Aqueous sodium-ion batteries(ASIBs)and aqueous potassium-ion batteries(APIBs)present significant potential for large-scale energy storage due to their cost-effectiveness,safety,and environmental compatibility.Nonethel...Aqueous sodium-ion batteries(ASIBs)and aqueous potassium-ion batteries(APIBs)present significant potential for large-scale energy storage due to their cost-effectiveness,safety,and environmental compatibility.Nonetheless,the intricate energy storage mechanisms in aqueous electrolytes place stringent require-ments on the host materials.Prussian blue analogs(PBAs),with their open three-dimensional framework and facile synthesis,stand out as leading candidates for aqueous energy storage.However,PBAs possess a swift capacity fade and limited cycle longevity,for their structural integrity is compromised by the pronounced dis-solution of transition metal(TM)ions in the aqueous milieu.This manuscript provides an exhaustive review of the recent advancements concerning PBAs in ASIBs and APIBs.The dissolution mechanisms of TM ions in PBAs,informed by their structural attributes and redox processes,are thoroughly examined.Moreover,this study delves into innovative design tactics to alleviate the dissolution issue of TM ions.In conclusion,the paper consolidates various strategies for suppressing the dissolution of TM ions in PBAs and posits avenues for prospective exploration of high-safety aqueous sodium-/potassium-ion batteries.展开更多
With the rapid development of portable electronics and electric road vehicles,high-energy-density batteries have been becoming front-burner issues.Traditionally,homogeneous electrolyte cannot simultaneously meet diame...With the rapid development of portable electronics and electric road vehicles,high-energy-density batteries have been becoming front-burner issues.Traditionally,homogeneous electrolyte cannot simultaneously meet diametrically opposed demands of high-potential cathode and low-potential anode,which are essential for high-voltage batteries.Meanwhile,homogeneous electrolyte is difficult to achieve bi-or multi-functions to meet different requirements of electrodes.In comparison,the asymmetric electrolyte with bi-or multi-layer disparate components can satisfy distinct requirements by playing different roles of each electrolyte layer and meanwhile compensates weakness of individual electrolyte.Consequently,the asymmetric electrolyte can not only suppress by-product sedimentation and continuous electrolyte decomposition at the anode while preserving active substances at the cathode for high-voltage batteries with long cyclic lifespan.In this review,we comprehensively divide asymmetric electrolytes into three categories:decoupled liquid-state electrolytes,bi-phase solid/liquid electrolytes and decoupled asymmetric solid-state electrolytes.The design principles,reaction mechanism and mutual compatibility are also studied,respectively.Finally,we provide a comprehensive vision for the simplification of structure to reduce costs and increase device energy density,and the optimization of solvation structure at anolyte/catholyte interface to realize fast ion transport kinetics.展开更多
Struvite(MAP)crystallization technology is widely used to treat ammonia nitrogen in waste effluents of its simple operation and good removal efficiency.However,the presence of heavy metal ions in the waste effluents c...Struvite(MAP)crystallization technology is widely used to treat ammonia nitrogen in waste effluents of its simple operation and good removal efficiency.However,the presence of heavy metal ions in the waste effluents causes problems such as slow crystallization rate and small crystal size,limiting the recovery rate and economic value of the MAP.The present study was conducted to investigate the effects of concentrations of three heavy metal ions(Cu^(2+),Zn^(2+),and Pb^(2+))on the crystal morphology,crystal size,average growth rate,and crystallization kinetics of MAP.A relationship was established between the kinetic rate constant Ktcalculated by the chemical gradient model and the concentrations of heavy metal ions.The results showed that low concentrations of heavy metal ions in the solution created pits on the MAP surface,and high level of heavy metal ions generated flocs on the MAP surface,which were composed of metal hydroxides,thus inhibiting crystal growth.The crystal size,average growth rate,MAP crystallization rate,and kinetic rate constant Ktdecreased with the increase in heavy metal ion concentration.Moreover,the Ktdemonstrated a linear relationship with the heavy metal concentration ln(C/C~*),which provided a reference for the optimization of the MAP crystallization process in the presence of heavy metal ions.展开更多
A fluorescent active organic–inorganic hybrid material Py N-SBA-15 was synthesized by implementing pyrene derivatives into mesoporous SBA-15 silica.Py N-SBA-15 had detection and removal functionalities toward Al^(3+)...A fluorescent active organic–inorganic hybrid material Py N-SBA-15 was synthesized by implementing pyrene derivatives into mesoporous SBA-15 silica.Py N-SBA-15 had detection and removal functionalities toward Al^(3+),Cu^(2+),and Hg^(2+).On the one hand,Py N-SBA-15 was used as a fluorescence sensor and displayed high sensitivity toward Al^(3+),Cu^(2+),and Hg^(2+)cations (limit of detection:8.0×10^(-7),1.1×10^(-7),and 2.9×10^(-6)mol·L^(–1),respectively) among various analytes with“turn-off”response.On the other hand,the adsorption studies for these toxic analytes (Cu^(2+),Hg^(2+),and Al^(3+)) showed that the ion removal capacity could reach up to 45,581,and 85 mg·g^(-1),respectively.Moreover,the Langmuir isotherm models were better fitted with the adsorption data,indicating that the adsorption was mono-layer adsorption.Kinetic analysis revealed that the adsorption process was well described by the pseudo-second-order kinetic model for Cu^(2+)and Hg^(2+)and pseudo-first-order kinetic model for Al^(3+).The prepared silica material could be reused in four recycles without significantly decreasing its adsorption capacity.Therefore,the Py N-SBA-15 material can serve as a promising candidate for the simultaneous rapid detection and efficient adsorption of metal ions.展开更多
