Two modeling methods of the root insert for wind turbine blade are presented,i.e.,the local mesh optimization method(LMOM)and the global modeling method(GMM).Based on the optimized mesh of the local model for the meta...Two modeling methods of the root insert for wind turbine blade are presented,i.e.,the local mesh optimization method(LMOM)and the global modeling method(GMM).Based on the optimized mesh of the local model for the metal contact interface,LMOM is proposed to analyze the load path and stress distribution characteristics,while GMM is used to calculate and analyze the stress distribution characteristics of the resin layer established between the bushing and composite layers of root insert.To validate the GMM,a tension test is carried out.The result successfully shows that the shear strain expresses a similar strain distribution tendency with the GMM′s results.展开更多
Using the 3-D sono-elasticity method and the simplified nonstructural mass method,the different dynamic modeling methods of the added water for a single-hull structure are first analyzed in this study.Then,the complet...Using the 3-D sono-elasticity method and the simplified nonstructural mass method,the different dynamic modeling methods of the added water for a single-hull structure are first analyzed in this study.Then,the complete internal flow field method and the simplified nonstructural mass method of the contained water between the double hulls of a double-hull structure are investigated.Finally,based on the calculation and analysis under multiple conditions,a reasonable and simplified dynamic modeling method of added water and contained water is obtained.It is indicated that the mass of added water for a single-hull structure is closely related to the mass of total underwater displacement of the structure.With the increase in the analysis frequency,the mass of added water is characterized by first decreasing rapidly and then decreasing gradually and smoothly.The contained water between the double hulls is distributed to the pressure hull and the light shell based on the ratio of the impedances of the double hulls.The results can basically reflect the acoustic radiation characteristics of the double-hull structure.展开更多
3-D geological modeling plays an increasingly important role in Petroleum Geology, Mining Geology and Engineering Geology. The complexity of geological conditions requires different modeling methods in different situa...3-D geological modeling plays an increasingly important role in Petroleum Geology, Mining Geology and Engineering Geology. The complexity of geological conditions requires different modeling methods in different situations. This paper summarizes the general concept of geological modeling; compares the characteristics of borehole-based modeling, cross-section based modeling and multi- source interactive modeling; analyses key techniques in 3-D geological modeling; and highlights the main difficulties and directions of future studies.展开更多
CNC machining systems are inevitably confronted with frequent changes in energy behaviors because they are widely used to perform various machining tasks. It is a challenge to understand and analyze the flexible energ...CNC machining systems are inevitably confronted with frequent changes in energy behaviors because they are widely used to perform various machining tasks. It is a challenge to understand and analyze the flexible energy behaviors in CNC machining systems. A method to model flexible energy behaviors in CNC machining systems based on hierarchical objected-oriented Petri net(HOONet) is proposed. The structure of the HOONet is constructed of a high-level model and detail models. The former is used to model operational states for CNC machining systems, and the latter is used to analyze the component models for operational states. The machining parameters having great impacts on energy behaviors in CNC machining systems are declared with the data dictionary in HOONet models. A case study based on a CNC lathe is presented to demonstrate the proposed modeling method. The results show that it is effective for modeling flexible energy behaviors and providing a fine-grained description to quantitatively analyze the energy consumption of CNC machining systems.展开更多
The relationship between capillary pressure and saturation plays a critical role in the characterization of two-phase flow and transport in aquifers and oil reservoirs. This relationship is usually determined under th...The relationship between capillary pressure and saturation plays a critical role in the characterization of two-phase flow and transport in aquifers and oil reservoirs. This relationship is usually determined under the static condition, where capillary pressure is the only function of saturation. However,considerable experiments have suggested that the dependence of capillary pressure on desaturation rate is under the dynamic condition. Thus, a more general description of capillary pressure that includes dynamic capillary effect has been approved widely. A comprehensive understanding of the dynamic capillary effect is needed for the investigation of the two-phase flow in porous media by various methods. In general, dynamic capillary effect in porous media can be studied through the laboratory experiment, pore-to macro-scale modeling, and artificial neural network. Here, main principle and research procedures of each method are reviewed in detail. Then, research progress, disadvantages and advantages are discussed, respectively. In addition, upscaling study from pore-to macro-scale are introduced, which explains the difference between laboratory experiment and pore-scale modeling. At last, several future perspectives and recommendations for optimal solution of dynamic capillary effect are presented.展开更多
