[Objective] The aim of this work was to identify molecular weight (MW) distribution and antioxidant activity of fish skin col agen hydrolysates. [Method] The MW distribution of hydrolysates was determined using both...[Objective] The aim of this work was to identify molecular weight (MW) distribution and antioxidant activity of fish skin col agen hydrolysates. [Method] The MW distribution of hydrolysates was determined using both size exclusion chromatography and matrix-assisted laser desorption ionization time-of-flight mass spec-trometry (MALDI-TOF-MS). Fish skin were treated by the alkaline protease 2709. [Result] The optional conditions for hyerolysis were time 3 h, temperature 55 ℃, pH 10.0, substrate concentration 80 g/L and E/S 4%. The results of both methods indi-cated that the molecular weight of col agen hydrolysates was from 400 to 1 800 Da, and the peptides’ molecular weight was less than 1 400 Da mostly. The reducing power and antioxidant/radical scavenging activity [1, 1-diphenyl-2-picryl-hydrazyl (DPPH) free radical scavenging activity] were determined. [Conclusion] The results reveal that the fishskin hydrolysate is a potential source of antioxidants.展开更多
Process parameters on enzymatic hydrolysis and molecular weight (MW) distribution of collagen hydrolysates from Gadus morrhua skin were investigated. The optimal process parameters were obtained by the single-factor...Process parameters on enzymatic hydrolysis and molecular weight (MW) distribution of collagen hydrolysates from Gadus morrhua skin were investigated. The optimal process parameters were obtained by the single-factor and orthogonal experiments. The molecular weight distribution of hydrolysates was determined using both Sephadex G25 partition and high speed liquid chromatography electricity spray mass spectrum (HPLC-ESI-MS). Collagen hydrolysates were first gained by an alkaline protease "alcalase" for 3 h at temperature (50~C), pH (10.0), substrate concentration (75 g L-~), and E/S (3%). The molecular weight distribution of collagen hydrolysates ranged from 300 to 1 500 Da, and most of peptides were under 1 200 Da. Sephadex G25 partition and HPLC-ESI-MS should be successfully employed to determine the molecular weight distribution of collagen hydrolysates.展开更多
Neodymium chloride isopropanol complex (NdCl3.3'prOH) activated by modified methylaluminoxane (MMAO) was examined in isoprene polymerization in hexane, with regards to Nd compounds, aluminum (Al) compounds, [Al...Neodymium chloride isopropanol complex (NdCl3.3'prOH) activated by modified methylaluminoxane (MMAO) was examined in isoprene polymerization in hexane, with regards to Nd compounds, aluminum (Al) compounds, [Al]/[Nd] ratio, polymerization temperature and time. NdCl3'3iprOH exhibited high activity producing polymers feasting high cis-l,4 stereospecificity (〉 96%), very high molecular weight (Mn 〉 1.0 × 10^6) and fairly narrow molecular weight distribution (MWD, Mw/Mn 〈 2.0) simultaneously. In comparison, neodymium isopropoxide also showed high activity providing polymers with narrow MWD (Mw/Mn = 2.07), but somewhat low cis-1,4 content (ca. 92%), while neodymium chloride had no activity under present polymerization conditions. The Al compounds affected the polymer yield in the order of Al(i-Bu)3 〉 MMAO 〉 Al(i-Bu)2H. MMAO as cocatalyst afforded polyisoprene with high Mn over 1.0 × 10^6, whereas as stronger chain transfer agent than MMAO, AI(i-Bu)3 and AI(i-Bu)EH yielded polymers with low Mn (1.0 × 10^5-8.0 × 10^5). NdCl3·3'PrOH/MMAO catalyst showed a fairly good catalytic activity even at relatively low [Al]/[Nd] ratio of 30, and the produced polymer remained high cis-1,4 content of 95.8% along with high Mn over 1.0× 10^6 even at elevated temperatures up to 70℃. The polymerization rate is of the first order with respect to the concentration of isoprene. The mechanism of active species formation was discussed preliminarily.展开更多
The effect of chemical composition of highly active supported Ziegler-Natta catalysts with controlled morphology on the MWD of PE has been studied.It was shown the variation of transition metal compound in the MgCl_2-...The effect of chemical composition of highly active supported Ziegler-Natta catalysts with controlled morphology on the MWD of PE has been studied.It was shown the variation of transition metal compound in the MgCl_2-supported catalyst affect of MWD of PE produced in broad range:Vanadium-magnesium catalyst(VMC)produce PE with broad and bimodal MWD(M_w/M_n=14-21).MWD of PE,produced over titanium-magnesium catalyst(TMC)is narrow or medium depending on Ti content in the catalyst(M_w/M_n=3.1-4.8).The oxidation ...展开更多
The relationship between sequence distributions and molecular weight distributions of S-SBR, obtained from styrene and butadiene anionic copolymerization at various conversions with THF/Li^+ as an initiator has been s...The relationship between sequence distributions and molecular weight distributions of S-SBR, obtained from styrene and butadiene anionic copolymerization at various conversions with THF/Li^+ as an initiator has been studied by ^(13)C-NMR,GPC. The results showed that the molecular weight distributions of the copolymer couldbe correlated sophisticatedly to the binary sequcne distributions or the monomer unit distributions of the copolymer in a corrected Poisson's distribution from.展开更多