Understanding alkali metal ions’(e.g.,Li^(+)/Na^(+)/K^(+))transport mechanism is challenging but critical to improving the performance of alkali metal batteries.Herein using a-MnO_(2)nanowires as cathodes,the transpo...Understanding alkali metal ions’(e.g.,Li^(+)/Na^(+)/K^(+))transport mechanism is challenging but critical to improving the performance of alkali metal batteries.Herein using a-MnO_(2)nanowires as cathodes,the transport kinetics of Li^(+)/Na^(+)/K^(+)in the 2×2 channels of a-MnO_(2)with a growth direction of[001]is revealed.We show that ion radius plays a decisive role in determining the ion transport and electrochemistry.Regardless of the ion radii,Li^(+)/Na^(+)/K^(+)can all go through the 2×2 channels of a-MnO_(2),generating large stress and causing channel merging or opening.However,smaller ions such as Li^(+)and Na^(+)cannot only transport along the[001]direction but also migrate along the<110>direction to the nanowire surface;for large ion such as K^(+),diffusion along the<110>direction is prohibited.The different ion transport behavior has grand consequences in the electrochemistry of metal oxygen batteries(MOBs).For Li-O_(2)battery,Li^(+)transports uniformly to the nanowire surface,forming a uniform layer of oxide;Na^(+)also transports to the nanowire surface but may be clogged locally due to its larger radius,therefore sporadic pearl-like oxides form on the nanowire surface;K^(+)cannot transport to the nanowire surface due to its large radius,instead,it breaks the nanowire locally,causing local deposition of potassium oxides.The study provides atomic scale understanding of the alkali metal ion transport mechanism which may be harnessed to improve the performance of MOBs.展开更多
Interactions between deoxyribonucleic acid(DNA) and metal ions are vital for maintaining life functions, however,there are still unsolved questions about its mechanisms. It is of great practical significance to study ...Interactions between deoxyribonucleic acid(DNA) and metal ions are vital for maintaining life functions, however,there are still unsolved questions about its mechanisms. It is of great practical significance to study these issues for medical chip design, drug development, health care, etc. In this investigation, the conductivity properties of λ-DNA solutions with mono-/divalent metal ions(Na+, K^(+), Mg^(2+), and Ca^(2+)) are experimentally studied as they are electrically driven through a 5 μm microfluidic channel. Experimental data indicate that the conductivities of λ-DNA solutions with metal ions(M+/M2+) basically tend to reduce firstly and then increase as the voltage increases, of which the turning points varied with the metal ions. When the voltage surpasses turning points, the conductivity of λ-DNA-M+solutions increases with the concentration of metal ions, while that of λ-DNA-M^(2+)solutions decrease. Moreover, the conductivity of λ-DNA-M^(2+)solutions is always smaller than that of λ-DNA-M+solutions, and with high-concentration M^(2+), it is even smaller than that of the λ-DNA solution. The main reasons for the above findings could be attributed to the polarization of electrodes and different mechanisms of interactions between metal ions and λ-DNA molecules. This investigation is helpful for the precise manipulation of single DNA molecules in micro-/nanofluidic space and the design of new biomedical micro-/nanofluidic sensors.展开更多
Malignant tumor has become a major threat affecting human health,and is one of the main causes of human death.Recent studies have shown that many traditional Chinese medicines(TCM)have good anti-tumor activity,which m...Malignant tumor has become a major threat affecting human health,and is one of the main causes of human death.Recent studies have shown that many traditional Chinese medicines(TCM)have good anti-tumor activity,which may improve the therapeutic effect of routine treatment and quality of life with lower toxicity.However,the efficacy of TCM alone for the treatment of tumors is limited.Metal ions are essential substances for maintaining normal physiological activities.This article summarized the multiple mechanisms in which metal ions are involved in the prevention and treatment of tumors in TCM.展开更多
[Objective]The mechanism of alkaline phosphatase(ALP) was studied to promote rice-field eel aquaculture industry. [ Method] The effects of effectors such as multiple metal ions and organic solvents on ALP in viscera...[Objective]The mechanism of alkaline phosphatase(ALP) was studied to promote rice-field eel aquaculture industry. [ Method] The effects of effectors such as multiple metal ions and organic solvents on ALP in viscera of rice-field eel. [ Result] Na^+ and K ^+ didn't generate big influences on enzyme activity;Mg^2+ and Ca^2+ could promote ALP while Li^+,Cu^2+ and Zn^2+ could restrain ALP enzyme activity. Both HPO4^2- and WO4^2- generated by en- zyme catalyzing disodium phenyl phosphate possessed strong inhibitory effects on emzymc, and 9.5 mmol/L HPO4^2 - would make enzyme activity decline by 13% while 9.5 mmol/L WO4^3- would make enzyme decline by 34%. The inhibition types of them were both competitive inhibition on enzyme activity. The organic solvents such as methanol, ethanol,ethylene glycol,isopropannl all generated influences on ALP and the order according to their inhibitory effects was isopropanol 〉 ethanol 〉 methanol 〉 ethylene glycol. [ Conclusion] The inflncnces of various effeetors on ALP aetivity of rice-field eel were studied from dynamics perspective to provide theoretical basis for further clarifying ALP mechanism.展开更多
Objective] The aim of this study was to investigate the effects of exoge-nous amylases and Ca2+, Mn2+ and K+ on the amylase specific activities and starch degradation of the upper leaves of 'KRK26' planted in Yun...Objective] The aim of this study was to investigate the effects of exoge-nous amylases and Ca2+, Mn2+ and K+ on the amylase specific activities and starch degradation of the upper leaves of 'KRK26' planted in Yunnan Province during flue-curing. [Method] The amylase specific activities and starch degradation of the leaves were determined by using spectrophotometry. [Result] The 8 U/g exogenous α-amy-lase could improve the specific activity of the leaf α-amylase at yel owing and color-fixing stages, but could not at stem-drying stage, and similarly, the 80 U/g exoge-nous β-amylase could improved the specific activity of the leaf β-amylase at the yel owing stage and the early period of color-fixing stage. The leaf starch could be enhanced to degrade by the exogenous α- or β-amylases and the enhancing effect of the former was stronger than that of the later. 1.50 mg/ml Ca2+ improved the specific activity of the leaf (α+β)-amylase mainly due to its enhancing effect on the leaf α-amylase, and increased the starch degradation. 4 mmol/L Mn2+ inhibited the leaf α-amylase from yel owing to the early period of color-fixing and the β- and (α+β)-amylases from the yel owing to the later period of color-fixing, but enhanced the leafα-amylase from the later period of color-fixing to the later period of stem-drying and the β- and (α+β)-amylases at the later period of stem-drying. Meanwhile, Mn2+ ham-pered the starch degradation during yel owing, but promoted it from the early period of color-fixing to stem-drying. 1 mg/ml K+ enhanced the leaf α-, β- and (α+β)-amy-lases during the yel owing stage, but lowered them from the early period of color-fix-ing to the later period of stem-drying, and always inhibited the leaf starch degrada-tion. [Conclusion] The exogenous α-, β- amylases and Ca2+ of suitable concentra-tions could be used to treat the tobacco leaves before flue-curing to improve the leaf starch degradation during the curing.展开更多
