evaluation method and data prediction model selection. 展开更多
关键词 weathering steel stress-assisted corrosion gradient boosting decision tree machining learning
下载PDF
On dry machining of AZ31B magnesium alloy using textured cutting tool inserts
3
作者 Shailendra Pawanr Kapil Gupta 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第4期1608-1618,共11页
Magnesium alloys have many advantages as lightweight materials for engineering applications,especially in the fields of automotive and aerospace.They undergo extensive cutting or machining while making products out of... Magnesium alloys have many advantages as lightweight materials for engineering applications,especially in the fields of automotive and aerospace.They undergo extensive cutting or machining while making products out of them.Dry cutting,a sustainable machining method,causes more friction and adhesion at the tool-chip interface.One of the promising solutions to this problem is cutting tool surface texturing,which can reduce tool wear and friction in dry cutting and improve machining performance.This paper aims to investigate the impact of dimple textures(made on the flank face of cutting inserts)on tool wear and chip morphology in the dry machining of AZ31B magnesium alloy.The results show that the cutting speed was the most significant factor affecting tool flank wear,followed by feed rate and cutting depth.The tool wear mechanism was examined using scanning electron microscope(SEM)images and energy dispersive X-ray spectroscopy(EDS)analysis reports,which showed that at low cutting speed,the main wear mechanism was abrasion,while at high speed,it was adhesion.The chips are discontinuous at low cutting speeds,while continuous at high cutting speeds.The dimple textured flank face cutting tools facilitate the dry machining of AZ31B magnesium alloy and contribute to ecological benefits. 展开更多
关键词 Magnesium alloy Dry machining Textured tools Flank wear SUSTAINABILITY
下载PDF
Field-assisted machining of difficult-to-machine materials
4
作者 Jianguo Zhang Zhengding Zheng +5 位作者 Kai Huang Chuangting Lin Weiqi Huang Xiao Chen Junfeng Xiao Jianfeng Xu 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第3期39-89,共51页
Difficult-to-machine materials (DMMs) are extensively applied in critical fields such as aviation,semiconductor,biomedicine,and other key fields due to their excellent material properties.However,traditional machining... Difficult-to-machine materials (DMMs) are extensively applied in critical fields such as aviation,semiconductor,biomedicine,and other key fields due to their excellent material properties.However,traditional machining technologies often struggle to achieve ultra-precision with DMMs resulting from poor surface quality and low processing efficiency.In recent years,field-assisted machining (FAM) technology has emerged as a new generation of machining technology based on innovative principles such as laser heating,tool vibration,magnetic magnetization,and plasma modification,providing a new solution for improving the machinability of DMMs.This technology not only addresses these limitations of traditional machining methods,but also has become a hot topic of research in the domain of ultra-precision machining of DMMs.Many new methods and principles have been introduced and investigated one after another,yet few studies have presented a comprehensive analysis and summarization.To fill this gap and understand the development trend of FAM,this study provides an important overview of FAM,covering different assisted machining methods,application effects,mechanism analysis,and equipment design.The current deficiencies and future challenges of FAM are summarized to lay the foundation for the further development of multi-field hybrid assisted and intelligent FAM technologies. 展开更多
关键词 field-assisted machining difficult-to-machine materials materials removal mechanism surface integrity
下载PDF
Non-traditional Machining Techniques for Fabricating Metal Aerospace Filters 被引量:5
5
作者 汪炜 朱荻 +1 位作者 D.M.Allen H.J.A.Almond 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2008年第5期441-447,共7页
Thanks to recent advances in manufacturing technology, aerospace system designers have many more options to fabricate high-quality, low-weight, high-capacity, cost-effective filters. Aside from traditional methods suc... Thanks to recent advances in manufacturing technology, aerospace system designers have many more options to fabricate high-quality, low-weight, high-capacity, cost-effective filters. Aside from traditional methods such as stamping, drilling and milling, many new approaches have been widely used in filter-manufacturing practices on account of their increased processing abilities. How- ever, the restrictions on costs, the need for studying under stricter conditions such as in aggressive fluids, the complicity in design, the workability of materials, and others have made it difficult to choose a satisfactory method from the newly developed processes, such as, photochemical machining (PCM), photo electroforming (PEF) and laser beam machining (LBM) to produce small, inexpensive, lightweight aerospace filters. This article appraises the technical and economical viability of PCM, PEF, and LBM to help engineers choose the fittest approach to turn out aerospace filters. 展开更多