A starved feed reactor (SFR) is a semi-batch polymerization reactor where initiator and monomer are fed slowly into a fixed amount of solvent. The polymerization is carried out isothermally at elevated temperatures. T...A starved feed reactor (SFR) is a semi-batch polymerization reactor where initiator and monomer are fed slowly into a fixed amount of solvent. The polymerization is carried out isothermally at elevated temperatures. The added initiator decomposes instantaneously and the added monomer polymerizes immediately. The molecular weight (MW) and molecular weight distribution (MWD) of the product polymer can be effectively controlled by the feed ratio of monomer to initiator. This paper presents a study on the MWD of styrene polymerization in a SFR. The MWD model parameters are regressed with experimental data. Although the solids fraction in the SFR is high (higher than 50%), viscosity is not too high and the 'gel effect' is weak due to the low molecular weight of the products. It is found that the termination rate constant is a power function of molecular weight, radicals terminate via 100% combination, the thermal initiation can be neglected even at high reaction temperature studied. And calculated results indicate that in the SFR, the validity of the long chain assumption becomes doubted. It appears that other alterative assumption should be found for an improved model.展开更多
The lumped time distribution functions were proposed, which can be used for describing the dynamicsystems with two or more than two states of the end of growing polymer chain during chain addition polymerization.Numer...The lumped time distribution functions were proposed, which can be used for describing the dynamicsystems with two or more than two states of the end of growing polymer chain during chain addition polymerization.Numerical analysis of the lumped time distribution functions was carried out. The method for calculating molecularweight distribution of polymer in the stable free radical polymerization and more general cases was developed basedon the lumped time distribution functions.展开更多
In last paper, the average molecular weight of a control cotton fabric and cotton fabrics treated with the polycarboxylic acid at different pH were measured. The result doesnt support the hypothesis that the pH of the...In last paper, the average molecular weight of a control cotton fabric and cotton fabrics treated with the polycarboxylic acid at different pH were measured. The result doesnt support the hypothesis that the pH of the finishing bath can affect the depolymerization of the finished cotton fabric. In order to understand more about it, the molecular weight distributions of the control and finished cotton fabrics were measured and the reason was fund. From the ratio and the molecular weight of the low molecular part one can see that the pH of the finishing bath can affect the depolymerization of the finished cotton fabrics. The phenomenon that the average molecular weights of the cotton fabric crosslinked with BTCA at different pH are almost same is attributed to that the crosslinks are not broken completely when treated with 0.5 M NaOH solution at 50℃ for 144 h.展开更多
LDPE (low-density polyethylene) photo degraded through various accelerated weathering tests has the molecular weight distribution curves unlike that through outdoor exposure. The authors therefore developed new weat...LDPE (low-density polyethylene) photo degraded through various accelerated weathering tests has the molecular weight distribution curves unlike that through outdoor exposure. The authors therefore developed new weathering test condition based on the existing accelerated weathering test using a xenon arc lamp. Samples of LDPE were photo degraded using various accelerated weathering test conditions and outdoor exposure. The physical properties and chemical structures of the photo degraded samples were studied through a tensile test, infrared spectroscopy, and gel chromatography. The authors found that the molecular weight distribution curve of a sample photo degraded using a xenon lamp at a higher BPT (black panel temperature) (73 ~C) was more similar to that of an outdoor-exposed sample than that of a sample photo degraded at the standard BPT (63 ~C). It is considered that higher temperature accelerates radical recombination, consequently recreating molecular enlargement similar to the outdoor-exposed sample. Multiple regression analysis using newly introduced Mp (peak-top molecular weight) and Mw (weight-average molecular weight) as explanatory variables was conducted, which successfully enabled the authors to provide a simple explanation for the decrease in polymer tensile strength.展开更多