The goal of this review paper is to provide a summary of selected discrete element and hybrid finitediscrete element modeling techniques that have emerged in the field of rock mechanics as simulation tools for fractur...The goal of this review paper is to provide a summary of selected discrete element and hybrid finitediscrete element modeling techniques that have emerged in the field of rock mechanics as simulation tools for fracturing processes in rocks and rock masses. The fundamental principles of each computer code are illustrated with particular emphasis on the approach specifically adopted to simulate fracture nucleation and propagation and to account for the presence of rock mass discontinuities. This description is accompanied by a brief review of application studies focusing on laboratory-scale models of rock failure processes and on the simulation of damage development around underground excavations.展开更多
A numerical method was used in order to establish the constitutive relationship of sands under different stress paths, Firstly, based on the numerical method modeling the constitutive law of sands, the elastoplastic c...A numerical method was used in order to establish the constitutive relationship of sands under different stress paths, Firstly, based on the numerical method modeling the constitutive law of sands, the elastoplastic constitutive relationship of sand was established for three paths: the constant proportion of principle stress path, the conventional triaxial compression (CTC) path, and the p=constant (TC) path. The yield lines of plastic volumetric strain and plastic generalized shear strain were given. Through visualization, the three dimensional surface of the stress-strain relationship in the whole stress field (p, q) obtained under the three paths was plotted. Also, by comparing the stress-strain surfaces and yield locus of the three stress paths, the differences were found to be obvious, which demonstrates that the influence of the stress paths on constitutive law was not neglected. The numerical modeling method overcame the difficulty of finding an analytical expression for plastic potential. The results simulated the experimental data with an accuracy of 90% on average, so the constitutive model established in this paper provides an effective constitutive equation for this kind of engineering, reflecting the effect of practical stress paths that occur in sands.展开更多
The strategies that minimize the overall solution time of multiple linear systems in 3D finite element method (FEM) modeling of direct current (DC) resistivity were discussed. A global stiff matrix is assembled and st...The strategies that minimize the overall solution time of multiple linear systems in 3D finite element method (FEM) modeling of direct current (DC) resistivity were discussed. A global stiff matrix is assembled and stored in two parts separately. One part is associated with the volume integral and the other is associated with the subsurface boundary integral. The equivalent multiple linear systems with closer right-hand sides than the original systems were constructed. A recycling Krylov subspace technique was employed to solve the multiple linear systems. The solution of the seed system was used as an initial guess for the subsequent systems. The results of two numerical experiments show that the improved algorithm reduces the iterations and CPU time by almost 50%, compared with the classical preconditioned conjugate gradient method.展开更多
This paper describes how to use the Unified Modeling Language (UML) to modeling software processes in medical insurance MIS, and compares UML Modeling method with classic PO(Process Oriented) Modeling method. It indi...This paper describes how to use the Unified Modeling Language (UML) to modeling software processes in medical insurance MIS, and compares UML Modeling method with classic PO(Process Oriented) Modeling method. It indicates that the whole performance of application system model described by UML is much better than the one described by PO.展开更多