关键词 aerospace filter photochemical machining photo electroforming laser beam machining
下载PDF
Monitoring Computer Numerical Control Machining Progress Based on Information Fusion 被引量:7
6
作者 TONG Liang YAN Ping LIU Fei 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2011年第6期1074-1082,共9页
To cope with the market demand dynamically,enterprise needs to obtain the production status of work in process real-timely,but the information of machining progress has feature of uncertainty and can not reflect the s... To cope with the market demand dynamically,enterprise needs to obtain the production status of work in process real-timely,but the information of machining progress has feature of uncertainty and can not reflect the status of production field effectively.In this work,to overcome the ineffectiveness of computer numerical control(CNC) machining progress information extraction and its application restriction in practice because of heterogeneous system of CNC machine,based on information fusion by analyzing multi-sources information,estimating CNC machining status and predicting the machining progress through tracking tool coordinates,a CNC machining progress monitoring method is presented.The multi-sources heterogeneous information includes machining path,real-time spindle power information,manual input data and tool position.On the method of obtaining this multi-sources heterogeneous information,the method which helps explore numerical control(NC) program,monitor spindle power of CNC,collect human-computer interaction(HCI) information,obtain real-time tool coordinates and express the knowledge concerned in this field is analyzed; The decision rule of CNC machining status in the way of fusing multi-sources information in manufacturing process is summarized,as well as the machining progress tracking method in accordance with real-time tool coordinates and machining path is presented.Finally,the method discussed is proved feasible by the verification of machining progress tracking through simulation experiment.The proposed research realizes the effective integration of CNC machining progress information,and enables enterprises an efficient way to share CNC information and configure CNC resources optimally. 展开更多
关键词 machining progress information fusion machining path CNC machining process track
下载PDF
A NEW ALGORITHM BASED ON TRIANGULATION FOR 5 AXIS MACHINING OF SCULPTURED SURFACES
7
作者 王清辉 廖文和 +1 位作者 刘壮 周儒荣 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 1996年第2期80+75-79,共6页
NC machining path of sculptured surfaces in CAD/CAM system plays an important role on manufacture. This paper describes a new algorithm for 5 axis machining of sculptured surfaces and the algorithm is interference fr... NC machining path of sculptured surfaces in CAD/CAM system plays an important role on manufacture. This paper describes a new algorithm for 5 axis machining of sculptured surfaces and the algorithm is interference free. The approach includes: (1) the tesselation of the parametric surfaces into triangles; (2) building topological relations among triangles;(3) 5 axis tool path generation; (4) interference detection and tool position correction. 展开更多
关键词 numerical control INTERFERENCE CAD/CAM NC machining sculptured surface 5 axis machining
下载PDF
MACHINING OF METAL MATRIX COMPOSITES 被引量:3
8
作者 徐九华 左敦稳 杨明达 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 1995年第2期161-167,共7页
Two types of aluminium-based composites reinforced respectively with 20 vol short fibre alumina and with a hybrid of 15 vol SiC particle and 5 vol short alumina fibre are machined with different tool materials:cemente... Two types of aluminium-based composites reinforced respectively with 20 vol short fibre alumina and with a hybrid of 15 vol SiC particle and 5 vol short alumina fibre are machined with different tool materials:cemented carbide,ceramic,cubic boron nitride(CBN)and polycrystalline diamond(PCD).The analysis on tool wear shows that the various tool materials exhibite different tool wear behaviours,and the tool wear mechanisma are discussed.Apparently,PCD tools do not necessarily guarantee dimensional stability but they can provide the most economic means for machining all sorts of composites.Consequently,a suitable tool material is suggested for machining each metal matrix composite(MMC) from the standpoints of tool wear and machined surface finish. 展开更多