Thin-wall injection molded parts have been paid much attention to the lightweight saving from viewpoints of natural resources saving. In the injection molding, skin-core structure can be found in the parts. This skin-...Thin-wall injection molded parts have been paid much attention to the lightweight saving from viewpoints of natural resources saving. In the injection molding, skin-core structure can be found in the parts. This skin-core structure affects the property of completed injection molding parts (bulk property) even if in thin-wall injection molding. However, there is a few research about the relationship between bulk property and internal property distribution in the injection molding specimen. In this study, thin-wall injection molded parts of polypropylene (PP) were prepared by 4 different molecular weight and molecular weight distribution to reveal the relationship between bulk property and property distribution. These characteristics were investigated by using tensile test, fracture toughness characterized by Essential Work of Fracture (EWF) method for bulk property and film tensile test by sliced sample for tensile property distribution. The property distribution test results revealed that the highly bulk property sample had thicker highly mechanical property layer on its surface.展开更多
Polymer dispersity (Đ) or molecular weight distribution (MWD) is a basic but vital parameter for the properties of polymeric materials. Developing new methodologies for controlling polymer MWD is emerging as a researc...Polymer dispersity (Đ) or molecular weight distribution (MWD) is a basic but vital parameter for the properties of polymeric materials. Developing new methodologies for controlling polymer MWD is emerging as a research hotspot. However, the methods to tune polymer MWD in cationic polymerization are still not well explored. Herein, we present a simple method to control the dispersity of poly(isobutyl vinyl ether) (PIBVE) by mixing two different chain transfer agents in batch visible light induced cationic RAFT polymerization. A broad dispersity range (Đ ≈ 1.16—1.80) was successfully achieved while maintaining monomodal MWD. Moreover, chain extension of PIBVE through both cationic polymerization and radical polymerization has been studied, which also provides a method to tune polymer MWD in mechanism transformation polymerization.展开更多
The characteristics of dissolved organic matter(DOM) and bromide ion concentration have a significant influence on the formation of disinfection by-products(DBPs). In order to identify the main DBP precursors, DOM...The characteristics of dissolved organic matter(DOM) and bromide ion concentration have a significant influence on the formation of disinfection by-products(DBPs). In order to identify the main DBP precursors, DOM was divided into five fractions based on molecular weight(MW), trihalomethane formation potential and haloacetic acid formation potential were determined for fractions, and the change in contents of different fractions and total DBPs during treatment processes(pre-chlorination, coagulation, sand filtration,disinfection) were studied. Moreover, the relationship between bromide concentration and DBP generation characteristics in processes was also analyzed. The results showed that the main DBP precursors were the fraction with MW 1 k Da and fraction with MW 3-10 k Da, and the DBP's generation ability of lower molecular weight DOM( 10 k Da) was higher than that of higher molecular weight DOM. During different processes,pre-chlorination and disinfection had limited effect on removing organics but could alter the MW distribution, and coagulation and filtration could effectively remove organics with higher MW. For DBPs, trihalomethanes(THMs) were mainly generated in pre-chlorination and disinfection, while haloacetic acids(HAAs) were mostly generated during pre-chlorination; coagulation and sand filtration had little effect on THMs but resulted in a slight removal of HAAs. In addition, the results of ANOVA tests suggested that molecular sizes and treatment processes have significant influence on DBP formation. With increasing bromide concentration, the brominated DBPs significantly increased, but the bromine incorporation factor in the processes was basically consistent at each concentration.展开更多
The molecular weight distributions were estimated for carbon fiber polymer precursors such as poly(acrylonitrile-co-itaconic acid) synthesized by semi batch solution polymerization in mixed solvents media with the a...The molecular weight distributions were estimated for carbon fiber polymer precursors such as poly(acrylonitrile-co-itaconic acid) synthesized by semi batch solution polymerization in mixed solvents media with the azonitrile compounds as initiator under the different ratios of solvent and non solvent from 0.75 to 2.5 in weight. The copolymer was characterized by using Fourier transform infrared spectroscopy (FTIR) and nuclear magnetic resonance (1H-NMR) analyses. The molecular weight distributions were evaluated by Mv/Mn ratios estimated from viscosity and osmotic measurements, and Mw/Mn estimated from size exclusion chromatography. The molecular weight distributions of these polymers as determined from M, JMn and Mw/Mn are 2.9 to 3,2 and 2.0 to 2.5 respectively. The molecular distributions were close to a narrow distribution of 2.0 when the solvent/non-solvent ratio was varied between 1.4 and 2.0. Intrinsic viscosity [η] as a function of molecular weight of poly(acrylonitrile-co-itaconic acid) was evaluated by means of low angle laser light scattering with size exclusion chromatography (SEC-LALLS) and viscometry with SEC (SEC-VISCO). The relationship between [η] and Mw for poly(acrylonitrile-co-itaconic acid) in DMF at 50℃ was [q] = 1.1×10-5 Mw0.79, where [η] is obtained in dL/g.展开更多