Elasto-plastic consolidation is one of the classic coupling questions in geomechanics. To solve this problem, an elasto-plastic constitutive model is derived based on the numerical modeling method. The model is applie...Elasto-plastic consolidation is one of the classic coupling questions in geomechanics. To solve this problem, an elasto-plastic constitutive model is derived based on the numerical modeling method. The model is applied to Blot's consolidation theory. Incremental governing partial differential equations are established using this method. According to the stress path, the decoupling condition of these equations is discussed. Based on these conditions, an incremental diffusion equation and uncoupling governing equations are presented. The method is then applied to numerical analyses of three examples. The results show that (1) the effect of the stress path should be taken into account in the simulation of the soil consolidation question; (2) this decoupling method can predict the evolvement of pore water pressure; (3) the settlement using cam-clay model is less than that using numerical model because of dilatancy.展开更多
In this paper, the method based on uniform design and neural network is proposed to model the complex system. In order to express the system characteristics all round, uniform design method is used to choose the model...In this paper, the method based on uniform design and neural network is proposed to model the complex system. In order to express the system characteristics all round, uniform design method is used to choose the modeling samples and obtain the overall information of the system;for the purpose of modeling the system or its characteristics, the artificial neural network is used to construct the model. Experiment indicates that this method can model the complex system effectively.展开更多
To analyze the modeling methods of the dry friction rotor system,a local linearization model of the dry friction damping rotor system was built based on the simplified model of the wave-shaped steel-belt supporting ro...To analyze the modeling methods of the dry friction rotor system,a local linearization model of the dry friction damping rotor system was built based on the simplified model of the wave-shaped steel-belt supporting rotor system.In this model,the linear stiffness of damper closed to pre-deformation was defined as the stiffness of damper,the maximum amplitude of the rotor was calculated according to the load and linear rotor,and the damper's parameters were defined on the basis of the energy dissipation parameters.The presented method can reflect the hysteresis characteristics and is easy to calculate.Experimental results demonstrate the accuracy and feasibility of this method.展开更多
When there exists anisotropy in underground media elastic parameters of the observed coordinate possibly do not coincide with that of the natural coordinate. According to the theory that the density of potential energ...When there exists anisotropy in underground media elastic parameters of the observed coordinate possibly do not coincide with that of the natural coordinate. According to the theory that the density of potential energy, dissipating energy is independent of the coordinate, the relationship of elastic parameters between two coordinates is derived for two-phase anisotropic media. Then, pseudospectral method to solve wave equations of two-phase anisotropic media is derived. At last, we use this method to simulate wave propagation in two-phase anisotropic media four types of waves are observed in the snapshots, i.e., fast P wave and slow P wave, fast S wave and slow S wave. Shear wave splitting, SV wave cusps and elastic wave reflection and transmission are also observed.展开更多
In this paper,the static output feedback stabilization for large-scale unstable second-order singular systems is investigated.First,the upper bound of all unstable eigenvalues of second-order singular systems is deriv...In this paper,the static output feedback stabilization for large-scale unstable second-order singular systems is investigated.First,the upper bound of all unstable eigenvalues of second-order singular systems is derived.Then,by using the argument principle,a computable stability criterion is proposed to check the stability of secondorder singular systems.Furthermore,by applying model reduction methods to original systems,a static output feedback design algorithm for stabilizing second-order singular systems is presented.A simulation example is provided to illustrate the effectiveness of the design algorithm.展开更多
On the basis of a detailed discussion of the development of total ionizing dose (TID) effect model, a new commercial-model-independent TID modeling approach for partially depleted silicon-on-insulator metal-oxide- s...On the basis of a detailed discussion of the development of total ionizing dose (TID) effect model, a new commercial-model-independent TID modeling approach for partially depleted silicon-on-insulator metal-oxide- semiconductor field effect transistors is developed. An exponential approximation is proposed to simplify the trap charge calculation. Irradiation experiments with 60Co gamma rays for IO and core devices are performed to validate the simulation results. An excellent agreement of measurement with the simulation results is observed.展开更多