关键词 machining cutting force surface roughness metal matrix composite tool wear
下载PDF
INTERNET-BASED MACHINING PARAMETER OPTIMIZATION AND MANAGEMENT SYSTEM FOR HIGH-SPEED MACHINING 被引量:5
9
作者 武美萍 廖文和 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2005年第1期42-46,共5页
The theory and its method of machining parameter optimization for high-speed machining are studied. The machining data collected from workshops, labs and references are analyzed. An optimization method based on the ge... The theory and its method of machining parameter optimization for high-speed machining are studied. The machining data collected from workshops, labs and references are analyzed. An optimization method based on the genetic algorithm (GA) is investigated. Its calculation speed is faster than that of traditional optimization methods, and it is suitable for the machining parameter optimization in the automatic manufacturing system. Based on the theoretical studies, a system of machining parameter management and optimization is developed. The system can improve productivity of the high-speed machining centers. 展开更多
关键词 computer aided manufacturing DATABASE genetic algorithm OPTIMIZATION numerical control machining
下载PDF
PRECISION OF HSK TOOLING SYSTEM IN HIGH SPEED MACHINING 被引量:1
10
作者 王贵成 吴卫国 +2 位作者 王树林 裴宏杰 沈春根 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2007年第2期129-133,共5页
Based on the theory of elastic mechanics and material mechanics, the orientation precision of the hohl schaft kegel(HSK) tooling system in static and dynamic states is theoretically and experimentally studied. The r... Based on the theory of elastic mechanics and material mechanics, the orientation precision of the hohl schaft kegel(HSK) tooling system in static and dynamic states is theoretically and experimentally studied. The relation between the clamping force and the shank taper is obtained. And a proper clamping force is found to be essential to assure the axial and radial orientation precisions of the HSK tooling system in high speed machining (HSM). Analytical results show that the reason why the HSK tooling system can keep high precision at the high rotational speed is that the actual axial clamping force keeps the two surfaces of the shank and the spindle in contact all the time. 展开更多
关键词 high speed machining HSK tooling system orientation precision
下载PDF
Aviation-oriented Micromachining Technology—Micro-ECM in Pure Water 被引量:1
11
作者 鲍怀谦 徐家文 李颖 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2008年第5期455-461,共7页
This article proposes a precise and ecofriendly micromachining technology for aerospace application called electrochemical machining in pure water (PW-ECM). On the basis of the principles of water dissociation, a se... This article proposes a precise and ecofriendly micromachining technology for aerospace application called electrochemical machining in pure water (PW-ECM). On the basis of the principles of water dissociation, a series of test setups and tests are devised and performed under different conditions. These tests explain the need for technological conditions realizing PW-ECM, and further explore the technological principles. The results from the tests demonstrate a successful removal of electrolytic slime by means of ultrasonic vibration of the workpiece. To ensure the stability and reliability of PW-ECM process, a new combined machining method of PW-ECM assisted with ultrasonic vibration (PW-ECM/USV) is devised. Trilateral and square cavities and holes as well as a group of English alphabets are worked out on a stainless steel plate. It is confirmed that PW-ECM will be probably an efficient new aviation precision machining method. 展开更多
关键词 electrochemical machining in pure water (PW-ECM) cation exchange membrane water dissociation
下载PDF
Smart Cutting Tools and Smart Machining: Development Approaches, and Their Implementation and Application Perspectives 被引量:8
12
作者 Kai Cheng Zhi-Chao Niu +2 位作者 Robin C.Wang Richard Rakowski Richard Bateman 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2017年第5期1162-1176,共15页
Smart machining has tremendous potential and is becoming one of new generation high value precision manufacturing technologies in line with the advance of Industry 4.0 concepts. This paper presents some innovative des... Smart machining has tremendous potential and is becoming one of new generation high value precision manufacturing technologies in line with the advance of Industry 4.0 concepts. This paper presents some innovative design concepts and, in particular, the development of four types of smart cutting tools, including a force-based smart cutting tool, a temperature-based internally-cooled cutting tool, a fast tool servo (FTS) and smart collets for ultra- precision and micro manufacturing purposes. Implemen- tation