Molecular weight distribution(MWD)is fundamental for polymer analysis,which influences many important properties of polymeric materials.In this work,we demonstrate the development of a computer-aided droplet-flow syst...Molecular weight distribution(MWD)is fundamental for polymer analysis,which influences many important properties of polymeric materials.In this work,we demonstrate the development of a computer-aided droplet-flow system that combines photo-mediated reversible-deactivation radical polymerization(RDRP)and chain transfer agent(CTA)diffusion strategy to enable facile MWD control for the first time.Synthetic advantages of this photo-flow polymerization allow controlled chain-growth to yield a variety of polymers of tunable MWDs in a broad range(Ð≈1.1—1.9)with predetermined molecular weights(Mn≈4—30 kDa)and good chain-end fidelity.Notably,the computer-aided platform has streamlined an automatic and high-throughput pathway to prepare polymer libraries of tunable MWDs.For copolymers,chemical compositions could be readily regulated besides MWDs with the droplet-flow platform.We believe that this work should be attractive for polymer engineering,and informative to create more flow polymerization techniques toward on-demand control of diverse polymer characters.展开更多
[ Objective ] This study aimed to provide basic data for studying the relationship between structure and property of cellulose microspheres by measuring molecular weight of cellulose and cellulose microspheres with vi...[ Objective ] This study aimed to provide basic data for studying the relationship between structure and property of cellulose microspheres by measuring molecular weight of cellulose and cellulose microspheres with viscosity method and gel permeation chromatography (GPC) method. [ Method] In viscosity method, cadmium ethylenediamine was used as the solvent, intrinsic viscosity η of the solution was determined at 25 ℃ by using a Ubbelohde viscometer, to calculate the molecular weight of cellulose; in GPC method, 8% LiC1 / N, N-dimethylacetamide (LiC1/DMAc) was used as the solvent and 0.5% LiC1/DMAc was used as the mobile phase to determine the relative molecular weight and distribution of cellulose and cellulose microspheres. In addition, the determination results were analyzed to compare these two methods. [ Result ] Viscosity-average molecular weight Mr/ of cellulose and cellulose microspheres determined with viscosity method were 224,532 and 16,686, respectively; weight-average molecular weight Mw of cellulose and cellulose microspheres determined with GPC method were 284,196 and 22,345, respectively. [ Conclusion] The determination results of (;PC method are relatively close to the actual value and could truly reflect the characteristics of molecular weialat distribution of eellulose and cellulose mierosr, heres.展开更多
A numerical method is developed to compute the development of molecular weight distribution (MWD) curves of linear polymers undergoing chain scission. The method can be applied to complex chain scission kinetics and...A numerical method is developed to compute the development of molecular weight distribution (MWD) curves of linear polymers undergoing chain scission. The method can be applied to complex chain scission kinetics and for arbitrarily complex initial MWD curves. Our method is based on the method of lines (MoL). Different from the existing numerical scheme, we propose the use of logarithmically spaced points. This development ensures the accuracy of the computed MWD curves at low molecular weights, and it does not require a very fine discretization to produce an accurate result.展开更多
In this study, the relationship between skin structure and shear strength distribution of thin-wall injection molded polypropylene (PP) molded at different molecular weight and molecular distribution was investigated....In this study, the relationship between skin structure and shear strength distribution of thin-wall injection molded polypropylene (PP) molded at different molecular weight and molecular distribution was investigated. Skin-core structure, cross-sectional morphology, crystallinity, crystal orientation, crystal morphology and molecular orientation were evaluated by using polarized optical microscope, differential scanning calorimeter, X-ray spectroscopic analyzer and laser Raman spectroscopy, respectively, while the shear strength distribution was investigated using a micro cutting method called SAICAS (Surface And Interfacial Cutting Analysis System). The results indicated that the difference of molecular weight and molecular weight distribution showed own skin layer thickness. Especially, high molecular weight sample showed thicker layer of the lamellar orientation and molecular orientation than low molecular weight sample. In addition, wide molecular distribution sample showed large crystal orientation layer.展开更多
