A two-staged membrane separation process for hydrogen recovery from refinery gases is introduced. The principle of the gas membrane separation process and the influence of the operation temperatures are analyzed. As t...A two-staged membrane separation process for hydrogen recovery from refinery gases is introduced. The principle of the gas membrane separation process and the influence of the operation temperatures are analyzed. As the conventional PID controller is difficult to make the operation temperatures steady, a fuzzy self-tuning PID control algorithm is proposed. The application shows that the algorithm is effective, the operation temperatures of both stages can be controlled steadily, and the operation flexibility and adaptability of the hydrogen recovery unit are enhanced with safety. This study lays a foundation to optimize the control of the membrane separation process and thus ensure the membrane performance.展开更多
Membrane technology has found wide applications in the petrochemical industry, mainly in the purification and recovery of the hydrogen resources. Accurate prediction of the membrane separation performance plays an imp...Membrane technology has found wide applications in the petrochemical industry, mainly in the purification and recovery of the hydrogen resources. Accurate prediction of the membrane separation performance plays an important role in carrying out advanced process control (APC). For the first time, a soft-sensor model for the membrane separation process has been established based on the radial basis function (RBF) neural networks. The main performance parameters, i.e, permeate hydrogen concentration, permeate gas flux, and residue hydrogen concentration, are estimated quantitatively by measuring the operating temperature, feed-side pressure, permeate-side pressure, residue-side pressure, feed-gas flux, and feed-hydrogen concentration excluding flow structure, membrane parameters, and other compositions. The predicted results can gain the desired effects. The effectiveness of this novel approach lays a foundation for integrating control technology and optimizing the operation of the gas membrane separation process.展开更多
Membrane separation, a new technology for removing VOCs including pervaporation, vapor permeation, membrane contactor, and membrane bioreactor was presented. Comparing with traditional techniques, these special techni...Membrane separation, a new technology for removing VOCs including pervaporation, vapor permeation, membrane contactor, and membrane bioreactor was presented. Comparing with traditional techniques, these special techniques are an efficient and energy saving technology. Vapor permeation can be applied to recovery of organic solvents from exhaust streams. Membrane contactor could be used for removing or recovering VOCs from air or wastewater. Pervaporation and vapor permeation are viable methods for removing VOCs from wastewater to yield a VOC concentrate which could either be destroyed by conventional means, or be recycled for reuse.展开更多
Volatile organic compounds(VOCs)are a crucial kind of pollutants in the environment due to their obvious features of severe toxicity,high volatility,and poor degradability.It is particularly urgent to control the emis...Volatile organic compounds(VOCs)are a crucial kind of pollutants in the environment due to their obvious features of severe toxicity,high volatility,and poor degradability.It is particularly urgent to control the emission of VOCs due to the persistent increase of concentration and the stringent regulations.In China,clear directions and requirements for reduction of VOCs have been given in the“national plan on environmental improvement for the 13th Five-Year Plan period”.Therefore,the development of efficient technologies for removal and recovery of VOCs is of great significance.Recovery technologies are favored by researchers due to their advantages in both recycling VOCs and reducing carbon emissions.Among them,adsorption and membrane separation processes have been extensively studied due to their remarkable industrial prospects.This overview was to provide an up-to-date progress of adsorption and membrane separation for removal and recovery of VOCs.Firstly,adsorption and membrane separation were found to be the research hotspots through bibliometric analysis.Then,a comprehensive understanding of their mechanisms,factors,and current application statuses was discussed.Finally,the challenges and perspectives in this emerging field were briefly highlighted.展开更多
Membrane separation technology has been taken up for use in diverse applications such as water treatment,pharmaceutical,petroleum,and energy-related industries.Compared with the design of membrane materials,the innova...Membrane separation technology has been taken up for use in diverse applications such as water treatment,pharmaceutical,petroleum,and energy-related industries.Compared with the design of membrane materials,the innovation of membrane preparation technique is more urgent for the development of membrane separation technology,because it not only affects physicochemical properties and separation performance of the fabricated membranes,but also determines their potential in industrialized application.Among the various membrane preparation methods,spray technique has recently gained increasing attention because of its low cost,rapidity,scalability,minimum of environmental burden,and viability for nearly unlimited range of materials.In this Review article,we summarized and discussed the recent developments in separation membranes using the spray technique,including the fundamentals,important features and applications.The present challenges and future considerations have been touched to provide inspired insights for developing the sprayed separation membranes.展开更多
Solvent extraction of crude oil from oilseeds is widely applied for its high production capacity and low cost. In this process, solvent recovery and tail gas treatment are usually performed by adsorption, paraffin scr...Solvent extraction of crude oil from oilseeds is widely applied for its high production capacity and low cost. In this process, solvent recovery and tail gas treatment are usually performed by adsorption, paraffin scrubbing, or even cryogenics (at low tail gas flow rates). Membrane separation, which has a lower energy consumption than these techniques, spans a broad range of admissible concentrations and flow rates, and is moreover easily combined with other techniques. Vapor recompression has potentials to reduce the heat loss in association with distillation and evaporation. In this study, we proved the possibility of combining membrane separation and vapor recompression to improve the conventional vegetable oil production, by both experiments and process simulation. Nearly 73% of energy can be saved in the process of vegetable oil extraction by the novel processing approach. By further environmental assessment, several impact categories show that the optimized process is environmentally sustainable.展开更多