and application perspectives of these smart cutting tools are explored and discussed particularly for smart machining against a number of industrial application requirements. They are contamination-free machining, machining of tool-wear-prone Si-based infra-red devices and medical applications, high speed micro milling and micro drilling, etc. Furthermore, implementation tech- niques are presented focusing on: (a) plug-and-produce design principle and the associated smart control algo- rithms, (b) piezoelectric film and surface acoustic wave transducers to measure cutting forces in process, (c) critical cutting temperature control in real-time machining, (d) in- process calibration through machining trials, (e) FE-based design and analysis of smart cutting tools, and (f) applica- tion exemplars on adaptive smart machining. 展开更多
关键词 Smart cutting tool Smart machining Fast toolservo (FFS) Precision machining Micro manufacturing Smart tooling
下载PDF
Machining Line Planner输出STEP-NC数控程序的研究 被引量:1
13
作者 樊留群 刘玉平 《制造技术与机床》 CSCD 北大核心 2010年第7期88-91,共4页
介绍了STEP-NC的概念、数据模型及其结构特点,然后通过对比MLP(Machining Line Planner)和STEP-NC数控程序对特征和操作的不同定义方法,分析了在MLP中特征及加工工艺与STEP-NC的对应关系,探讨了在MLP中实现输出STEP-NC格式的零件加工程... 介绍了STEP-NC的概念、数据模型及其结构特点,然后通过对比MLP(Machining Line Planner)和STEP-NC数控程序对特征和操作的不同定义方法,分析了在MLP中特征及加工工艺与STEP-NC的对应关系,探讨了在MLP中实现输出STEP-NC格式的零件加工程序的方法。 展开更多
关键词 STEP-NC数据模型 数控程序 machining LINE PLANNER
下载PDF
Optimization of micro milling electrical discharge machining of Inconel 718 by Grey-Taguchi method 被引量:3
14
作者 林茂用 曹中丞 +3 位作者 许春耀 邱蕙 黄鹏丞 林裕城 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第3期661-666,共6页
The optimization of micro milling electrical discharge machining(EDM) process parameters of Inconel 718 alloy to achieve multiple performance characteristics such as low electrode wear,high material removal rate and... The optimization of micro milling electrical discharge machining(EDM) process parameters of Inconel 718 alloy to achieve multiple performance characteristics such as low electrode wear,high material removal rate and low working gap was investigated by the Grey-Taguchi method.The influences of peak current,pulse on-time,pulse off-time and spark gap on electrode wear(EW),material removal rate(MRR) and working gap(WG) in the micro milling electrical discharge machining of Inconel 718 were analyzed.The experimental results show that the electrode wear decreases from 5.6×10-9 to 5.2×10-9 mm3/min,the material removal rate increases from 0.47×10-8 to 1.68×10-8 mm3/min,and the working gap decreases from 1.27 to 1.19 μm under optimal micro milling electrical discharge machining process parameters.Hence,it is clearly shown that multiple performance characteristics can be improved by using the Grey-Taguchi method. 展开更多
关键词 Inconel 718 alloy micro milling electrical discharge machining electrode wear material removal rate working gap Grey-Taguchi method
下载PDF
Effects of mask wall angle on matrix-hole shape changes during electrochemical machining by mask 被引量:8
15
作者 李冬林 朱荻 +1 位作者 李寒松 刘金国 《Journal of Central South University》 SCIE EI CAS 2011年第4期1115-1120,共6页
The influences of the mask wall angle on the current density distribution,shape of the evolving cavity and machining accuracy were investigated in electrochemical machining(ECM) by mask.A mathematical model was develo... The influences of the mask wall angle on the current density distribution,shape of the evolving cavity and machining accuracy were investigated in electrochemical machining(ECM) by mask.A mathematical model was developed to predict the shape evolution during the ECM by mask.The current density distribution is sensitive to mask wall angle.The evolution of cavity is determined by the current density distribution of evolving workpiece surface.The maximum depth is away from the center of holes machined,which leads to the island appearing at the center of cavity for mask wall angles greater than or equal to 90°(β≥90°).The experimental system was established and the simulation results were experimentally verified.The results indicate that the simulation results of cavity shape are consistent with the actual ones.The experiments also show that the repetition accuracy of matrix-hole for β≥90° is higher than that for β<90°.A hole taper is diminished,and the machining accuracy is improved with the mask wall angle increasing. 展开更多
关键词 electrochemical machining matrix-hole machining accuracy current density distribution
下载PDF
Review on non-conventional machining of shape memory alloys 被引量:8
16
作者 M.MANJAIAH S.NARENDRANATH S.BASAVARAJAPPA 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第1期12-21,共10页