Shape modeling is fundamental to the analysis of dynamic environment and motion around asteroid. Chang'E- 2 successfully made a flyby of Asteroid 4179 Toutatis and obtained plenty of high-resolution images during the...Shape modeling is fundamental to the analysis of dynamic environment and motion around asteroid. Chang'E- 2 successfully made a flyby of Asteroid 4179 Toutatis and obtained plenty of high-resolution images during the mis- sion. In this paper, the modeling method and preliminary model of Asteroid Toutatis are discussed. First, the optical images obtained by Chang'E-2 are analyzed. Terrain and silhouette features in images are described. Then, the modeling method based on previous radar model and preliminary information from optical images is proposed. A preliminary polyhedron model of Asteroid Toutatis is established. Finally, the spherical harmonic coefficients of Asteroid Toutatis based on the polyhedron model are obtained. Some parameters of model are analyzed and compared. Although the model proposed in this paper is only a preliminary model, this work offers a valuable reference for future high-resolution models.展开更多
In this study,geochemical anomaly separation was carried out with methods based on the distribution model,which includes probability diagram(MPD),fractal(concentration-area technique),and U-statistic methods.The main ...In this study,geochemical anomaly separation was carried out with methods based on the distribution model,which includes probability diagram(MPD),fractal(concentration-area technique),and U-statistic methods.The main objective is to evaluate the efficiency and accuracy of the methods in separation of anomalies on the shear zone gold mineralization.For this purpose,samples were taken from the secondary lithogeochemical environment(stream sediment samples)on the gold mineralization in Saqqez,NW of Iran.Interpretation of the histograms and diagrams showed that the MPD is capable of identifying two phases of mineralization.The fractal method could separate only one phase of change based on the fractal dimension with high concentration areas of the Au element.The spatial analysis showed two mixed subpopulations after U=0 and another subpopulation with very high U values.The MPD analysis followed spatial analysis,which shows the detail of the variations.Six mineralized zones detected from local geochemical exploration results were used for validating the methods mentioned above.The MPD method was able to identify the anomalous areas higher than 90%,whereas the two other methods identified 60%(maximum)of the anomalous areas.The raw data without any estimation for the concentration was used by the MPD method using aminimum of calculations to determine the threshold values.Therefore,the MPD method is more robust than the other methods.The spatial analysis identified the detail soft hegeological and mineralization events that were affected in the study area.MPD is recommended as the best,and the spatial U-analysis is the next reliable method to be used.The fractal method could show more detail of the events and variations in the area with asymmetrical grid net and a higher density of sampling or at the detailed exploration stage.展开更多
The high-temperature creep behavior of asphalt mixture was investigated based on micromechanical modeling and virtual test by using three-dimensional discrete element method(DEM). A user-defined micromechanical mode...The high-temperature creep behavior of asphalt mixture was investigated based on micromechanical modeling and virtual test by using three-dimensional discrete element method(DEM). A user-defined micromechanical model of asphalt mixture was established after analyzing the irregular shape and gradation of coarse aggregates, the viscoelastic property of asphalt mastic, and the random distribution of air voids within the asphalt mixture. Virtual uniaxial static creep test at 60 ℃ was conducted by using Particle Flow Code in three dimensions(PFC3D) and was validated by laboratory test. Based on virtual creep test, the micromechanical characteristics between aggregates, within asphalt mastic, and between aggregate and asphalt mastic were analyzed for the asphalt mixture. It is proved that the virtual test based on the micromechanical model can efficiently predict the creep deformation of asphalt mixture. And the high-temperature behavior of asphalt mixture was characterized from micromechanical perspective.展开更多