Extracellular polymeric substances(EPS) are organic metabolic compounds excreted by microorganisms. They largely impact microbial aggregate structures and functions.Extracellular polysaccharides(EP) in EPS are res...Extracellular polymeric substances(EPS) are organic metabolic compounds excreted by microorganisms. They largely impact microbial aggregate structures and functions.Extracellular polysaccharides(EP) in EPS are responsible for the formation of microbial aggregates. In this work, we successfully separated and characterized EP from EPS of the bacterium Bacillus megaterium TF10. Extraction of EP from EPS was optimized using Sevag's reagent. Chemical characteristics, functional groups, and molecular weight(MW) distribution of EP were compared with the harvested EPS and soluble microbial products(SMP). We found that the polymers of lower MW and free proteins were successfully removed by Sevag's reagent. The higher MW components of EPS were predominantly polysaccharides,while the polymers of lower MW tended to secrete to the supernatant and were described as SMP. A part of the proteins in the EP was polysaccharide-bonded. Our results can be further used in elucidating the complex flocculation mechanisms in which EP play a major role.展开更多
The viscoelastic behavior of isotactic polypropylene with ultra-high molecular weight(UHPPH) and broad molecular weight distribution(MWD), produced in the presence of Ziegler-Natta catalyst, was investigated by means ...The viscoelastic behavior of isotactic polypropylene with ultra-high molecular weight(UHPPH) and broad molecular weight distribution(MWD), produced in the presence of Ziegler-Natta catalyst, was investigated by means of oscillatory rheometry at 180 and 200 ℃, whose loss modulus(G″) plots at 180 and 200 ℃ versus the natural logarithm of angular frequency(ω) present a pronounced maximum at 34.35 and 69.21 rad/s, respectively, and do not show a maximum peak at 0.01-100 rad/s for Ziegler-Natta catalyzing ethylene-propylene random copolymerization(PPR) with a conventional molecular weight and broad MWD. The fact indicates that the high molecular weight is responsible for a maximum peak of G″(ω) vs. lnω curves for UHPPH. This makes it possible to determine the plateau modulus(G 0_N) of UHPPH from a certain experimental temperature G″(ω) curve directly. For UHPPH, the G 0_N determined to be 4.28×10 5 and 3.62×10 5 Pa at 180 and 200 ℃, respectively, decreases with the increase of temperature and is independent of the molecular weight, which directly confirms reputation theoretical prediction that the G 0_N has no relation to the molecular weight.展开更多
Hydroxypropyl methylcellulose acetate succinate(HPMCAS)was successfully synthesized from the reaction of hydroxypropyl methylcellulose with succinic anhydride and acetic anhydride in an acetone/pyridine system.Product...Hydroxypropyl methylcellulose acetate succinate(HPMCAS)was successfully synthesized from the reaction of hydroxypropyl methylcellulose with succinic anhydride and acetic anhydride in an acetone/pyridine system.Products with different contents of succinyl groups and acetyl groups were prepared by varying the reaction conditions.In the acetone/pyridine system,equipment corrosion does not occur,the product is easy to wash,and the solvent can be recycled.By varying the concentration of the esterifying agents,products with different ratios of acidic groups can be obtained.Under the optimum conditions,the obtained products had an average molecular weight between 5.39×104 and 5.41×104,a number average molecular weight from 4.97×104 to 5.13×104,and a polydispersity index from 1.05 to 1.08.The products dissolved well in acetone and methanol,and formed films on a mold.The films had good pH-sensitivity,tensile strength,and thermal stability.The formed films could dissolve in solutions with a pH value ranging from 5.4 to 6.4,and are therefore suitable for use as an enteric coating for pharmaceutical dosage forms.展开更多
基金Supported by Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi,China(2010127)~~
文摘[Objective] The aim of this work was to identify molecular weight (MW) distribution and antioxidant activity of fish skin col agen hydrolysates. [Method] The MW distribution of hydrolysates was determined using both size exclusion chromatography and matrix-assisted laser desorption ionization time-of-flight mass spec-trometry (MALDI-TOF-MS). Fish skin were treated by the alkaline protease 2709. [Result] The optional conditions for hyerolysis were time 3 h, temperature 55 ℃, pH 10.0, substrate concentration 80 g/L and E/S 4%. The results of both methods indi-cated that the molecular weight of col agen hydrolysates was from 400 to 1 800 Da, and the peptides’ molecular weight was less than 1 400 Da mostly. The reducing power and antioxidant/radical scavenging activity [1, 1-diphenyl-2-picryl-hydrazyl (DPPH) free radical scavenging activity] were determined. [Conclusion] The results reveal that the fishskin hydrolysate is a potential source of antioxidants.