During the last decade, metal-organic frameworks(MOFs) have been applied in various fields due to their unique chemical and functional advantages. One of the widespread research hotspots is MOF-based membranes for sep...During the last decade, metal-organic frameworks(MOFs) have been applied in various fields due to their unique chemical and functional advantages. One of the widespread research hotspots is MOF-based membranes for separations, specifically continuous defect-free MOF membranes, which are usually grown on porous substrates. The substrate not only serves as the MOF layer support but also has a great influence on the membrane fabrication process and the final separation performance of the resultant membrane. In this review, we mainly introduce the progress focused on the substrates for MOF membranes fabrication. The substrate modifications and seeding methods aimed at synthesizing highquality MOF membranes are also summarized systematically.展开更多
In order to provide theoretical guidance for separating egg membrane from eggshell by using mechanical agitation,CFD was used to explore the flow characteristics in stirred tank,using the Sliding Grid method to deal w...In order to provide theoretical guidance for separating egg membrane from eggshell by using mechanical agitation,CFD was used to explore the flow characteristics in stirred tank,using the Sliding Grid method to deal with the impeller rotational velocity zone in flow field,and using the Euler model to deal with liquid-solid two-phase flow.This study explored the influence of dish-shape bottom or flat-shape bottom,the clearance size between baffle and the side wall,and the axial height of impeller to bottom on suspension state of particles,solids holdup distribution,solid phase velocity and power number by CFD.Simulation results showed that better particles suspension effect in dish-shape tank can reduce particles accumulation at the bottom and power consumption.If there was a small clearance size(S)between the baffle and the side wall of the stirred tank,it would reduce particles accumulation at the bottom,and reduce the power consumption.However,too large S would decrease the suspension height of particles,not only cannot strengthen the main flow,but also lead to most fluid through clearance forming tangential flow,simulation results showed that S=6 mm was perfect.While decreased axial height of impeller(C)to bottom,particles accumulation at the bottom was decreased,but power consumption would increase,simulation results showed that C=H/5(H is height of liquid surface)was perfect.According to the simulation results,the structure of the stirring tank was optimized.At the same time,the influences of stirring rotational velocity,stirring time,solid-liquid ratio and separating medium temperature on egg membrane recovery were also studied by experiment,and optimal parameter combination of factors was obtained.The experiment results showed while the stirring time was 17.1 min,stirring rotational velocity was 350 r/min,solid-liquid ratio was 1:17 g/mL,the separating medium temperature was 32℃,the membrane recovery rate can reach above 89%.The device improves the recovery and utilization of discarded eggshell,and provides a reference for the solid-liquid two-phase flow and related study.展开更多
Sustainable processes for purifying water,capturing carbon,producing biofuels,operating fuel cells,and performing energy-efficient industrial separations will require next-generation membranes.Solvent-less fabrication...Sustainable processes for purifying water,capturing carbon,producing biofuels,operating fuel cells,and performing energy-efficient industrial separations will require next-generation membranes.Solvent-less fabrication for membranes not only eliminates potential environmental issues with organic solvents,but also solves the swelling problems that occur with delicate polymer substrates.Furthermore,the activation procedures often required for synthesizing microporous materials such as metal–organic frameworks(MOFs)can be reduced when solvent-less vapor-phase approaches are employed.This perspective covers several vacuum deposition processes,including initiated chemical vapor deposition(iCVD),initiated plasma-enhanced chemical vapor deposition(iPECVD),solvent-less vapor deposition followed by in situ polymerization(SLIP),atomic layer deposition(ALD),and molecular layer deposition(MLD).These solvent-less vapor-phase methods are powerful in creating ultrathin selective layers for thin-film composite membranes and advantageous in conformally coating nanoscale pores for the precise modification of pore size and internal functionalities.The resulting membranes have shown promising performance for gas separation,nanofiltration,desalination,and water/oil separation.Further development of novel membrane materials and the scaling up of high-throughput reactors for solvent-less vapor-phase processes are necessary in order to make a real impact on the chemical industry in the future.展开更多
The separation of aromatic/aliphatic hydrocarbon mixtures is a significant process in chemical industry, but challenged in some cases. Compared with conventional separation technologies, pervaporation is quite promisi...The separation of aromatic/aliphatic hydrocarbon mixtures is a significant process in chemical industry, but challenged in some cases. Compared with conventional separation technologies, pervaporation is quite promising in terms of its economical, energy-saving, and eco-friendly advantages. However, this technique has not been used in industry for separating aromatic/aliphatic mixtures yet. One of the main reasons is that the separation performance of existed pervaporation membranes is unsatisfactory. Membrane material is an important factor that affects the separation performance. This review provides an overview on the advances in studying membrane materials for the pervaporation separation of aromatic/aliphatic mixtures over the past decade. Explored pristine polymers and their hybrid materials(as hybrid membranes) are summarized to highlight their nature and separation performance. We anticipate that this review could provide some guidance in the development of new materials for the aromatic/aliphatic pervaporation separation.展开更多