Experimental stroke research commonly employs focal cerebral ischemic rat models (Bederson et al., 1986a; Longa et al., 1989). In human patients, ischemic stroke typically results from thrombotic or embolic occlusio...Experimental stroke research commonly employs focal cerebral ischemic rat models (Bederson et al., 1986a; Longa et al., 1989). In human patients, ischemic stroke typically results from thrombotic or embolic occlusion of a major cerebral artery, usually the mid- dle cerebral artery (MCA). Experimental focal cerebral ischemia models have been employed to mimic human stroke (Durukan and Tatlisumak, 2007). Rodent models of focal cerebral ischemia that do not require craniotomy have been developed using intraluminal suture occlusion of the MCA (MCA occlusion, MCAO) (Rosamond et al., 2008). Furthermore, mouse MCAO models have been wide- ly used and extended to genetic studies of cell death or recovery mechanisms (Liu and McCullough, 2011). Genetically engineered mouse stroke models are particularly useful for evaluation of isch- emic pathophysiology and the design of new prophylactic, neuro- protective, and therapeutic agents and interventions (Armstead et al., 2010). During the past two decades, MCAO surgical techniques have been developed that do not reveal surgical techniques for mouse MCAO model engineering. Therefore, we compared MCAO surgical methods in rats and mice.展开更多
基金supported jointly by the National Basic Research Program of China("973"Program)(No2014CB046200)the National Science Foundation of Jiangsu Province(No.BK2014059)+1 种基金the Priority Academic Program Development of Jiangsu Higher Education Institutionsthe National Natural Science Foundation of China(No.11172135)
文摘Two modeling methods of the root insert for wind turbine blade are presented,i.e.,the local mesh optimization method(LMOM)and the global modeling method(GMM).Based on the optimized mesh of the local model for the metal contact interface,LMOM is proposed to analyze the load path and stress distribution characteristics,while GMM is used to calculate and analyze the stress distribution characteristics of the resin layer established between the bushing and composite layers of root insert.To validate the GMM,a tension test is carried out.The result successfully shows that the shear strain expresses a similar strain distribution tendency with the GMM′s results.
基金supported by the National Natural Science Foundation of China(Grant No.51909246)supported by the Nature Science Foundation of Jiangsu Province of China(Grant No.BK20220044).
文摘Using the 3-D sono-elasticity method and the simplified nonstructural mass method,the different dynamic modeling methods of the added water for a single-hull structure are first analyzed in this study.Then,the complete internal flow field method and the simplified nonstructural mass method of the contained water between the double hulls of a double-hull structure are investigated.Finally,based on the calculation and analysis under multiple conditions,a reasonable and simplified dynamic modeling method of added water and contained water is obtained.It is indicated that the mass of added water for a single-hull structure is closely related to the mass of total underwater displacement of the structure.With the increase in the analysis frequency,the mass of added water is characterized by first decreasing rapidly and then decreasing gradually and smoothly.The contained water between the double hulls is distributed to the pressure hull and the light shell based on the ratio of the impedances of the double hulls.The results can basically reflect the acoustic radiation characteristics of the double-hull structure.
文摘3-D geological modeling plays an increasingly important role in Petroleum Geology, Mining Geology and Engineering Geology. The complexity of geological conditions requires different modeling methods in different situations. This paper summarizes the general concept of geological modeling; compares the characteristics of borehole-based modeling, cross-section based modeling and multi- source interactive modeling; analyses key techniques in 3-D geological modeling; and highlights the main difficulties and directions of future studies.
基金Supported by National Natural Science Foundation of China(Grant No.51605058)Chongqing Research Program of Basic Research and Frontier Technology of China(Grant No.cstc2015jcyjBX0088)+2 种基金Fundamental Research Funds for the Central Universities of China(Grant No.106112016CDJCR021226)Six Talent Peaks Project in Jiangsu Province of China(Grant No.2014-ZBZZ-006)"Excellence Plans-Zijin Star" Foundation of Nanjing University of Science and Technology,China(Grant No.2015-zijin-07)
文摘CNC machining systems are inevitably confronted with frequent changes in energy behaviors because they are widely used to perform various machining tasks. It is a challenge to understand and analyze the flexible energy behaviors in CNC machining systems. A method to model flexible energy behaviors in CNC machining systems based on hierarchical objected-oriented Petri net(HOONet) is proposed. The structure of the HOONet is constructed of a high-level model and detail models. The former is used to model operational states for CNC machining systems, and the latter is used to analyze the component models for operational states. The machining parameters having great impacts on energy behaviors in CNC machining systems are declared with the data dictionary in HOONet models. A case study based on a CNC lathe is presented to demonstrate the proposed modeling method. The results show that it is effective for modeling flexible energy behaviors and providing a fine-grained description to quantitatively analyze the energy consumption of CNC machining systems.