[Objective] The aim of this study was to study effects of metal ions on the protease activities in digestive tissues and gland of red-white ornamental carp(Cyprinus carpio L).[Method] Effects of four kinds of metal ...[Objective] The aim of this study was to study effects of metal ions on the protease activities in digestive tissues and gland of red-white ornamental carp(Cyprinus carpio L).[Method] Effects of four kinds of metal ions (K+,Na+,Mg2+ and Ca2+) on protease activities in hepatopancreas,foregut,midgut,hindgut of red-white ornamental carp were studied by enzyme analysis method.[Result] Effects of four kinds of metal ions on protease activities of red-white ornamental carp were different in the range of experimental concentration from 25 mmol/L to 150 mmol/L.K+ could promote protease activities in hepatopancreas and hindgut at different levels.Especially,K+ had the promoting effect at low-concentration level,but the inhibitory effect at high-concentration level in midgut and the inhibitory effect in foregut.Na+ had the promoting effect on protease activities in hepatopancreas,foregut and hindgut at different levels,but the inhibitory effect in midgut.Mg2+ and Ca2+ had the inhibitory effect on protease activities in intestinal and hepatopancreas at different levels.[Conclusion] This study provides basic data and theoretical foundation for researches on the digestive physiology of red-white ornamental carp or the development and optimization of compound feed.展开更多
[Objective] The aim was to establish a convenient and effective method to evaluate the toxicity of heavy metal ions by using small molecular DNA. [Method] pUC18 DNA which had exposed to the four heavy metal ions of Hg...[Objective] The aim was to establish a convenient and effective method to evaluate the toxicity of heavy metal ions by using small molecular DNA. [Method] pUC18 DNA which had exposed to the four heavy metal ions of Hg2+, Cr6+, Pb2+, Cd2+ was used to study the bioactivity of DNA; simultaneously, gel electrophoresis and hyperchromic effect were employed to detect the mechanism of DNA damage. [Result] The bioactivity of the exposed DNA was decreased and the influence degree was Hg2+Cr6+Pb2+Cd2+; the gel electrophoresis and hyperchromic effect proved that the main reason leading to reduce the bioactivity was DNA cross link, in the order pf Hg2+Cr6+Pb2+Cd2+. [Conclusion] The study indicated that pUC18 DNA could be used to assay the damage of DNA causing by heavy mental ions, which may be a potential, simple and effective tool to evaluate toxicity of heavy metal ions to DNA.展开更多
[Objective] The control methods of the bulb rot of Iphigenia indica Kunth.caused by Fusarium orthoceras App.et Wr.var.longius (Sherb.) were explored.[Method] The effect of eight different kinds of metal ions on the ...[Objective] The control methods of the bulb rot of Iphigenia indica Kunth.caused by Fusarium orthoceras App.et Wr.var.longius (Sherb.) were explored.[Method] The effect of eight different kinds of metal ions on the pathogen was studied;the contents of seven different kinds of metal ions in rhizosphere soil and bulb were also determined.[Result] The results showed that when the concentration of Cu2+ or Mg2+ was greater than 1.0mg/L or the concentration of Zn2+ or Ca2+ was lower than 0.5mg/L,the growth of pathogen could be inhibited.The results also showed that the bulb could enrich K highly,enrich Zn and Mg,limit the absorption of Ca and Fe,and inhibit the absorption of Cu and Mn during the growth process of bulb in I.indica Kunth.[Conclusion] Micronutrient fertilizer containing Mg could be used to prevent and cure the bulb rot of I.indica Kunth.展开更多
Polyacrylamide-urea-sulfanilamide(PUS) was prepared as a novel heavy metal ions chelator and successfully used to simultaneously remove heavy metals from wastewater effluents.The effects of reaction parameters(sodi...Polyacrylamide-urea-sulfanilamide(PUS) was prepared as a novel heavy metal ions chelator and successfully used to simultaneously remove heavy metals from wastewater effluents.The effects of reaction parameters(sodium hydroxide,material ratio,temprature and contact time) were monitored to specify the best synthesis conditions.PUS was chemically characterized by means of infrared spectroscopy(FTIR) and ultraviolet-visible(UV-Vis).The simultaneous chelation performance of PUS towards selected heavy metals ions,Ni2+,Cu2+,Pb2+,Zn2+,Cd2+ was discussed,showing that Ni2+,Cu2+,Pb2+,Zn2+ could be better chelated.It is indicated that the synthesized PUS is a potential remediation material when used for the treatment of wastewater containing metal ions.展开更多
Aim Cysteine proteases are closely associated with many human and non-human pathological processes and are potential targets for metal ions especially Hg^2+ and the related species. In the present work, on the basis ...Aim Cysteine proteases are closely associated with many human and non-human pathological processes and are potential targets for metal ions especially Hg^2+ and the related species. In the present work, on the basis of to the general study on the effects of some metal ions on the activity of papain, a well-known representative of cysteine protease family, the inhibitory effects of Hg^2+ and polysulfide complexes were studied. Results All the metal ions tested (Hg^2+, Cu^2+, Ag^+, Au^3+, Zn^2+, Cd^2+, Fe^3+, Mn^2+, Pb^2+, Yb^3+) inhibit the activity of papain anda good correlation between the inhibitory potency and softness-and-hardness was observed. Among the metals, Hg^2+ was shown to be a potent inhibitor of papain with a Kiof 2 × 10^-7 mol·L^-1 among. Excessive amounts of glutathione and cysteine could reactivate the enzyme activity of papain deactivated by Hg^2+. These evidences supported that Hg^2+ might bind to the catalytic site of papain. Interestingly, Hg (Ⅱ) polysulfide complexes were for the first time found to inhibit papain with a Ki of 7 × 10^-6 mol·L^-1, whose potency is close to a well known mercury compound, thimerosal (Ki=2.7 × 10^-6). In addition, Hg (Ⅱ) polysulfide complexes exhibit good permeability ( 1.9 × 10-5 cm· s^-1) to caco-2 monolayer. Conclusion These results suggested that mercury polysulfide complexes might be potential bioactive species in the interaction with cysteine proteases and other- SH-content proteins, providing a new clue to understand the mechanism of the toxicological and pharmacological actions of cinnabar and other insoluble mercury compounds.展开更多