基金supported by Tianjin Committee of Science & Technology, China (06YFGZSH02300)
文摘Process parameters on enzymatic hydrolysis and molecular weight (MW) distribution of collagen hydrolysates from Gadus morrhua skin were investigated. The optimal process parameters were obtained by the single-factor and orthogonal experiments. The molecular weight distribution of hydrolysates was determined using both Sephadex G25 partition and high speed liquid chromatography electricity spray mass spectrum (HPLC-ESI-MS). Collagen hydrolysates were first gained by an alkaline protease "alcalase" for 3 h at temperature (50~C), pH (10.0), substrate concentration (75 g L-~), and E/S (3%). The molecular weight distribution of collagen hydrolysates ranged from 300 to 1 500 Da, and most of peptides were under 1 200 Da. Sephadex G25 partition and HPLC-ESI-MS should be successfully employed to determine the molecular weight distribution of collagen hydrolysates.
基金supported by the Administration of Science and Technology of Jilin Province,China (No.200505254)
文摘Neodymium chloride isopropanol complex (NdCl3.3'prOH) activated by modified methylaluminoxane (MMAO) was examined in isoprene polymerization in hexane, with regards to Nd compounds, aluminum (Al) compounds, [Al]/[Nd] ratio, polymerization temperature and time. NdCl3'3iprOH exhibited high activity producing polymers feasting high cis-l,4 stereospecificity (〉 96%), very high molecular weight (Mn 〉 1.0 × 10^6) and fairly narrow molecular weight distribution (MWD, Mw/Mn 〈 2.0) simultaneously. In comparison, neodymium isopropoxide also showed high activity providing polymers with narrow MWD (Mw/Mn = 2.07), but somewhat low cis-1,4 content (ca. 92%), while neodymium chloride had no activity under present polymerization conditions. The Al compounds affected the polymer yield in the order of Al(i-Bu)3 〉 MMAO 〉 Al(i-Bu)2H. MMAO as cocatalyst afforded polyisoprene with high Mn over 1.0 × 10^6, whereas as stronger chain transfer agent than MMAO, AI(i-Bu)3 and AI(i-Bu)EH yielded polymers with low Mn (1.0 × 10^5-8.0 × 10^5). NdCl3·3'PrOH/MMAO catalyst showed a fairly good catalytic activity even at relatively low [Al]/[Nd] ratio of 30, and the produced polymer remained high cis-1,4 content of 95.8% along with high Mn over 1.0× 10^6 even at elevated temperatures up to 70℃. The polymerization rate is of the first order with respect to the concentration of isoprene. The mechanism of active species formation was discussed preliminarily.
文摘The effect of chemical composition of highly active supported Ziegler-Natta catalysts with controlled morphology on the MWD of PE has been studied.It was shown the variation of transition metal compound in the MgCl_2-supported catalyst affect of MWD of PE produced in broad range:Vanadium-magnesium catalyst(VMC)produce PE with broad and bimodal MWD(M_w/M_n=14-21).MWD of PE,produced over titanium-magnesium catalyst(TMC)is narrow or medium depending on Ti content in the catalyst(M_w/M_n=3.1-4.8).The oxidation ...
文摘The relationship between sequence distributions and molecular weight distributions of S-SBR, obtained from styrene and butadiene anionic copolymerization at various conversions with THF/Li^+ as an initiator has been studied by ^(13)C-NMR,GPC. The results showed that the molecular weight distributions of the copolymer couldbe correlated sophisticatedly to the binary sequcne distributions or the monomer unit distributions of the copolymer in a corrected Poisson's distribution from.
基金Supported by the State Key Polymerization Reaction Engineering Laboratory of Zhejiang University.