基金financially supported by the National Natural Science Foundation of China (No. 42102149)the Fundamental Research Funds for the Central Universities (No. 2462021YXZZ005)。
文摘The relationship between capillary pressure and saturation plays a critical role in the characterization of two-phase flow and transport in aquifers and oil reservoirs. This relationship is usually determined under the static condition, where capillary pressure is the only function of saturation. However,considerable experiments have suggested that the dependence of capillary pressure on desaturation rate is under the dynamic condition. Thus, a more general description of capillary pressure that includes dynamic capillary effect has been approved widely. A comprehensive understanding of the dynamic capillary effect is needed for the investigation of the two-phase flow in porous media by various methods. In general, dynamic capillary effect in porous media can be studied through the laboratory experiment, pore-to macro-scale modeling, and artificial neural network. Here, main principle and research procedures of each method are reviewed in detail. Then, research progress, disadvantages and advantages are discussed, respectively. In addition, upscaling study from pore-to macro-scale are introduced, which explains the difference between laboratory experiment and pore-scale modeling. At last, several future perspectives and recommendations for optimal solution of dynamic capillary effect are presented.
文摘The goal of this review paper is to provide a summary of selected discrete element and hybrid finitediscrete element modeling techniques that have emerged in the field of rock mechanics as simulation tools for fracturing processes in rocks and rock masses. The fundamental principles of each computer code are illustrated with particular emphasis on the approach specifically adopted to simulate fracture nucleation and propagation and to account for the presence of rock mass discontinuities. This description is accompanied by a brief review of application studies focusing on laboratory-scale models of rock failure processes and on the simulation of damage development around underground excavations.
文摘A numerical method was used in order to establish the constitutive relationship of sands under different stress paths, Firstly, based on the numerical method modeling the constitutive law of sands, the elastoplastic constitutive relationship of sand was established for three paths: the constant proportion of principle stress path, the conventional triaxial compression (CTC) path, and the p=constant (TC) path. The yield lines of plastic volumetric strain and plastic generalized shear strain were given. Through visualization, the three dimensional surface of the stress-strain relationship in the whole stress field (p, q) obtained under the three paths was plotted. Also, by comparing the stress-strain surfaces and yield locus of the three stress paths, the differences were found to be obvious, which demonstrates that the influence of the stress paths on constitutive law was not neglected. The numerical modeling method overcame the difficulty of finding an analytical expression for plastic potential. The results simulated the experimental data with an accuracy of 90% on average, so the constitutive model established in this paper provides an effective constitutive equation for this kind of engineering, reflecting the effect of practical stress paths that occur in sands.
基金Projects(40974077,41164004)supported by the National Natural Science Foundation of ChinaProject(2007AA06Z134)supported by the National High Technology Research and Development Program of China+2 种基金Projects(2011GXNSFA018003,0832263)supported by the Natural Science Foundation of Guangxi Province,ChinaProject supported by Program for Excellent Talents in Guangxi Higher Education Institution,ChinaProject supported by the Foundation of Guilin University of Technology,China
文摘The strategies that minimize the overall solution time of multiple linear systems in 3D finite element method (FEM) modeling of direct current (DC) resistivity were discussed. A global stiff matrix is assembled and stored in two parts separately. One part is associated with the volume integral and the other is associated with the subsurface boundary integral. The equivalent multiple linear systems with closer right-hand sides than the original systems were constructed. A recycling Krylov subspace technique was employed to solve the multiple linear systems. The solution of the seed system was used as an initial guess for the subsequent systems. The results of two numerical experiments show that the improved algorithm reduces the iterations and CPU time by almost 50%, compared with the classical preconditioned conjugate gradient method.
基金Supported by the National Natureal Science Foundation of China (6 98730 36 )
文摘This paper describes how to use the Unified Modeling Language (UML) to modeling software processes in medical insurance MIS, and compares UML Modeling method with classic PO(Process Oriented) Modeling method. It indicates that the whole performance of application system model described by UML is much better than the one described by PO.