The design of membrane pore is critical for membrane preparation. Polyvinylidene fluoride(PVDF) membrane exhibits outstanding properties in the water-treatment field. However, it is a huge challenge to prepare PVDF ma...The design of membrane pore is critical for membrane preparation. Polyvinylidene fluoride(PVDF) membrane exhibits outstanding properties in the water-treatment field. However, it is a huge challenge to prepare PVDF macro-pore plasma separation membrane by non-solvent induced phase separation(NIPS). Herein, a facile strategy is proposed to prepare PVDF macro-pore plasma separation membrane via macromolecular interaction. ATR-FTIR and ^(1)H NMR showed that the intermolecular interaction existed between polyethylene oxide(PEO) and polyvinylpyrrolidone(PVP). It could significantly affect the PVDF macro-pore membrane structure. The maximum pore of the PVDF membrane could be effectively adjusted from small-pore/medium-pore to macro-pore by changing the molecular weight of PEO. The PVDF macro-pore membrane was obtained successfully when PEO-200 k existed with PVP. It exhibited higher plasma separation properties than the currently used plasma separation membrane.Moreover, it had excellent hemocompatibility due to the similar plasma effect, hemolysis, prothrombin time, blood effect and complement C_(3a) effect with the current utilized plasma separation membrane,implying its great potential application. The proposed facile strategy in this work provides a new method to prepare PVDF macro-pore plasma separation membrane by NIPS.展开更多
A series of organosilica sols are prepared by the polymeric sol–gel method using 1,2-bis(triethoxysilyl)ethane(BTESE)as the precursor.Particle size distributions of the BTESE-derived sols are systematically investiga...A series of organosilica sols are prepared by the polymeric sol–gel method using 1,2-bis(triethoxysilyl)ethane(BTESE)as the precursor.Particle size distributions of the BTESE-derived sols are systematically investigated by carefully adjusting the synthesis parameters(i.e.,water ratios,acid ratios and solvent ratios)in the sol process.In certain conditions,increasing the water ratio or the acid ratio tends to cause larger sol sizes and bimodal particle size distributions.However,higher solvent ratios lead to smaller sol sizes and unimodal particle size distributions.The organosilica membranes prepared from the optimized sols show excellent H_2 permeances(up to 4.2×10^(-7)mol·m^(-2)·s^(-1)·Pa^(-1))and gas permselectitivies(H_2/CO_2 is 9.5,H_2/N_2 is 50 and H_2/CH_4 is 68).This study offers significant insights into the relationship between the sol synthesis parameters,sol sizes and membrane performance.展开更多
Poly(ethylene-oxide)(PEO)-based membranes have attracted much attention recently for CO2 separation because CO2 is highly soluble into PEO and shows high selectivity over other gases such as CH4 and N2.Unfortunately,t...Poly(ethylene-oxide)(PEO)-based membranes have attracted much attention recently for CO2 separation because CO2 is highly soluble into PEO and shows high selectivity over other gases such as CH4 and N2.Unfortunately,those membranes are not strong enough mechanically and highly crystalline,which hinders their broader applications for separation membranes.In this review discussions are made,as much in detail as possible,on the strategies to improve gas separation performance of PEO-based membranes.Some of techniques such as synthesis of graft copolymers that contain PEO,cross-linking of polymers and blending with long chains polymers contributed significantly to improvement of membrane.Incorporation of ionic liquids/nanoparticles has also been found effective.However,surface modification of nanoparticles has been done chemically or physically to enhance their compatibility with polymer matrix.As a result of all such efforts,an excellent performance,i.e.,CO2 permeability up to 200 Barrer,CO2/N2 selectivity up to 200 and CO2/CH4 selectivity up to 70,could be achieved.Another method is to introduce functional groups into PEO-based polymers which boosted CO2 permeability up to 200 Barrer with CO2/CH4 selectivity between 40 and 50.The CO2 permeability of PEO-based membranes increases,without much change in selectivity,when the length of ethylene oxide is increased.展开更多
Layered assembled membranes of 2D leaf-like zeolitic imidazolate frameworks(ZIF-L)nanosheets have received great attention in the field of water treatment due to the porous structure and excellent antibacterial abilit...Layered assembled membranes of 2D leaf-like zeolitic imidazolate frameworks(ZIF-L)nanosheets have received great attention in the field of water treatment due to the porous structure and excellent antibacterial ability,but the dense accumulation on the membrane surface and the low permeate flux greatly hinder their application.Herein,we synthesized m HNTs(modified halloysite nanotubes)/ZIF-L nanocomposites on modified m HNTs by in situ growth method.Interestingly,due to the different size of m HNTs and ZIF-L,m HNTs were packed in ZIF-L nanosheets.The hollow m HNTs provided additional transport channels for water molecules,and the accumulation of the ZIF-L nanosheets was decreased after assembling m HNTs/ZIF-L nanocomposites into membrane by filtration.The prepared m HNTs/ZIF-L membrane presented high permeate flux(59.6 L·m^(-2)·h^(-1)),which is 2-4 times of the ZIF-L membranes(14.8 L·m^(-2)·h^(-1)).Moreover,m HNTs/ZIF-L membranes are intrinsically antimicrobial,which exhibit extremely high bacterial resistance.We provide a controllable strategy to improve 2D ZIF-L assembles,and develops novel membranes using 2D package structure as building units.展开更多
Poly(amide-6-b-ethylene oxide)(Pebax1657)/1-butyl-3-methylimidazo-lium bis[trifluoromethyl)sulfonyl]-imide([Bmim][Tf2N]) blend membranes with different [Bmim][Tf2N] contents were prepared via solution casting a...Poly(amide-6-b-ethylene oxide)(Pebax1657)/1-butyl-3-methylimidazo-lium bis[trifluoromethyl)sulfonyl]-imide([Bmim][Tf2N]) blend membranes with different [Bmim][Tf2N] contents were prepared via solution casting and solvent evaporation method. The permeation properties of the blend membranes for CO2, N2,CH4 and H2 were studied, and the physical properties were characterized by differential scanning calorimeter(DSC) and X-ray diffraction(XRD). Results showed that [Bmim][Tf2N] was dispersed as amorphous phase in the blend membranes, which caused the decrease of Tg(PE) and crystallinity(PA). With the addition of [Bmim][Tf2N], the CO2 permeability increased and reached up to approximately 286 Barrer at 40 wt%[Bmim][Tf2N], which was nearly double that of pristine Pebax1657 membrane. The increase of CO2 permeability may be attributed to high intrinsic permeability of [Bmim][Tf2N], the increase of fractional free of volume(FFV) and plasticization effect. However, the CO2 permeability reduced firstly when the [Bmim][Tf2N]content was below 10 wt%, which may be due to that the small ions of [Bmim][Tf2N] in the gap of polymer chain inhibited the flexibility of polymer chain; the interaction between Pebax1657 and [Bmim][Tf2N]decreased the content of EO units available for CO2 transport and led to a more compact structure. For Pebax1657/[Bmim][Tf2N] blend membranes, the permeabilities of N2, H2 and CH4decreased with the increase of feed pressure due to the hydrostatic pressure effect, while CO2 permeability increased with the increase of feed pressure for that the CO2-induced plasticization effect was stronger than hydrostatic pressure effect.展开更多