Metal ion-imprintedly crosslinked chitosan resin 1 and resin 2 were prepared by theuse of Cu2+ and Ni2+ as template ions and glutaraldehyde as crosslinking agent, respectively.Through investigation on the adsorption c...Metal ion-imprintedly crosslinked chitosan resin 1 and resin 2 were prepared by theuse of Cu2+ and Ni2+ as template ions and glutaraldehyde as crosslinking agent, respectively.Through investigation on the adsorption capacities and binding constants for Cu2+, Ni2+andCo2+ ions on chitosan resins, resin 1 and resin 2 exhibit the adsorption selectivity for themixture solution of 1:1 Cu2+ and Ni2+ ions. The adsorption selectivity of metal ion-imprintedresins for their template ions is much higher than that of uncrosslinked chitosan resin.展开更多
A series of fluorescent chemosensors 1-3 were synthesized to detect transition metal ions. At the room temperature, fluorescence intensities of these chemosensors in acetonitrile without transition metal ions were fou...A series of fluorescent chemosensors 1-3 were synthesized to detect transition metal ions. At the room temperature, fluorescence intensities of these chemosensors in acetonitrile without transition metal ions were found to be very weak, due to the process of the efficient intramolecular photoinduced electron transfer (PET). However, after addition of the transition metal ions, the chemoscnsor 1-3 exhibits obvious fluorescence enhancement. Moreover, the intensity of the fluorescence emission of chemosensors increases significantly in the presence of Zn^2+ and Cd^2+. The fluorescent chemosensors with different polyamine as receptors show diverse affinity abilities to the transition metal ions and signal the receptor-metal ion interaction by the intensity change of fluorescence emission.展开更多
In flotation,metal ions possess significant roles that are usually fulfilled by either selectively activating or depressing the target minerals.Despite that tremendous efforts have been made to address the roles of me...In flotation,metal ions possess significant roles that are usually fulfilled by either selectively activating or depressing the target minerals.Despite that tremendous efforts have been made to address the roles of metal ions in flotation,it still lacks a comprehensive review,especially to compare various ions instead of focusing on a specific one.This review begins by elaborately categorizing the factors involved in affecting the roles of metal ions in flotation.After that,well-accepted mechanisms are updated and discussed from the ore type.Furthermore,typical approaches to explore the underlying mechanisms are emphasized,including traditional techniques such as micro-flotation,contact angle measurement,zeta potential measurement,and other recent prevailing methodologies,like computational method,solution chemistry calculation,and cyclic voltammetry.This work will pave the way to promote flotations via activities like selectively adding/reducing metal ions,choosing reagents,and regulating the slurry chemistry.展开更多
The process of adsorption of Cu^2+ Cd^2+ by immobilized marine algae was investigated, it can be noted from the results that, the process for biosorption of heavy metals (copper, cadmium) by immobilized Laminaria japo...The process of adsorption of Cu^2+ Cd^2+ by immobilized marine algae was investigated, it can be noted from the results that, the process for biosorption of heavy metals (copper, cadmium) by immobilized Laminaria japonica can be described by the Banerm model. According to the model, the adsorption rate constant calculated was 0.107 8 and 0.030 28 min^-1 for Cu^2+ and Cd^2+ respectively. The experimental biosorption equilibrium data for Cu^2+ and Cd^2+ were in good agreement with those calculated by the Langmuir model. The maximum uptake capacity calculated was 83.3 and 112.4 mg/g for Cu^2+ and Cd^2+ according to the Langmuir model, respectively. The appetency of Laminaria japonica to Cu^2+ was better than Cd^2+.展开更多
[Objective] The present study was conducted to explore the effects of dif- ferent nitrogen sources and metal ions on the biogas production process and biogas yield by fermentation of corn stalk powder using self-desig...[Objective] The present study was conducted to explore the effects of dif- ferent nitrogen sources and metal ions on the biogas production process and biogas yield by fermentation of corn stalk powder using self-designed anaerobic fermenta- tion system. [Method] The biogas produced during fermentation was collected by water displacement, and measured by ignition. [Result] Ammonium bicarbonate, urea and yeast extract powder all increased biogas yield. Among them, ammonium bi- carbonate was the best nitrogen source. Ammonium dihydrogen phosphate showed an inhibitory effect on biogas production. Biogas yield was significantly increased by adding NaCl, KCl, MgCl2 or CaCl2, among which, NaCl had the best effect. [Conclu- sion] It is not conducive to the growth and development of methanogenic flora in the production of biogas using corn stalks as the only material in fermentation. The biogas yield can be increased by adding exogenous nitrogen, which reduces the carbon to nitrogen (C:N) ratio of fermentation materials. The biogas yield can be significantly increased by adding appropriate types and amount of electrolytes, with appropriate C:N ratio. The methanogenic flora is more tolerant to NaCl and KCl than to MgCl2 and CaCl2. Moreover, NaCl can not only significantly increase the biogas production, but also shorten startup period of methanogenic flora, thereby shortening the gas producing cycle.展开更多
A novel three-dimension(3D)graphene/MgO composite was synthesized through self-assembly and embedding MgO nanoparticle in reduced graphene in situ.Fourier transform infrared(FT-IR)spectroscopy,thermal gravimetric anal...A novel three-dimension(3D)graphene/MgO composite was synthesized through self-assembly and embedding MgO nanoparticle in reduced graphene in situ.Fourier transform infrared(FT-IR)spectroscopy,thermal gravimetric analysis(TGA),scanning electron microscopy(SEM),transmission electron microscope(TEM),powder X-raydiffraction(XRD)and X-rayphotoelectron spectroscopy(XPS)were employed to characterize the prepared 3D graphene/MgO composite.The adsorption performance of some metal ions on 3D graphene/MgO was investigated.The results showed that the adsorption capacity was greater than 3D graphene and the maximum adsorption capacity at 25℃was found to be 358.96 mg/g,388.4 mg/g and 169.8 mg/g for Pb^2+,Cd^2+and Cu^2+,respectively.The adsorption kinetic conformed to the pseudo-second-order kinetic model and the adsorption isotherm was well described by Langmuir model.The thermodynamic constants revealed that the sorption process was endothermic and spontaneous in nature.Based on the results of the removal of heavy metal ions from metal smelting wastewater,it can be concluded that the prepared 3D graphene/MgO composite is an effective and potential adsorbent.展开更多
基金This work was supported by the National Natural Science Foundation of China(52373306,52172233,and 51832004)the Natural Science Foundation of Hubei Province(2023AFA053)the Hainan Provincial Joint Project of Sanya Yazhou Bay Science and Technology City(2021CXLH0007).