文摘Elasto-plastic consolidation is one of the classic coupling questions in geomechanics. To solve this problem, an elasto-plastic constitutive model is derived based on the numerical modeling method. The model is applied to Blot's consolidation theory. Incremental governing partial differential equations are established using this method. According to the stress path, the decoupling condition of these equations is discussed. Based on these conditions, an incremental diffusion equation and uncoupling governing equations are presented. The method is then applied to numerical analyses of three examples. The results show that (1) the effect of the stress path should be taken into account in the simulation of the soil consolidation question; (2) this decoupling method can predict the evolvement of pore water pressure; (3) the settlement using cam-clay model is less than that using numerical model because of dilatancy.
文摘In this paper, the method based on uniform design and neural network is proposed to model the complex system. In order to express the system characteristics all round, uniform design method is used to choose the modeling samples and obtain the overall information of the system;for the purpose of modeling the system or its characteristics, the artificial neural network is used to construct the model. Experiment indicates that this method can model the complex system effectively.
文摘To analyze the modeling methods of the dry friction rotor system,a local linearization model of the dry friction damping rotor system was built based on the simplified model of the wave-shaped steel-belt supporting rotor system.In this model,the linear stiffness of damper closed to pre-deformation was defined as the stiffness of damper,the maximum amplitude of the rotor was calculated according to the load and linear rotor,and the damper's parameters were defined on the basis of the energy dissipation parameters.The presented method can reflect the hysteresis characteristics and is easy to calculate.Experimental results demonstrate the accuracy and feasibility of this method.
文摘When there exists anisotropy in underground media elastic parameters of the observed coordinate possibly do not coincide with that of the natural coordinate. According to the theory that the density of potential energy, dissipating energy is independent of the coordinate, the relationship of elastic parameters between two coordinates is derived for two-phase anisotropic media. Then, pseudospectral method to solve wave equations of two-phase anisotropic media is derived. At last, we use this method to simulate wave propagation in two-phase anisotropic media four types of waves are observed in the snapshots, i.e., fast P wave and slow P wave, fast S wave and slow S wave. Shear wave splitting, SV wave cusps and elastic wave reflection and transmission are also observed.
基金Project supported by the National Natural Science Foundation of China(Nos.11971303 and 11871330)。
文摘In this paper,the static output feedback stabilization for large-scale unstable second-order singular systems is investigated.First,the upper bound of all unstable eigenvalues of second-order singular systems is derived.Then,by using the argument principle,a computable stability criterion is proposed to check the stability of secondorder singular systems.Furthermore,by applying model reduction methods to original systems,a static output feedback design algorithm for stabilizing second-order singular systems is presented.A simulation example is provided to illustrate the effectiveness of the design algorithm.
基金Supported by the National Natural Science Foundation of China under Grant Nos 61404151 and 61574153
文摘On the basis of a detailed discussion of the development of total ionizing dose (TID) effect model, a new commercial-model-independent TID modeling approach for partially depleted silicon-on-insulator metal-oxide- semiconductor field effect transistors is developed. An exponential approximation is proposed to simplify the trap charge calculation. Irradiation experiments with 60Co gamma rays for IO and core devices are performed to validate the simulation results. An excellent agreement of measurement with the simulation results is observed.
基金supported by the National Basic Research Program of China("973" Program)(2012CB720000)the National Natural Science Foundation of China(11102020)the Program for New Century Excellent Talents in University and Beijing Higher Education Young Elite Teacher Project
文摘Shape modeling is fundamental to the analysis of dynamic environment and motion around asteroid. Chang'E- 2 successfully made a flyby of Asteroid 4179 Toutatis and obtained plenty of high-resolution images during the mis- sion. In this paper, the modeling method and preliminary model of Asteroid Toutatis are discussed. First, the optical images obtained by Chang'E-2 are analyzed. Terrain and silhouette features in images are described. Then, the modeling method based on previous radar model and preliminary information from optical images is proposed. A preliminary polyhedron model of Asteroid Toutatis is established. Finally, the spherical harmonic coefficients of Asteroid Toutatis based on the polyhedron model are obtained. Some parameters of model are analyzed and compared. Although the model proposed in this paper is only a preliminary model, this work offers a valuable reference for future high-resolution models.