Mixed matrix hollow fiber membranes(MMHFMs)filled with metal-organic frameworks(MOFs)have great potential for energy-efficient gas separation processes,but the major hurdle is polymer/MOFs interfacial defects and ...Mixed matrix hollow fiber membranes(MMHFMs)filled with metal-organic frameworks(MOFs)have great potential for energy-efficient gas separation processes,but the major hurdle is polymer/MOFs interfacial defects and membrane plasticization.Herein,lab-synthesized MIL-53 was post-functionalized by aminosilane grafting and subsequently incorporated into Ultem-1000 polymer matrix to fabricate high performance MMHFMs.SEM,DLS,XRD and TGA were performed to characterize silane-modified MIL-53(S-MIL-53)and prepared MMHFMs.Moreover,the effect of MOFs loading was systematically investigated first;then gas separation performance of MMHFMs for pure and mixed gas was evaluated under different pressures.MMHFMs containing post-functionalized S-MIL-53 achieved remarkable gas permeation properties which was better than model predictions.Compared to pure HFMs,CO2permeance of MMHFM loaded with 15%S-MIL-53 increased by 157%accompanying with 40%increase for CO2/N2selectivity,which outperformed the MMHFM filled with naked MIL-53.The pure and mixed gas permeation measurements with elevated feed pressure indicated that incorporation of S-MIL-53 also increased the resistance against CO2plasticization.This work reveals that post-modified MOFs embedded in MMHFMs facilitate the improvement of gas separation performance and suppression of membrane plasticization.展开更多
A zeolitic imidazolate hybrid membrane(Co-IM-mIM) containing two imidazolate ligands deposited on a macroporous α-alumina support was prepared by pre-depositing and secondary growth technique. XRD, TGA and SEM charac...A zeolitic imidazolate hybrid membrane(Co-IM-mIM) containing two imidazolate ligands deposited on a macroporous α-alumina support was prepared by pre-depositing and secondary growth technique. XRD, TGA and SEM characterizations demonstrate that a stable and thin, but dense and pure-phase Co-IM-mIM membrane can be obtained on the macroporous-alumina discs in Teflon-lined autoclave at 120 °C after pre-depositing by dip-coating at room temperature. No visible cracks, pinholes or other defects were observed on the membrane layer. The gas separation studies of Co-IM-mIM membrane were carried out at 25 °C and 1×10~5 Pa, showing ideal selectivity of 6.95, 5.25, 3.40 for H_2/CO_2, H_2/N_2 and H_2/CH_4, respectively, and a permeance of 17.37× 10^(-6) mol/(m^2·s·Pa) for H_2. The influence of temperature and trans-membrane pressure on hydrogen separation and permeation was also carried out. The gas permeation and selectivity demonstrate that this membrane may have potential applications for efficient H_2 separation.展开更多
A microporous zirconia membrane with hydrogen permeance about 5 × 10-8mol·m-2·s-1·Pa-1, H2/CO2 permselectivity of ca. 14, and excellent hydrothermal stability under steam pressure of 100 k Pa was f...A microporous zirconia membrane with hydrogen permeance about 5 × 10-8mol·m-2·s-1·Pa-1, H2/CO2 permselectivity of ca. 14, and excellent hydrothermal stability under steam pressure of 100 k Pa was fabricated via polymeric sol–gel process. The effect of calcination temperature on single gas permeance of sol–gel derived zirconia membranes was investigated. Zirconia membranes calcined at 350 °C and 400 °C showed similar single gas permeance, with permselectivities of hydrogen towards other gases, such as oxygen, nitrogen, methane, and sulfur hexa fluoride, around Knudsen values. A much lower CO2permeance(3.7 × 10-9mol·m-2·s-1·Pa-1)was observed due to the interaction between CO2 molecules and pore wall of membrane. Higher calcination temperature, 500 °C, led to the formation of mesoporous structure and, hence, the membrane lost its molecular sieving property towards hydrogen and carbon dioxide. The stability of zirconia membrane in the presence of hot steam was also investigated. Exposed to 100 k Pa steam for 400 h, the membrane performance kept unchanged in comparison with freshly prepared one, with hydrogen and carbon dioxide permeances of 4.7 × 10-8and ~ 3 × 10-9mol·m-2·s-1·Pa-1, respectively. Both H2 and CO2permeances of the zirconia membrane decreased with exposure time to 100 k Pa steam. With a total exposure time of 1250 h, the membrane presented hydrogen permeance of 2.4 × 10-8mol·m-2·s-1·Pa-1and H2/CO2 permselectivity of 28, indicating that the membrane retains its microporous structure.展开更多
The azeotrope disappeared when the formic acid-water mixtures were treated by membrane distillation. Membrane distillation were used for separation of formic acid-water azeotropic mixtures for the first time.
Y-type zeolite membranes were synthesized by a two-step approach in which a particle seed layer was prepared by electrophoresis deposition(EPD) at first, followed by densification through secondary growth. The pre-see...Y-type zeolite membranes were synthesized by a two-step approach in which a particle seed layer was prepared by electrophoresis deposition(EPD) at first, followed by densification through secondary growth. The pre-seeding adopted the directing agent for Y-type zeolite synthesis serving as seeds. The effects of aging time of the directing agent, electrophoresis voltage and electrophoresis deposition time on seed layers quality as well as the quality of zeolite membranes were investigated. The results indicated that the zeolite seeds derived from the directing agent could be evenly deposited on substrate under certain EPD conditions. The XRD patterns of the seeded substrates after the secondary growth showed that the pure as-synthesized Y-type zeolite membranes had successfully grown on the substrates. The SEM images indicated that the substrate was covered by the highly intergrown zeolite crystals when the seeding solution employed the directing agent with an aging time of 2 days. The separation performance of zeolite membrane was evaluated using a CO_2/N2 mixture(with a mole ratio of 1:1) at different temperatures. Furthermore, the pervaporation measurements were carried out for the dehydration of isopropanol aqueous solutions with different mass fractions. The as-synthesized Y-type zeolite membranes exhibited a relatively high selectivity of water from isopropanol and sustainable permeation flux.展开更多
文摘A two-staged membrane separation process for hydrogen recovery from refinery gases is introduced. The principle of the gas membrane separation process and the influence of the operation temperatures are analyzed. As the conventional PID controller is difficult to make the operation temperatures steady, a fuzzy self-tuning PID control algorithm is proposed. The application shows that the algorithm is effective, the operation temperatures of both stages can be controlled steadily, and the operation flexibility and adaptability of the hydrogen recovery unit are enhanced with safety. This study lays a foundation to optimize the control of the membrane separation process and thus ensure the membrane performance.