文摘Aqueous sodium-ion batteries(ASIBs)and aqueous potassium-ion batteries(APIBs)present significant potential for large-scale energy storage due to their cost-effectiveness,safety,and environmental compatibility.Nonetheless,the intricate energy storage mechanisms in aqueous electrolytes place stringent require-ments on the host materials.Prussian blue analogs(PBAs),with their open three-dimensional framework and facile synthesis,stand out as leading candidates for aqueous energy storage.However,PBAs possess a swift capacity fade and limited cycle longevity,for their structural integrity is compromised by the pronounced dis-solution of transition metal(TM)ions in the aqueous milieu.This manuscript provides an exhaustive review of the recent advancements concerning PBAs in ASIBs and APIBs.The dissolution mechanisms of TM ions in PBAs,informed by their structural attributes and redox processes,are thoroughly examined.Moreover,this study delves into innovative design tactics to alleviate the dissolution issue of TM ions.In conclusion,the paper consolidates various strategies for suppressing the dissolution of TM ions in PBAs and posits avenues for prospective exploration of high-safety aqueous sodium-/potassium-ion batteries.
基金National Natural Science Foundation of China(52202299)the Analytical&Testing Center of Northwestern Polytechnical University(2022T006).
文摘With the rapid development of portable electronics and electric road vehicles,high-energy-density batteries have been becoming front-burner issues.Traditionally,homogeneous electrolyte cannot simultaneously meet diametrically opposed demands of high-potential cathode and low-potential anode,which are essential for high-voltage batteries.Meanwhile,homogeneous electrolyte is difficult to achieve bi-or multi-functions to meet different requirements of electrodes.In comparison,the asymmetric electrolyte with bi-or multi-layer disparate components can satisfy distinct requirements by playing different roles of each electrolyte layer and meanwhile compensates weakness of individual electrolyte.Consequently,the asymmetric electrolyte can not only suppress by-product sedimentation and continuous electrolyte decomposition at the anode while preserving active substances at the cathode for high-voltage batteries with long cyclic lifespan.In this review,we comprehensively divide asymmetric electrolytes into three categories:decoupled liquid-state electrolytes,bi-phase solid/liquid electrolytes and decoupled asymmetric solid-state electrolytes.The design principles,reaction mechanism and mutual compatibility are also studied,respectively.Finally,we provide a comprehensive vision for the simplification of structure to reduce costs and increase device energy density,and the optimization of solvation structure at anolyte/catholyte interface to realize fast ion transport kinetics.
基金financial support from the National Natural Science Foundation of China (21838004)Priority Academic Program Development of Jiangsu Higher Education Institutions (PPZY2015A044)Top-notch Academic Programs Project of Jiangsu Higher Education Institution (TAPP)。
文摘Struvite(MAP)crystallization technology is widely used to treat ammonia nitrogen in waste effluents of its simple operation and good removal efficiency.However,the presence of heavy metal ions in the waste effluents causes problems such as slow crystallization rate and small crystal size,limiting the recovery rate and economic value of the MAP.The present study was conducted to investigate the effects of concentrations of three heavy metal ions(Cu^(2+),Zn^(2+),and Pb^(2+))on the crystal morphology,crystal size,average growth rate,and crystallization kinetics of MAP.A relationship was established between the kinetic rate constant Ktcalculated by the chemical gradient model and the concentrations of heavy metal ions.The results showed that low concentrations of heavy metal ions in the solution created pits on the MAP surface,and high level of heavy metal ions generated flocs on the MAP surface,which were composed of metal hydroxides,thus inhibiting crystal growth.The crystal size,average growth rate,MAP crystallization rate,and kinetic rate constant Ktdecreased with the increase in heavy metal ion concentration.Moreover,the Ktdemonstrated a linear relationship with the heavy metal concentration ln(C/C~*),which provided a reference for the optimization of the MAP crystallization process in the presence of heavy metal ions.
基金supported by the National Natural Science Foundation of China (21966006)。
文摘A fluorescent active organic–inorganic hybrid material Py N-SBA-15 was synthesized by implementing pyrene derivatives into mesoporous SBA-15 silica.Py N-SBA-15 had detection and removal functionalities toward Al^(3+),Cu^(2+),and Hg^(2+).On the one hand,Py N-SBA-15 was used as a fluorescence sensor and displayed high sensitivity toward Al^(3+),Cu^(2+),and Hg^(2+)cations (limit of detection:8.0×10^(-7),1.1×10^(-7),and 2.9×10^(-6)mol·L^(–1),respectively) among various analytes with“turn-off”response.On the other hand,the adsorption studies for these toxic analytes (Cu^(2+),Hg^(2+),and Al^(3+)) showed that the ion removal capacity could reach up to 45,581,and 85 mg·g^(-1),respectively.Moreover,the Langmuir isotherm models were better fitted with the adsorption data,indicating that the adsorption was mono-layer adsorption.Kinetic analysis revealed that the adsorption process was well described by the pseudo-second-order kinetic model for Cu^(2+)and Hg^(2+)and pseudo-first-order kinetic model for Al^(3+).The prepared silica material could be reused in four recycles without significantly decreasing its adsorption capacity.Therefore,the Py N-SBA-15 material can serve as a promising candidate for the simultaneous rapid detection and efficient adsorption of metal ions.