Shape memory alloys (SMAs) are the developing advanced materials due to their versatile specific properties such as pseudoelasticity, shape memory effect (SME), biocompatibility, high specific strength, high corro... Shape memory alloys (SMAs) are the developing advanced materials due to their versatile specific properties such as pseudoelasticity, shape memory effect (SME), biocompatibility, high specific strength, high corrosion resistance, high wear resistance and high anti-fatigue property. Therefore, the SMAs are used in many applications such as aerospace, medical and automobile. However, the conventional machining of SMAs causes serious tool wear, time consuming and less dimensional deformity due to severe strain hardening and pseudoelasticity. These materials can be machined using non-conventional methods such as laser machining, water jet machining (WJM) and electrochemical machining (ECM), but these processes are limited to complexity and mechanical properties of the component. Electrical discharge machining (EDM) and wire EDM (WEDM) show high capability to machine SMAs of complex shapes with precise dimensions. The aim of this work is to present the consolidated references on the machining of SMAs using EDM and WEDM and subsequently identify the research gaps. In support to these research gaps, this work has also evolved the future research directions. 展开更多
关键词 non-conventional machining electrical discharge machining wire EDM shape memory alloys
下载PDF
Effect of tool geometry on ultraprecision machining of soft-brittle materials:a comprehensive review 被引量:4
17
作者 Weihai Huang Jiwang Yan 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2023年第1期60-98,共39页
Brittle materials are widely used for producing important components in the industry of optics,optoelectronics,and semiconductors.Ultraprecision machining of brittle materials with high surface quality and surface int... Brittle materials are widely used for producing important components in the industry of optics,optoelectronics,and semiconductors.Ultraprecision machining of brittle materials with high surface quality and surface integrity helps improve the functional performance and lifespan of the components.According to their hardness,brittle materials can be roughly divided into hard-brittle and soft-brittle.Although there have been some literature reviews for ultraprecision machining of hard-brittle materials,up to date,very few review papers are available that focus on the processing of soft-brittle materials.Due to the‘soft’and‘brittle’properties,this group of materials has unique machining characteristics.This paper presents a comprehensive overview of recent advances in ultraprecision machining of soft-brittle materials.Critical aspects of machining mechanisms,such as chip formation,surface topography,and subsurface damage for different machining methods,including diamond turning,micro end milling,ultraprecision grinding,and micro/nano burnishing,are compared in terms of tool-workpiece interaction.The effects of tool geometries on the machining characteristics of soft-brittle materials are systematically analyzed,and dominating factors are sorted out.Problems and challenges in the engineering applications are identified,and solutions/guidelines for future R&D are provided. 展开更多
关键词 ultraprecision machining soft-brittle materials ductile machining tool geometries material removal mechanisms surface integrity
下载PDF
Experimental Research on Effects of Process Parameters on Servo Scanning 3D Micro Electrical Discharge Machining 被引量:3
18
作者 TONG Hao LI Yong HU Manhong 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2012年第1期114-121,共8页
Servo scanning 3D micro electrical discharge machining (3D SSMEDM) is a novel and effective method in fabricating complex 3D micro structures with high aspect ratio on conducting materials. In 3D SSMEDM process, the a... Servo scanning 3D micro electrical discharge machining (3D SSMEDM) is a novel and effective method in fabricating complex 3D micro structures with high aspect ratio on conducting materials. In 3D SSMEDM process, the axial wear of tool electrode can be compensated automatically by servo-keeping discharge gap, instead of the traditional methods that depend on experiential models or intermittent compensation. However, the effects of process parameters on 3D SSMEDM have not been reported up until now. In this study, the emphasis is laid on the effects of pulse duration, peak current, machining polarity, track style, track overlap, and scanning velocity on the 3D SSMEDM performances of machining efficiency, processing status, and surface accuracy. A series of experiments were carried out by machining a micro-rectangle cavity (900 μm×600 μm) on doped silicon. The experimental results were obtained as follows. Peak current plays a main role in machining efficiency and surface accuracy. Pulse duration affects obviously the stability of discharge state. The material removal rate of cathode processing is about 3/5 of that of anode processing. Compared with direction-parallel path, contour-parallel path is better in counteracting the lateral wear of tool electrode end. Scanning velocity should be selected moderately to avoid electric arc and short. Track overlap should be slightly less than the radius of tool electrode. In addition, a typical 3D micro structure of eye shape was machined based on the optimized process parameters. These results are beneficial to improve machining stability, accuracy, and efficiency in 3D SSMEDM. 展开更多