文摘Membrane technology has found wide applications in the petrochemical industry, mainly in the purification and recovery of the hydrogen resources. Accurate prediction of the membrane separation performance plays an important role in carrying out advanced process control (APC). For the first time, a soft-sensor model for the membrane separation process has been established based on the radial basis function (RBF) neural networks. The main performance parameters, i.e, permeate hydrogen concentration, permeate gas flux, and residue hydrogen concentration, are estimated quantitatively by measuring the operating temperature, feed-side pressure, permeate-side pressure, residue-side pressure, feed-gas flux, and feed-hydrogen concentration excluding flow structure, membrane parameters, and other compositions. The predicted results can gain the desired effects. The effectiveness of this novel approach lays a foundation for integrating control technology and optimizing the operation of the gas membrane separation process.
基金TheNationalNaturalScienceFoundationofChina (No .2 9836 16 0 )
文摘Membrane separation, a new technology for removing VOCs including pervaporation, vapor permeation, membrane contactor, and membrane bioreactor was presented. Comparing with traditional techniques, these special techniques are an efficient and energy saving technology. Vapor permeation can be applied to recovery of organic solvents from exhaust streams. Membrane contactor could be used for removing or recovering VOCs from air or wastewater. Pervaporation and vapor permeation are viable methods for removing VOCs from wastewater to yield a VOC concentrate which could either be destroyed by conventional means, or be recycled for reuse.
基金supported financially by the“Xing Liao Talents Program”Project(No.XLYC1902051)the National Natural Science Foundation of China(No.22076018)+1 种基金the Fundamental Research Funds for the Central Universities(No.DUT19LAB10)the Key Laboratory of Industrial Ecology and Environmental Engineering,China Ministry of Education,and the State Key Laboratory of Catalysis in DICP(No.N-20-06)。
文摘Volatile organic compounds(VOCs)are a crucial kind of pollutants in the environment due to their obvious features of severe toxicity,high volatility,and poor degradability.It is particularly urgent to control the emission of VOCs due to the persistent increase of concentration and the stringent regulations.In China,clear directions and requirements for reduction of VOCs have been given in the“national plan on environmental improvement for the 13th Five-Year Plan period”.Therefore,the development of efficient technologies for removal and recovery of VOCs is of great significance.Recovery technologies are favored by researchers due to their advantages in both recycling VOCs and reducing carbon emissions.Among them,adsorption and membrane separation processes have been extensively studied due to their remarkable industrial prospects.This overview was to provide an up-to-date progress of adsorption and membrane separation for removal and recovery of VOCs.Firstly,adsorption and membrane separation were found to be the research hotspots through bibliometric analysis.Then,a comprehensive understanding of their mechanisms,factors,and current application statuses was discussed.Finally,the challenges and perspectives in this emerging field were briefly highlighted.
基金supported by the National Key Research and Development Program of China(2021YF B3802600)National Key Research and Development Project of China(2018YFE0203500)the Natural Science Foundation of Jiangsu Province(BK20190603).
文摘Membrane separation technology has been taken up for use in diverse applications such as water treatment,pharmaceutical,petroleum,and energy-related industries.Compared with the design of membrane materials,the innovation of membrane preparation technique is more urgent for the development of membrane separation technology,because it not only affects physicochemical properties and separation performance of the fabricated membranes,but also determines their potential in industrialized application.Among the various membrane preparation methods,spray technique has recently gained increasing attention because of its low cost,rapidity,scalability,minimum of environmental burden,and viability for nearly unlimited range of materials.In this Review article,we summarized and discussed the recent developments in separation membranes using the spray technique,including the fundamentals,important features and applications.The present challenges and future considerations have been touched to provide inspired insights for developing the sprayed separation membranes.
基金This work was supported by the National Basic Research Program of China (973 program, Grant Nos. 2013CB733600 and 2012CB72520), the National Natural Science Foundation of China (Grant Nos. 21390202 and 21436002).
文摘Solvent extraction of crude oil from oilseeds is widely applied for its high production capacity and low cost. In this process, solvent recovery and tail gas treatment are usually performed by adsorption, paraffin scrubbing, or even cryogenics (at low tail gas flow rates). Membrane separation, which has a lower energy consumption than these techniques, spans a broad range of admissible concentrations and flow rates, and is moreover easily combined with other techniques. Vapor recompression has potentials to reduce the heat loss in association with distillation and evaporation. In this study, we proved the possibility of combining membrane separation and vapor recompression to improve the conventional vegetable oil production, by both experiments and process simulation. Nearly 73% of energy can be saved in the process of vegetable oil extraction by the novel processing approach. By further environmental assessment, several impact categories show that the optimized process is environmentally sustainable.
基金the funding from the National Natural Science Foundation of China (22078107, 22022805)the National Key Research and Development Program (2021YFB3802500)。
文摘During the last decade, metal-organic frameworks(MOFs) have been applied in various fields due to their unique chemical and functional advantages. One of the widespread research hotspots is MOF-based membranes for separations, specifically continuous defect-free MOF membranes, which are usually grown on porous substrates. The substrate not only serves as the MOF layer support but also has a great influence on the membrane fabrication process and the final separation performance of the resultant membrane. In this review, we mainly introduce the progress focused on the substrates for MOF membranes fabrication. The substrate modifications and seeding methods aimed at synthesizing highquality MOF membranes are also summarized systematically.
基金The research was financially supported by the National Key Research and Development Program of China 2018YFD0400304the earmarked fund for China Agriculture Research System project CARS-40-K25Heilongjiang Province of China Postdoctoral Initial Fund LBH-Q18012.