基金financially supported by the National Natural Science Foundation of China(22279112,52022088,51971245,51772262,21406191,U20A20336,21935009)the Natural Science Foundation of Hebei Province,China(B2022203018,F2021203097,B2020203037,B2018203297)+2 种基金the Hunan Innovation Team,China(2018RS3091)the Beijing Natural Science Foundation,China(2202046)the Fok Ying-Tong Education Foundation of China(171064)。
文摘Understanding alkali metal ions’(e.g.,Li^(+)/Na^(+)/K^(+))transport mechanism is challenging but critical to improving the performance of alkali metal batteries.Herein using a-MnO_(2)nanowires as cathodes,the transport kinetics of Li^(+)/Na^(+)/K^(+)in the 2×2 channels of a-MnO_(2)with a growth direction of[001]is revealed.We show that ion radius plays a decisive role in determining the ion transport and electrochemistry.Regardless of the ion radii,Li^(+)/Na^(+)/K^(+)can all go through the 2×2 channels of a-MnO_(2),generating large stress and causing channel merging or opening.However,smaller ions such as Li^(+)and Na^(+)cannot only transport along the[001]direction but also migrate along the<110>direction to the nanowire surface;for large ion such as K^(+),diffusion along the<110>direction is prohibited.The different ion transport behavior has grand consequences in the electrochemistry of metal oxygen batteries(MOBs).For Li-O_(2)battery,Li^(+)transports uniformly to the nanowire surface,forming a uniform layer of oxide;Na^(+)also transports to the nanowire surface but may be clogged locally due to its larger radius,therefore sporadic pearl-like oxides form on the nanowire surface;K^(+)cannot transport to the nanowire surface due to its large radius,instead,it breaks the nanowire locally,causing local deposition of potassium oxides.The study provides atomic scale understanding of the alkali metal ion transport mechanism which may be harnessed to improve the performance of MOBs.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 62275216 and 61775181)the Innovation Capability Support Program of Shaanxi Province of China (Grant Nos. S2018-ZC-TD-0061 and TZ0393)the National Key Scientific Instrument and Equipment Development Projects of China (Grant No. 51927804)。
文摘Interactions between deoxyribonucleic acid(DNA) and metal ions are vital for maintaining life functions, however,there are still unsolved questions about its mechanisms. It is of great practical significance to study these issues for medical chip design, drug development, health care, etc. In this investigation, the conductivity properties of λ-DNA solutions with mono-/divalent metal ions(Na+, K^(+), Mg^(2+), and Ca^(2+)) are experimentally studied as they are electrically driven through a 5 μm microfluidic channel. Experimental data indicate that the conductivities of λ-DNA solutions with metal ions(M+/M2+) basically tend to reduce firstly and then increase as the voltage increases, of which the turning points varied with the metal ions. When the voltage surpasses turning points, the conductivity of λ-DNA-M+solutions increases with the concentration of metal ions, while that of λ-DNA-M^(2+)solutions decrease. Moreover, the conductivity of λ-DNA-M^(2+)solutions is always smaller than that of λ-DNA-M+solutions, and with high-concentration M^(2+), it is even smaller than that of the λ-DNA solution. The main reasons for the above findings could be attributed to the polarization of electrodes and different mechanisms of interactions between metal ions and λ-DNA molecules. This investigation is helpful for the precise manipulation of single DNA molecules in micro-/nanofluidic space and the design of new biomedical micro-/nanofluidic sensors.
文摘Malignant tumor has become a major threat affecting human health,and is one of the main causes of human death.Recent studies have shown that many traditional Chinese medicines(TCM)have good anti-tumor activity,which may improve the therapeutic effect of routine treatment and quality of life with lower toxicity.However,the efficacy of TCM alone for the treatment of tumors is limited.Metal ions are essential substances for maintaining normal physiological activities.This article summarized the multiple mechanisms in which metal ions are involved in the prevention and treatment of tumors in TCM.
基金Science and Techndogy Fund of Chongqing Science and Technology cmmission~~
文摘[Objective]The mechanism of alkaline phosphatase(ALP) was studied to promote rice-field eel aquaculture industry. [ Method] The effects of effectors such as multiple metal ions and organic solvents on ALP in viscera of rice-field eel. [ Result] Na^+ and K ^+ didn't generate big influences on enzyme activity;Mg^2+ and Ca^2+ could promote ALP while Li^+,Cu^2+ and Zn^2+ could restrain ALP enzyme activity. Both HPO4^2- and WO4^2- generated by en- zyme catalyzing disodium phenyl phosphate possessed strong inhibitory effects on emzymc, and 9.5 mmol/L HPO4^2 - would make enzyme activity decline by 13% while 9.5 mmol/L WO4^3- would make enzyme decline by 34%. The inhibition types of them were both competitive inhibition on enzyme activity. The organic solvents such as methanol, ethanol,ethylene glycol,isopropannl all generated influences on ALP and the order according to their inhibitory effects was isopropanol 〉 ethanol 〉 methanol 〉 ethylene glycol. [ Conclusion] The inflncnces of various effeetors on ALP aetivity of rice-field eel were studied from dynamics perspective to provide theoretical basis for further clarifying ALP mechanism.
基金Supported by Fund from Yunnan Academy of Tobacco Agricultural Sciences for Comparative Study of the Flue-cured Tobaccos of the New Tobacco-growing Areas in Yunnan Province and Those of Zimbabwe(09YN001)~~
文摘Objective] The aim of this study was to investigate the effects of exoge-nous amylases and Ca2+, Mn2+ and K+ on the amylase specific activities and starch degradation of the upper leaves of 'KRK26' planted in Yunnan Province during flue-curing. [Method] The amylase specific activities and starch degradation of the leaves were determined by using spectrophotometry. [Result] The 8 U/g exogenous α-amy-lase could improve the specific activity of the leaf α-amylase at yel owing and color-fixing stages, but could not at stem-drying stage, and similarly, the 80 U/g exoge-nous β-amylase could improved the specific activity of the leaf β-amylase at the yel owing stage and the early period of color-fixing stage. The leaf starch could be enhanced to degrade by the exogenous α- or β-amylases and the enhancing effect of the former was stronger than that of the later. 1.50 mg/ml Ca2+ improved the specific activity of the leaf (α+β)-amylase mainly due to its enhancing effect on the leaf α-amylase, and increased the starch degradation. 4 mmol/L Mn2+ inhibited the leaf α-amylase from yel owing to the early period of color-fixing and the β- and (α+β)-amylases from the yel owing to the later period of color-fixing, but enhanced the leafα-amylase from the later period of color-fixing to the later period of stem-drying and the β- and (α+β)-amylases at the later period of stem-drying. Meanwhile, Mn2+ ham-pered the starch degradation during yel owing, but promoted it from the early period of color-fixing to stem-drying. 1 mg/ml K+ enhanced the leaf α-, β- and (α+β)-amy-lases during the yel owing stage, but lowered them from the early period of color-fix-ing to the later period of stem-drying, and always inhibited the leaf starch degrada-tion. [Conclusion] The exogenous α-, β- amylases and Ca2+ of suitable concentra-tions could be used to treat the tobacco leaves before flue-curing to improve the leaf starch degradation during the curing.