文摘A starved feed reactor (SFR) is a semi-batch polymerization reactor where initiator and monomer are fed slowly into a fixed amount of solvent. The polymerization is carried out isothermally at elevated temperatures. The added initiator decomposes instantaneously and the added monomer polymerizes immediately. The molecular weight (MW) and molecular weight distribution (MWD) of the product polymer can be effectively controlled by the feed ratio of monomer to initiator. This paper presents a study on the MWD of styrene polymerization in a SFR. The MWD model parameters are regressed with experimental data. Although the solids fraction in the SFR is high (higher than 50%), viscosity is not too high and the 'gel effect' is weak due to the low molecular weight of the products. It is found that the termination rate constant is a power function of molecular weight, radicals terminate via 100% combination, the thermal initiation can be neglected even at high reaction temperature studied. And calculated results indicate that in the SFR, the validity of the long chain assumption becomes doubted. It appears that other alterative assumption should be found for an improved model.
文摘The lumped time distribution functions were proposed, which can be used for describing the dynamicsystems with two or more than two states of the end of growing polymer chain during chain addition polymerization.Numerical analysis of the lumped time distribution functions was carried out. The method for calculating molecularweight distribution of polymer in the stable free radical polymerization and more general cases was developed basedon the lumped time distribution functions.
基金The Project Sponsored by SRF for ROCS,SEM and EYTP of MOE
文摘In last paper, the average molecular weight of a control cotton fabric and cotton fabrics treated with the polycarboxylic acid at different pH were measured. The result doesnt support the hypothesis that the pH of the finishing bath can affect the depolymerization of the finished cotton fabric. In order to understand more about it, the molecular weight distributions of the control and finished cotton fabrics were measured and the reason was fund. From the ratio and the molecular weight of the low molecular part one can see that the pH of the finishing bath can affect the depolymerization of the finished cotton fabrics. The phenomenon that the average molecular weights of the cotton fabric crosslinked with BTCA at different pH are almost same is attributed to that the crosslinks are not broken completely when treated with 0.5 M NaOH solution at 50℃ for 144 h.
文摘LDPE (low-density polyethylene) photo degraded through various accelerated weathering tests has the molecular weight distribution curves unlike that through outdoor exposure. The authors therefore developed new weathering test condition based on the existing accelerated weathering test using a xenon arc lamp. Samples of LDPE were photo degraded using various accelerated weathering test conditions and outdoor exposure. The physical properties and chemical structures of the photo degraded samples were studied through a tensile test, infrared spectroscopy, and gel chromatography. The authors found that the molecular weight distribution curve of a sample photo degraded using a xenon lamp at a higher BPT (black panel temperature) (73 ~C) was more similar to that of an outdoor-exposed sample than that of a sample photo degraded at the standard BPT (63 ~C). It is considered that higher temperature accelerates radical recombination, consequently recreating molecular enlargement similar to the outdoor-exposed sample. Multiple regression analysis using newly introduced Mp (peak-top molecular weight) and Mw (weight-average molecular weight) as explanatory variables was conducted, which successfully enabled the authors to provide a simple explanation for the decrease in polymer tensile strength.
文摘Thin-wall injection molded parts have been paid much attention to the lightweight saving from viewpoints of natural resources saving. In the injection molding, skin-core structure can be found in the parts. This skin-core structure affects the property of completed injection molding parts (bulk property) even if in thin-wall injection molding. However, there is a few research about the relationship between bulk property and internal property distribution in the injection molding specimen. In this study, thin-wall injection molded parts of polypropylene (PP) were prepared by 4 different molecular weight and molecular weight distribution to reveal the relationship between bulk property and property distribution. These characteristics were investigated by using tensile test, fracture toughness characterized by Essential Work of Fracture (EWF) method for bulk property and film tensile test by sliced sample for tensile property distribution. The property distribution test results revealed that the highly bulk property sample had thicker highly mechanical property layer on its surface.
基金supported by the National Natural Science Foundation of China(No.22101196)the China Postdoctoral Science Foundation(No.2021M692348).
文摘Polymer dispersity (Đ) or molecular weight distribution (MWD) is a basic but vital parameter for the properties of polymeric materials. Developing new methodologies for controlling polymer MWD is emerging as a research hotspot. However, the methods to tune polymer MWD in cationic polymerization are still not well explored. Herein, we present a simple method to control the dispersity of poly(isobutyl vinyl ether) (PIBVE) by mixing two different chain transfer agents in batch visible light induced cationic RAFT polymerization. A broad dispersity range (Đ ≈ 1.16—1.80) was successfully achieved while maintaining monomodal MWD. Moreover, chain extension of PIBVE through both cationic polymerization and radical polymerization has been studied, which also provides a method to tune polymer MWD in mechanism transformation polymerization.