文摘In order to provide theoretical guidance for separating egg membrane from eggshell by using mechanical agitation,CFD was used to explore the flow characteristics in stirred tank,using the Sliding Grid method to deal with the impeller rotational velocity zone in flow field,and using the Euler model to deal with liquid-solid two-phase flow.This study explored the influence of dish-shape bottom or flat-shape bottom,the clearance size between baffle and the side wall,and the axial height of impeller to bottom on suspension state of particles,solids holdup distribution,solid phase velocity and power number by CFD.Simulation results showed that better particles suspension effect in dish-shape tank can reduce particles accumulation at the bottom and power consumption.If there was a small clearance size(S)between the baffle and the side wall of the stirred tank,it would reduce particles accumulation at the bottom,and reduce the power consumption.However,too large S would decrease the suspension height of particles,not only cannot strengthen the main flow,but also lead to most fluid through clearance forming tangential flow,simulation results showed that S=6 mm was perfect.While decreased axial height of impeller(C)to bottom,particles accumulation at the bottom was decreased,but power consumption would increase,simulation results showed that C=H/5(H is height of liquid surface)was perfect.According to the simulation results,the structure of the stirring tank was optimized.At the same time,the influences of stirring rotational velocity,stirring time,solid-liquid ratio and separating medium temperature on egg membrane recovery were also studied by experiment,and optimal parameter combination of factors was obtained.The experiment results showed while the stirring time was 17.1 min,stirring rotational velocity was 350 r/min,solid-liquid ratio was 1:17 g/mL,the separating medium temperature was 32℃,the membrane recovery rate can reach above 89%.The device improves the recovery and utilization of discarded eggshell,and provides a reference for the solid-liquid two-phase flow and related study.
基金Zhejiang University,the research grant from the State Key Laboratory of Chemical Engineering(SKL-ChE-19T04)the funding support from the Institute of Zhejiang University-Quzhou(IZQ2019-KJ-011)Junjie Zhao also acknowledges the funding from the National Natural Science Foundation of China(21908194 and 21938011).
文摘Sustainable processes for purifying water,capturing carbon,producing biofuels,operating fuel cells,and performing energy-efficient industrial separations will require next-generation membranes.Solvent-less fabrication for membranes not only eliminates potential environmental issues with organic solvents,but also solves the swelling problems that occur with delicate polymer substrates.Furthermore,the activation procedures often required for synthesizing microporous materials such as metal–organic frameworks(MOFs)can be reduced when solvent-less vapor-phase approaches are employed.This perspective covers several vacuum deposition processes,including initiated chemical vapor deposition(iCVD),initiated plasma-enhanced chemical vapor deposition(iPECVD),solvent-less vapor deposition followed by in situ polymerization(SLIP),atomic layer deposition(ALD),and molecular layer deposition(MLD).These solvent-less vapor-phase methods are powerful in creating ultrathin selective layers for thin-film composite membranes and advantageous in conformally coating nanoscale pores for the precise modification of pore size and internal functionalities.The resulting membranes have shown promising performance for gas separation,nanofiltration,desalination,and water/oil separation.Further development of novel membrane materials and the scaling up of high-throughput reactors for solvent-less vapor-phase processes are necessary in order to make a real impact on the chemical industry in the future.
基金Supported by the National Natural Science Foundation of China(21406006,21576003)the Science and Technology Program of Beijing Municipal Education Commission(KM201510005010)+1 种基金the Importation and Development of High-Caliber Talents Project of Beijing Municipal Institutions(CIT&TCD20150309)the China Postdoctoral Science Foundation funded project(2015M580954)
文摘The separation of aromatic/aliphatic hydrocarbon mixtures is a significant process in chemical industry, but challenged in some cases. Compared with conventional separation technologies, pervaporation is quite promising in terms of its economical, energy-saving, and eco-friendly advantages. However, this technique has not been used in industry for separating aromatic/aliphatic mixtures yet. One of the main reasons is that the separation performance of existed pervaporation membranes is unsatisfactory. Membrane material is an important factor that affects the separation performance. This review provides an overview on the advances in studying membrane materials for the pervaporation separation of aromatic/aliphatic mixtures over the past decade. Explored pristine polymers and their hybrid materials(as hybrid membranes) are summarized to highlight their nature and separation performance. We anticipate that this review could provide some guidance in the development of new materials for the aromatic/aliphatic pervaporation separation.
基金the National Natural Science Foundation of China (21776216)Tianjin Key Laboratory Project (16PTSYJC00210)+3 种基金Program for Innovative Research Team in University of Tianjin (TD13-5044)Science and technology support project of Tianjin (20YFZCSY00310, 21ZXGWSY00040)State Key Laboratory of Separation Membranes and Membrane Processes (Tiangong University), Youth Science Foundation of Tianjin (21JCQNJC00100)Tianjin Health Science and Technology Project (TJWJ2021MS014)。
文摘The design of membrane pore is critical for membrane preparation. Polyvinylidene fluoride(PVDF) membrane exhibits outstanding properties in the water-treatment field. However, it is a huge challenge to prepare PVDF macro-pore plasma separation membrane by non-solvent induced phase separation(NIPS). Herein, a facile strategy is proposed to prepare PVDF macro-pore plasma separation membrane via macromolecular interaction. ATR-FTIR and ^(1)H NMR showed that the intermolecular interaction existed between polyethylene oxide(PEO) and polyvinylpyrrolidone(PVP). It could significantly affect the PVDF macro-pore membrane structure. The maximum pore of the PVDF membrane could be effectively adjusted from small-pore/medium-pore to macro-pore by changing the molecular weight of PEO. The PVDF macro-pore membrane was obtained successfully when PEO-200 k existed with PVP. It exhibited higher plasma separation properties than the currently used plasma separation membrane.Moreover, it had excellent hemocompatibility due to the similar plasma effect, hemolysis, prothrombin time, blood effect and complement C_(3a) effect with the current utilized plasma separation membrane,implying its great potential application. The proposed facile strategy in this work provides a new method to prepare PVDF macro-pore plasma separation membrane by NIPS.