文摘[Objective] The aim of this study was to study effects of metal ions on the protease activities in digestive tissues and gland of red-white ornamental carp(Cyprinus carpio L).[Method] Effects of four kinds of metal ions (K+,Na+,Mg2+ and Ca2+) on protease activities in hepatopancreas,foregut,midgut,hindgut of red-white ornamental carp were studied by enzyme analysis method.[Result] Effects of four kinds of metal ions on protease activities of red-white ornamental carp were different in the range of experimental concentration from 25 mmol/L to 150 mmol/L.K+ could promote protease activities in hepatopancreas and hindgut at different levels.Especially,K+ had the promoting effect at low-concentration level,but the inhibitory effect at high-concentration level in midgut and the inhibitory effect in foregut.Na+ had the promoting effect on protease activities in hepatopancreas,foregut and hindgut at different levels,but the inhibitory effect in midgut.Mg2+ and Ca2+ had the inhibitory effect on protease activities in intestinal and hepatopancreas at different levels.[Conclusion] This study provides basic data and theoretical foundation for researches on the digestive physiology of red-white ornamental carp or the development and optimization of compound feed.
基金Supported by the National Natural Science Foundation of China(31101370)~~
文摘[Objective] The aim was to establish a convenient and effective method to evaluate the toxicity of heavy metal ions by using small molecular DNA. [Method] pUC18 DNA which had exposed to the four heavy metal ions of Hg2+, Cr6+, Pb2+, Cd2+ was used to study the bioactivity of DNA; simultaneously, gel electrophoresis and hyperchromic effect were employed to detect the mechanism of DNA damage. [Result] The bioactivity of the exposed DNA was decreased and the influence degree was Hg2+Cr6+Pb2+Cd2+; the gel electrophoresis and hyperchromic effect proved that the main reason leading to reduce the bioactivity was DNA cross link, in the order pf Hg2+Cr6+Pb2+Cd2+. [Conclusion] The study indicated that pUC18 DNA could be used to assay the damage of DNA causing by heavy mental ions, which may be a potential, simple and effective tool to evaluate toxicity of heavy metal ions to DNA.
文摘[Objective] The control methods of the bulb rot of Iphigenia indica Kunth.caused by Fusarium orthoceras App.et Wr.var.longius (Sherb.) were explored.[Method] The effect of eight different kinds of metal ions on the pathogen was studied;the contents of seven different kinds of metal ions in rhizosphere soil and bulb were also determined.[Result] The results showed that when the concentration of Cu2+ or Mg2+ was greater than 1.0mg/L or the concentration of Zn2+ or Ca2+ was lower than 0.5mg/L,the growth of pathogen could be inhibited.The results also showed that the bulb could enrich K highly,enrich Zn and Mg,limit the absorption of Ca and Fe,and inhibit the absorption of Cu and Mn during the growth process of bulb in I.indica Kunth.[Conclusion] Micronutrient fertilizer containing Mg could be used to prevent and cure the bulb rot of I.indica Kunth.
基金Funded by the Cooperative Project of Yulin City,Shaanxi Province,201
文摘Polyacrylamide-urea-sulfanilamide(PUS) was prepared as a novel heavy metal ions chelator and successfully used to simultaneously remove heavy metals from wastewater effluents.The effects of reaction parameters(sodium hydroxide,material ratio,temprature and contact time) were monitored to specify the best synthesis conditions.PUS was chemically characterized by means of infrared spectroscopy(FTIR) and ultraviolet-visible(UV-Vis).The simultaneous chelation performance of PUS towards selected heavy metals ions,Ni2+,Cu2+,Pb2+,Zn2+,Cd2+ was discussed,showing that Ni2+,Cu2+,Pb2+,Zn2+ could be better chelated.It is indicated that the synthesized PUS is a potential remediation material when used for the treatment of wastewater containing metal ions.
文摘Aim Cysteine proteases are closely associated with many human and non-human pathological processes and are potential targets for metal ions especially Hg^2+ and the related species. In the present work, on the basis of to the general study on the effects of some metal ions on the activity of papain, a well-known representative of cysteine protease family, the inhibitory effects of Hg^2+ and polysulfide complexes were studied. Results All the metal ions tested (Hg^2+, Cu^2+, Ag^+, Au^3+, Zn^2+, Cd^2+, Fe^3+, Mn^2+, Pb^2+, Yb^3+) inhibit the activity of papain anda good correlation between the inhibitory potency and softness-and-hardness was observed. Among the metals, Hg^2+ was shown to be a potent inhibitor of papain with a Kiof 2 × 10^-7 mol·L^-1 among. Excessive amounts of glutathione and cysteine could reactivate the enzyme activity of papain deactivated by Hg^2+. These evidences supported that Hg^2+ might bind to the catalytic site of papain. Interestingly, Hg (Ⅱ) polysulfide complexes were for the first time found to inhibit papain with a Ki of 7 × 10^-6 mol·L^-1, whose potency is close to a well known mercury compound, thimerosal (Ki=2.7 × 10^-6). In addition, Hg (Ⅱ) polysulfide complexes exhibit good permeability ( 1.9 × 10-5 cm· s^-1) to caco-2 monolayer. Conclusion These results suggested that mercury polysulfide complexes might be potential bioactive species in the interaction with cysteine proteases and other- SH-content proteins, providing a new clue to understand the mechanism of the toxicological and pharmacological actions of cinnabar and other insoluble mercury compounds.