关键词 micro electrical discharge machining(micro EDM) servo scanning machining 3D micro-structure process parameter
下载PDF
Approach for Polishing Diamond Coated Complicated Cutting Tool: Abrasive Flow Machining(AFM) 被引量:2
19
作者 Xin-Chang Wang Cheng-Chuan Wang +1 位作者 Chang-Ying Wang Fang-Hong Sun 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2018年第6期154-168,共15页
Lower surface roughness and sharper cutting edge are beneficial for improving the machining quality of the cut?ting tool, while coatings often deteriorate them. Focusing on the diamond coated WC?Co milling cutter, the... Lower surface roughness and sharper cutting edge are beneficial for improving the machining quality of the cut?ting tool, while coatings often deteriorate them. Focusing on the diamond coated WC?Co milling cutter, the abrasive flow machining(AFM) is selected for reducing the surface roughness and sharpening the cutting edge. Comparative cutting tests are conducted on di erent types of coated cutters before and after AFM, as well as uncoated WC?Co one, demonstrating that the boron?doped microcrystalline and undoped fine?grained composite diamond coated cutter after the AFM(AFM?BDM?UFGCD) is a good choice for the finish milling of the 6063 Al alloy in the present case, because it shows favorable machining quality close to the uncoated one, but much prolonged tool lifetime. Besides, compared with the micro?sized diamond films, it is much more convenient and e cient to finish the BDM?UFGCD coated cutter covered by nano?sized diamond grains, and resharpen its cutting edge by the AFM, owing to the lower initial surface roughness and hardness. Moreover, the boron incorporation and micro?sized grains in the underly?ing layer can enhance the film?substrate adhesion, avoid the rapid film removal in the machining process, and thus maximize the tool life(1040 m, four times more than the uncoated one). In general, the AFM is firstly proposed and discussed for post?processing the diamond coated complicated cutting tools, which is proved to be feasible for improving the cutting performance 展开更多
关键词 Abrasive flow machining Diamond coated complicated cutting tool Surface roughness Radius of the cutting edge machining quality Tool lifetime
下载PDF
Electrochemical Machining Analysis on Grid Cathode Composed of Square Cells 被引量:2
20
作者 LU Yonghua LIU Kai ZHAO Dongbiao 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2013年第4期668-674,共7页
During the electrochemical machining (ECM), the cathodes designed by the existing methods are mainly unitary cathodes, which can be only used to produce the workpieces with the same shapes. However, there are few rese... During the electrochemical machining (ECM), the cathodes designed by the existing methods are mainly unitary cathodes, which can be only used to produce the workpieces with the same shapes. However, there are few researches on designing cathodes for machining the different workpieces with the different surfaces. This paper presents the grid cathode composed of the square cells to produce the workpieces with different shapes. Three types of the square cells, 2.5 mm′2.5 mm, 3 mm′3 mm, and 4 mm′4 mm, are utilized to construct the plane, the slant, and the blade cathode. The material of the cathode and the anode is CrNi 18 Ti 9 , and the ingredient of electrolyte is 15% NaCl and 15% NaNO 3 . The machining equilibrium machining current and time are acquired and analyzed, the machining process and the workpiece quality are compared between using the grid cathode and the unitary cathode. Moreover, the machining errors on the workpiece surface are measured and analyzed, and the error reasons are traced and discussed to obtain the better surface quality of the workpiece. The experiment and analysis results show that the grid cathode can be used to manufacture the workpieces with complex shapes in certain range of the error. The workpiece quality improves with the size of the square cell being reduced, and if the square element is small enough, the workpiece quality is almost equal to the one machined by the unitary cathode. The proposed research realizes a single cathode machining the different workpieces with the different surfaces. 展开更多
关键词 grid cathode square cell equilibrium machining current electrochemical machining (ECM)
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部