基金Supported by the National Natural Science Foundation of China(21276123,21490581)the National High Technology Research and Development Program of China(2012AA03A606)+1 种基金the "Summit of the Six Top Talents" Program of Jiangsu Province(2011-XCL-021)the Open Research Fund Program of Collaborative Innovation Center of Membrane Separation and Water Treatment(2016YB01)
文摘A series of organosilica sols are prepared by the polymeric sol–gel method using 1,2-bis(triethoxysilyl)ethane(BTESE)as the precursor.Particle size distributions of the BTESE-derived sols are systematically investigated by carefully adjusting the synthesis parameters(i.e.,water ratios,acid ratios and solvent ratios)in the sol process.In certain conditions,increasing the water ratio or the acid ratio tends to cause larger sol sizes and bimodal particle size distributions.However,higher solvent ratios lead to smaller sol sizes and unimodal particle size distributions.The organosilica membranes prepared from the optimized sols show excellent H_2 permeances(up to 4.2×10^(-7)mol·m^(-2)·s^(-1)·Pa^(-1))and gas permselectitivies(H_2/CO_2 is 9.5,H_2/N_2 is 50 and H_2/CH_4 is 68).This study offers significant insights into the relationship between the sol synthesis parameters,sol sizes and membrane performance.
文摘Poly(ethylene-oxide)(PEO)-based membranes have attracted much attention recently for CO2 separation because CO2 is highly soluble into PEO and shows high selectivity over other gases such as CH4 and N2.Unfortunately,those membranes are not strong enough mechanically and highly crystalline,which hinders their broader applications for separation membranes.In this review discussions are made,as much in detail as possible,on the strategies to improve gas separation performance of PEO-based membranes.Some of techniques such as synthesis of graft copolymers that contain PEO,cross-linking of polymers and blending with long chains polymers contributed significantly to improvement of membrane.Incorporation of ionic liquids/nanoparticles has also been found effective.However,surface modification of nanoparticles has been done chemically or physically to enhance their compatibility with polymer matrix.As a result of all such efforts,an excellent performance,i.e.,CO2 permeability up to 200 Barrer,CO2/N2 selectivity up to 200 and CO2/CH4 selectivity up to 70,could be achieved.Another method is to introduce functional groups into PEO-based polymers which boosted CO2 permeability up to 200 Barrer with CO2/CH4 selectivity between 40 and 50.The CO2 permeability of PEO-based membranes increases,without much change in selectivity,when the length of ethylene oxide is increased.
基金supported by the Excellent Youth Foundation of Henan Scientific Committee,China(222300420018)Key Scientific Research Projects in Universities of Henan Province,China(21zx006)。
文摘Layered assembled membranes of 2D leaf-like zeolitic imidazolate frameworks(ZIF-L)nanosheets have received great attention in the field of water treatment due to the porous structure and excellent antibacterial ability,but the dense accumulation on the membrane surface and the low permeate flux greatly hinder their application.Herein,we synthesized m HNTs(modified halloysite nanotubes)/ZIF-L nanocomposites on modified m HNTs by in situ growth method.Interestingly,due to the different size of m HNTs and ZIF-L,m HNTs were packed in ZIF-L nanosheets.The hollow m HNTs provided additional transport channels for water molecules,and the accumulation of the ZIF-L nanosheets was decreased after assembling m HNTs/ZIF-L nanocomposites into membrane by filtration.The prepared m HNTs/ZIF-L membrane presented high permeate flux(59.6 L·m^(-2)·h^(-1)),which is 2-4 times of the ZIF-L membranes(14.8 L·m^(-2)·h^(-1)).Moreover,m HNTs/ZIF-L membranes are intrinsically antimicrobial,which exhibit extremely high bacterial resistance.We provide a controllable strategy to improve 2D ZIF-L assembles,and develops novel membranes using 2D package structure as building units.
基金supported by the National High Technology Research and Development Program of China(863 Program)(No.2012AA03A611)
文摘Poly(amide-6-b-ethylene oxide)(Pebax1657)/1-butyl-3-methylimidazo-lium bis[trifluoromethyl)sulfonyl]-imide([Bmim][Tf2N]) blend membranes with different [Bmim][Tf2N] contents were prepared via solution casting and solvent evaporation method. The permeation properties of the blend membranes for CO2, N2,CH4 and H2 were studied, and the physical properties were characterized by differential scanning calorimeter(DSC) and X-ray diffraction(XRD). Results showed that [Bmim][Tf2N] was dispersed as amorphous phase in the blend membranes, which caused the decrease of Tg(PE) and crystallinity(PA). With the addition of [Bmim][Tf2N], the CO2 permeability increased and reached up to approximately 286 Barrer at 40 wt%[Bmim][Tf2N], which was nearly double that of pristine Pebax1657 membrane. The increase of CO2 permeability may be attributed to high intrinsic permeability of [Bmim][Tf2N], the increase of fractional free of volume(FFV) and plasticization effect. However, the CO2 permeability reduced firstly when the [Bmim][Tf2N]content was below 10 wt%, which may be due to that the small ions of [Bmim][Tf2N] in the gap of polymer chain inhibited the flexibility of polymer chain; the interaction between Pebax1657 and [Bmim][Tf2N]decreased the content of EO units available for CO2 transport and led to a more compact structure. For Pebax1657/[Bmim][Tf2N] blend membranes, the permeabilities of N2, H2 and CH4decreased with the increase of feed pressure due to the hydrostatic pressure effect, while CO2 permeability increased with the increase of feed pressure for that the CO2-induced plasticization effect was stronger than hydrostatic pressure effect.