文摘Metal ion-imprintedly crosslinked chitosan resin 1 and resin 2 were prepared by theuse of Cu2+ and Ni2+ as template ions and glutaraldehyde as crosslinking agent, respectively.Through investigation on the adsorption capacities and binding constants for Cu2+, Ni2+andCo2+ ions on chitosan resins, resin 1 and resin 2 exhibit the adsorption selectivity for themixture solution of 1:1 Cu2+ and Ni2+ ions. The adsorption selectivity of metal ion-imprintedresins for their template ions is much higher than that of uncrosslinked chitosan resin.
基金supported by the National Natural Science Foundation of China(No.20332020,No.20472079).
文摘A series of fluorescent chemosensors 1-3 were synthesized to detect transition metal ions. At the room temperature, fluorescence intensities of these chemosensors in acetonitrile without transition metal ions were found to be very weak, due to the process of the efficient intramolecular photoinduced electron transfer (PET). However, after addition of the transition metal ions, the chemoscnsor 1-3 exhibits obvious fluorescence enhancement. Moreover, the intensity of the fluorescence emission of chemosensors increases significantly in the presence of Zn^2+ and Cd^2+. The fluorescent chemosensors with different polyamine as receptors show diverse affinity abilities to the transition metal ions and signal the receptor-metal ion interaction by the intensity change of fluorescence emission.
基金financial supports from the National Natural Science Foundation of China(Nos.U2067201,51774328)the Key Program for International S&T Cooperation Projects of China(No.2021YFE0106800)+2 种基金the Science Fund for Distinguished Young Scholars of Hunan Province,China(No.2020JJ2044)the Young Elite Scientists Sponsorship Program by Hunan province of China(No.2018RS3011)the National 111 Project of China(No.B14034)。
文摘In flotation,metal ions possess significant roles that are usually fulfilled by either selectively activating or depressing the target minerals.Despite that tremendous efforts have been made to address the roles of metal ions in flotation,it still lacks a comprehensive review,especially to compare various ions instead of focusing on a specific one.This review begins by elaborately categorizing the factors involved in affecting the roles of metal ions in flotation.After that,well-accepted mechanisms are updated and discussed from the ore type.Furthermore,typical approaches to explore the underlying mechanisms are emphasized,including traditional techniques such as micro-flotation,contact angle measurement,zeta potential measurement,and other recent prevailing methodologies,like computational method,solution chemistry calculation,and cyclic voltammetry.This work will pave the way to promote flotations via activities like selectively adding/reducing metal ions,choosing reagents,and regulating the slurry chemistry.
文摘The process of adsorption of Cu^2+ Cd^2+ by immobilized marine algae was investigated, it can be noted from the results that, the process for biosorption of heavy metals (copper, cadmium) by immobilized Laminaria japonica can be described by the Banerm model. According to the model, the adsorption rate constant calculated was 0.107 8 and 0.030 28 min^-1 for Cu^2+ and Cd^2+ respectively. The experimental biosorption equilibrium data for Cu^2+ and Cd^2+ were in good agreement with those calculated by the Langmuir model. The maximum uptake capacity calculated was 83.3 and 112.4 mg/g for Cu^2+ and Cd^2+ according to the Langmuir model, respectively. The appetency of Laminaria japonica to Cu^2+ was better than Cd^2+.
基金Supported by Innovation and Entrepreneurship Training Program for Undergraduates of Yanbian University (ydbksky2015216)~~
文摘[Objective] The present study was conducted to explore the effects of dif- ferent nitrogen sources and metal ions on the biogas production process and biogas yield by fermentation of corn stalk powder using self-designed anaerobic fermenta- tion system. [Method] The biogas produced during fermentation was collected by water displacement, and measured by ignition. [Result] Ammonium bicarbonate, urea and yeast extract powder all increased biogas yield. Among them, ammonium bi- carbonate was the best nitrogen source. Ammonium dihydrogen phosphate showed an inhibitory effect on biogas production. Biogas yield was significantly increased by adding NaCl, KCl, MgCl2 or CaCl2, among which, NaCl had the best effect. [Conclu- sion] It is not conducive to the growth and development of methanogenic flora in the production of biogas using corn stalks as the only material in fermentation. The biogas yield can be increased by adding exogenous nitrogen, which reduces the carbon to nitrogen (C:N) ratio of fermentation materials. The biogas yield can be significantly increased by adding appropriate types and amount of electrolytes, with appropriate C:N ratio. The methanogenic flora is more tolerant to NaCl and KCl than to MgCl2 and CaCl2. Moreover, NaCl can not only significantly increase the biogas production, but also shorten startup period of methanogenic flora, thereby shortening the gas producing cycle.
基金Projects(21571191,51674292) supported by the National Natural Science Foundation of ChinaProject(2016JJ1023) supported by the Natural Science Foundation of Hunan Province,ChinaProject(2018TP1003) supported by the Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety,China
文摘A novel three-dimension(3D)graphene/MgO composite was synthesized through self-assembly and embedding MgO nanoparticle in reduced graphene in situ.Fourier transform infrared(FT-IR)spectroscopy,thermal gravimetric analysis(TGA),scanning electron microscopy(SEM),transmission electron microscope(TEM),powder X-raydiffraction(XRD)and X-rayphotoelectron spectroscopy(XPS)were employed to characterize the prepared 3D graphene/MgO composite.The adsorption performance of some metal ions on 3D graphene/MgO was investigated.The results showed that the adsorption capacity was greater than 3D graphene and the maximum adsorption capacity at 25℃was found to be 358.96 mg/g,388.4 mg/g and 169.8 mg/g for Pb^2+,Cd^2+and Cu^2+,respectively.The adsorption kinetic conformed to the pseudo-second-order kinetic model and the adsorption isotherm was well described by Langmuir model.The thermodynamic constants revealed that the sorption process was endothermic and spontaneous in nature.Based on the results of the removal of heavy metal ions from metal smelting wastewater,it can be concluded that the prepared 3D graphene/MgO composite is an effective and potential adsorbent.