文摘In this study,geochemical anomaly separation was carried out with methods based on the distribution model,which includes probability diagram(MPD),fractal(concentration-area technique),and U-statistic methods.The main objective is to evaluate the efficiency and accuracy of the methods in separation of anomalies on the shear zone gold mineralization.For this purpose,samples were taken from the secondary lithogeochemical environment(stream sediment samples)on the gold mineralization in Saqqez,NW of Iran.Interpretation of the histograms and diagrams showed that the MPD is capable of identifying two phases of mineralization.The fractal method could separate only one phase of change based on the fractal dimension with high concentration areas of the Au element.The spatial analysis showed two mixed subpopulations after U=0 and another subpopulation with very high U values.The MPD analysis followed spatial analysis,which shows the detail of the variations.Six mineralized zones detected from local geochemical exploration results were used for validating the methods mentioned above.The MPD method was able to identify the anomalous areas higher than 90%,whereas the two other methods identified 60%(maximum)of the anomalous areas.The raw data without any estimation for the concentration was used by the MPD method using aminimum of calculations to determine the threshold values.Therefore,the MPD method is more robust than the other methods.The spatial analysis identified the detail soft hegeological and mineralization events that were affected in the study area.MPD is recommended as the best,and the spatial U-analysis is the next reliable method to be used.The fractal method could show more detail of the events and variations in the area with asymmetrical grid net and a higher density of sampling or at the detailed exploration stage.
基金Funded by the National Natural Science Foundation of China(No.51378006)the Huoyingdong Foundation of China(No.141076)+1 种基金the Fundamental Research Funds for the Central Universities(No.2242015R30027)the Natural Science Foundation of Jiangsu Province(BK20161421 and BK20140109)
文摘The high-temperature creep behavior of asphalt mixture was investigated based on micromechanical modeling and virtual test by using three-dimensional discrete element method(DEM). A user-defined micromechanical model of asphalt mixture was established after analyzing the irregular shape and gradation of coarse aggregates, the viscoelastic property of asphalt mastic, and the random distribution of air voids within the asphalt mixture. Virtual uniaxial static creep test at 60 ℃ was conducted by using Particle Flow Code in three dimensions(PFC3D) and was validated by laboratory test. Based on virtual creep test, the micromechanical characteristics between aggregates, within asphalt mastic, and between aggregate and asphalt mastic were analyzed for the asphalt mixture. It is proved that the virtual test based on the micromechanical model can efficiently predict the creep deformation of asphalt mixture. And the high-temperature behavior of asphalt mixture was characterized from micromechanical perspective.
基金supported by the 2013 Inje University Research Grant
文摘Experimental stroke research commonly employs focal cerebral ischemic rat models (Bederson et al., 1986a; Longa et al., 1989). In human patients, ischemic stroke typically results from thrombotic or embolic occlusion of a major cerebral artery, usually the mid- dle cerebral artery (MCA). Experimental focal cerebral ischemia models have been employed to mimic human stroke (Durukan and Tatlisumak, 2007). Rodent models of focal cerebral ischemia that do not require craniotomy have been developed using intraluminal suture occlusion of the MCA (MCA occlusion, MCAO) (Rosamond et al., 2008). Furthermore, mouse MCAO models have been wide- ly used and extended to genetic studies of cell death or recovery mechanisms (Liu and McCullough, 2011). Genetically engineered mouse stroke models are particularly useful for evaluation of isch- emic pathophysiology and the design of new prophylactic, neuro- protective, and therapeutic agents and interventions (Armstead et al., 2010). During the past two decades, MCAO surgical techniques have been developed that do not reveal surgical techniques for mouse MCAO model engineering. Therefore, we compared MCAO surgical methods in rats and mice.