基金the financial support from the National Natural Science Foundation of China(No.21436009)
文摘Mixed matrix hollow fiber membranes(MMHFMs)filled with metal-organic frameworks(MOFs)have great potential for energy-efficient gas separation processes,but the major hurdle is polymer/MOFs interfacial defects and membrane plasticization.Herein,lab-synthesized MIL-53 was post-functionalized by aminosilane grafting and subsequently incorporated into Ultem-1000 polymer matrix to fabricate high performance MMHFMs.SEM,DLS,XRD and TGA were performed to characterize silane-modified MIL-53(S-MIL-53)and prepared MMHFMs.Moreover,the effect of MOFs loading was systematically investigated first;then gas separation performance of MMHFMs for pure and mixed gas was evaluated under different pressures.MMHFMs containing post-functionalized S-MIL-53 achieved remarkable gas permeation properties which was better than model predictions.Compared to pure HFMs,CO2permeance of MMHFM loaded with 15%S-MIL-53 increased by 157%accompanying with 40%increase for CO2/N2selectivity,which outperformed the MMHFM filled with naked MIL-53.The pure and mixed gas permeation measurements with elevated feed pressure indicated that incorporation of S-MIL-53 also increased the resistance against CO2plasticization.This work reveals that post-modified MOFs embedded in MMHFMs facilitate the improvement of gas separation performance and suppression of membrane plasticization.
基金Project(21376274)supported by the National Natural Science Foundation ChinaProject(2015BAL04B02)supported by the National Key Technology R&D Program of China
文摘A zeolitic imidazolate hybrid membrane(Co-IM-mIM) containing two imidazolate ligands deposited on a macroporous α-alumina support was prepared by pre-depositing and secondary growth technique. XRD, TGA and SEM characterizations demonstrate that a stable and thin, but dense and pure-phase Co-IM-mIM membrane can be obtained on the macroporous-alumina discs in Teflon-lined autoclave at 120 °C after pre-depositing by dip-coating at room temperature. No visible cracks, pinholes or other defects were observed on the membrane layer. The gas separation studies of Co-IM-mIM membrane were carried out at 25 °C and 1×10~5 Pa, showing ideal selectivity of 6.95, 5.25, 3.40 for H_2/CO_2, H_2/N_2 and H_2/CH_4, respectively, and a permeance of 17.37× 10^(-6) mol/(m^2·s·Pa) for H_2. The influence of temperature and trans-membrane pressure on hydrogen separation and permeation was also carried out. The gas permeation and selectivity demonstrate that this membrane may have potential applications for efficient H_2 separation.
基金Supported by the National Natural Science Foundation of China(21276123,21490581)the National High Technology Research and Development Program of China(2012AA03A606)+3 种基金State Key Laboratory of Materials-Oriented Chemical Engineering(ZK201002)the Natural Science Research Plan of Jiangsu Universities(11KJB530006)the "Summit of the Six Top Talents" Program of Jiangsu Provincea Project Funded by the Priority Academic Program development of Jiangsu Higher Education Institutions(PAPD)
文摘A microporous zirconia membrane with hydrogen permeance about 5 × 10-8mol·m-2·s-1·Pa-1, H2/CO2 permselectivity of ca. 14, and excellent hydrothermal stability under steam pressure of 100 k Pa was fabricated via polymeric sol–gel process. The effect of calcination temperature on single gas permeance of sol–gel derived zirconia membranes was investigated. Zirconia membranes calcined at 350 °C and 400 °C showed similar single gas permeance, with permselectivities of hydrogen towards other gases, such as oxygen, nitrogen, methane, and sulfur hexa fluoride, around Knudsen values. A much lower CO2permeance(3.7 × 10-9mol·m-2·s-1·Pa-1)was observed due to the interaction between CO2 molecules and pore wall of membrane. Higher calcination temperature, 500 °C, led to the formation of mesoporous structure and, hence, the membrane lost its molecular sieving property towards hydrogen and carbon dioxide. The stability of zirconia membrane in the presence of hot steam was also investigated. Exposed to 100 k Pa steam for 400 h, the membrane performance kept unchanged in comparison with freshly prepared one, with hydrogen and carbon dioxide permeances of 4.7 × 10-8and ~ 3 × 10-9mol·m-2·s-1·Pa-1, respectively. Both H2 and CO2permeances of the zirconia membrane decreased with exposure time to 100 k Pa steam. With a total exposure time of 1250 h, the membrane presented hydrogen permeance of 2.4 × 10-8mol·m-2·s-1·Pa-1and H2/CO2 permselectivity of 28, indicating that the membrane retains its microporous structure.
文摘The azeotrope disappeared when the formic acid-water mixtures were treated by membrane distillation. Membrane distillation were used for separation of formic acid-water azeotropic mixtures for the first time.
基金supported by the Talent Introduction Fund of Yangzhou Universitythe Jiangsu Social Development Project-Science and Technology Support Program(BE2014613)+1 种基金Six Talent Peaks of Jiangsu province(2014-XCL-013)the Project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘Y-type zeolite membranes were synthesized by a two-step approach in which a particle seed layer was prepared by electrophoresis deposition(EPD) at first, followed by densification through secondary growth. The pre-seeding adopted the directing agent for Y-type zeolite synthesis serving as seeds. The effects of aging time of the directing agent, electrophoresis voltage and electrophoresis deposition time on seed layers quality as well as the quality of zeolite membranes were investigated. The results indicated that the zeolite seeds derived from the directing agent could be evenly deposited on substrate under certain EPD conditions. The XRD patterns of the seeded substrates after the secondary growth showed that the pure as-synthesized Y-type zeolite membranes had successfully grown on the substrates. The SEM images indicated that the substrate was covered by the highly intergrown zeolite crystals when the seeding solution employed the directing agent with an aging time of 2 days. The separation performance of zeolite membrane was evaluated using a CO_2/N2 mixture(with a mole ratio of 1:1) at different temperatures. Furthermore, the pervaporation measurements were carried out for the dehydration of isopropanol aqueous solutions with different mass fractions. The as-synthesized Y-type zeolite membranes exhibited a relatively high selectivity of water from isopropanol and sustainable permeation flux.