Experimental investigations into the effects of the magnetic field configuration near the channel exit on the plume of Hall thrusters were conducted. The magnetic field configuration near the channel exit is character...Experimental investigations into the effects of the magnetic field configuration near the channel exit on the plume of Hall thrusters were conducted. The magnetic field configuration near the channel exit is characterized by the inclination angle between the magnetic field lines and the thruster radial direction. Different inclination angles were obtained by varying the current ratio in the coils. The plume divergence angles were measured by a dual-directed probe. The results showed that the plume divergence angle increased obviously with the increase in the magnitude of the inclination angle near the channel exit. Therefore, in order to optimize the magnetic field for reducing plume divergence, the magnitude of the inclination angle should be reduced as much as possible. It suggests that the magnetic field configuration near the channel exit is another important factor that affects plume divergence.展开更多
The intrinsic radial magnetic field(B r) in a tokamak is explored by the solution of the Grad–Shafranov equation in axisymmetric configurations through an expansion of the four terms of the magnetic surfaces. It ca...The intrinsic radial magnetic field(B r) in a tokamak is explored by the solution of the Grad–Shafranov equation in axisymmetric configurations through an expansion of the four terms of the magnetic surfaces. It can be inferred from the simulation results that at the core of the device, the tokamak should possess a three-dimensional magnetic field configuration, which could be reduced to a two-dimensional one when the radial position is greater than 0.6a. The radial magnetic field and the amzimuthal magnetic field have the same order of magnitude at the core of the device. These results can offer a reference for the analysis of the plasma instability, the property of the core plasma, and the magnetic field measurement.展开更多
We measured the main plasma parameters(density of electron,temperature of electron and ion confinement time)and beam intensity of various heavy ions as a function of B_(min).The B_(min) strongly affects the field grad...We measured the main plasma parameters(density of electron,temperature of electron and ion confinement time)and beam intensity of various heavy ions as a function of B_(min).The B_(min) strongly affects the field gradient at the resonance zone,consequently the plasma parameters and beam intensity are changed. Based on these experimental results,we started to construct new 18GHz ECRIS and make a detailed design of the 28GHz SC-ECRIS for RIKEN RI beam factory project.展开更多
We have simulated the processes of transient reconnection at the nightside magnetopause by using a two-dimensional compressible MHD model.According to the simulation results,three types of global reconnection configur...We have simulated the processes of transient reconnection at the nightside magnetopause by using a two-dimensional compressible MHD model.According to the simulation results,three types of global reconnection configuration at the magnetopause are proposed.The main results are summarized as follows.展开更多
基金supported by National Natural Science Foundation of China(No.50676026)the Program for Chair Professors of"Cheung Kong Scholars Program"of China in 2008
文摘Experimental investigations into the effects of the magnetic field configuration near the channel exit on the plume of Hall thrusters were conducted. The magnetic field configuration near the channel exit is characterized by the inclination angle between the magnetic field lines and the thruster radial direction. Different inclination angles were obtained by varying the current ratio in the coils. The plume divergence angles were measured by a dual-directed probe. The results showed that the plume divergence angle increased obviously with the increase in the magnitude of the inclination angle near the channel exit. Therefore, in order to optimize the magnetic field for reducing plume divergence, the magnitude of the inclination angle should be reduced as much as possible. It suggests that the magnetic field configuration near the channel exit is another important factor that affects plume divergence.
基金Project supported by the Special Domestic Program of ITER,China(Grant No.2009GB105003)
文摘The intrinsic radial magnetic field(B r) in a tokamak is explored by the solution of the Grad–Shafranov equation in axisymmetric configurations through an expansion of the four terms of the magnetic surfaces. It can be inferred from the simulation results that at the core of the device, the tokamak should possess a three-dimensional magnetic field configuration, which could be reduced to a two-dimensional one when the radial position is greater than 0.6a. The radial magnetic field and the amzimuthal magnetic field have the same order of magnitude at the core of the device. These results can offer a reference for the analysis of the plasma instability, the property of the core plasma, and the magnetic field measurement.
文摘We measured the main plasma parameters(density of electron,temperature of electron and ion confinement time)and beam intensity of various heavy ions as a function of B_(min).The B_(min) strongly affects the field gradient at the resonance zone,consequently the plasma parameters and beam intensity are changed. Based on these experimental results,we started to construct new 18GHz ECRIS and make a detailed design of the 28GHz SC-ECRIS for RIKEN RI beam factory project.
文摘We have simulated the processes of transient reconnection at the nightside magnetopause by using a two-dimensional compressible MHD model.According to the simulation results,three types of global reconnection configuration at the magnetopause are proposed.The main results are summarized as follows.