基金supported by the National Key Research and Development Program of China (No. 2016YFC0401108)
文摘The characteristics of dissolved organic matter(DOM) and bromide ion concentration have a significant influence on the formation of disinfection by-products(DBPs). In order to identify the main DBP precursors, DOM was divided into five fractions based on molecular weight(MW), trihalomethane formation potential and haloacetic acid formation potential were determined for fractions, and the change in contents of different fractions and total DBPs during treatment processes(pre-chlorination, coagulation, sand filtration,disinfection) were studied. Moreover, the relationship between bromide concentration and DBP generation characteristics in processes was also analyzed. The results showed that the main DBP precursors were the fraction with MW 1 k Da and fraction with MW 3-10 k Da, and the DBP's generation ability of lower molecular weight DOM( 10 k Da) was higher than that of higher molecular weight DOM. During different processes,pre-chlorination and disinfection had limited effect on removing organics but could alter the MW distribution, and coagulation and filtration could effectively remove organics with higher MW. For DBPs, trihalomethanes(THMs) were mainly generated in pre-chlorination and disinfection, while haloacetic acids(HAAs) were mostly generated during pre-chlorination; coagulation and sand filtration had little effect on THMs but resulted in a slight removal of HAAs. In addition, the results of ANOVA tests suggested that molecular sizes and treatment processes have significant influence on DBP formation. With increasing bromide concentration, the brominated DBPs significantly increased, but the bromine incorporation factor in the processes was basically consistent at each concentration.
基金financially supported by the Council of Scientific and Industrial Research,New Delhi under Supra Institutional Project(SIP-IFCAP-04)
文摘The molecular weight distributions were estimated for carbon fiber polymer precursors such as poly(acrylonitrile-co-itaconic acid) synthesized by semi batch solution polymerization in mixed solvents media with the azonitrile compounds as initiator under the different ratios of solvent and non solvent from 0.75 to 2.5 in weight. The copolymer was characterized by using Fourier transform infrared spectroscopy (FTIR) and nuclear magnetic resonance (1H-NMR) analyses. The molecular weight distributions were evaluated by Mv/Mn ratios estimated from viscosity and osmotic measurements, and Mw/Mn estimated from size exclusion chromatography. The molecular weight distributions of these polymers as determined from M, JMn and Mw/Mn are 2.9 to 3,2 and 2.0 to 2.5 respectively. The molecular distributions were close to a narrow distribution of 2.0 when the solvent/non-solvent ratio was varied between 1.4 and 2.0. Intrinsic viscosity [η] as a function of molecular weight of poly(acrylonitrile-co-itaconic acid) was evaluated by means of low angle laser light scattering with size exclusion chromatography (SEC-LALLS) and viscometry with SEC (SEC-VISCO). The relationship between [η] and Mw for poly(acrylonitrile-co-itaconic acid) in DMF at 50℃ was [q] = 1.1×10-5 Mw0.79, where [η] is obtained in dL/g.
基金This research was financially supported by Science and Technology Commission of Shanghai Municipality(STCSM)and the Shanghai Pilot Program for Basic Research--Fudan University 21TQ1400100(No.21TQ007)NSFC(No.21971044)State Key Laboratory of Molecular Engineering of Polymers.
文摘Molecular weight distribution(MWD)is fundamental for polymer analysis,which influences many important properties of polymeric materials.In this work,we demonstrate the development of a computer-aided droplet-flow system that combines photo-mediated reversible-deactivation radical polymerization(RDRP)and chain transfer agent(CTA)diffusion strategy to enable facile MWD control for the first time.Synthetic advantages of this photo-flow polymerization allow controlled chain-growth to yield a variety of polymers of tunable MWDs in a broad range(Ð≈1.1—1.9)with predetermined molecular weights(Mn≈4—30 kDa)and good chain-end fidelity.Notably,the computer-aided platform has streamlined an automatic and high-throughput pathway to prepare polymer libraries of tunable MWDs.For copolymers,chemical compositions could be readily regulated besides MWDs with the droplet-flow platform.We believe that this work should be attractive for polymer engineering,and informative to create more flow polymerization techniques toward on-demand control of diverse polymer characters.
基金Supported by Natural Science Foundation of Guangxi(0991024Z)
文摘[ Objective ] This study aimed to provide basic data for studying the relationship between structure and property of cellulose microspheres by measuring molecular weight of cellulose and cellulose microspheres with viscosity method and gel permeation chromatography (GPC) method. [ Method] In viscosity method, cadmium ethylenediamine was used as the solvent, intrinsic viscosity η of the solution was determined at 25 ℃ by using a Ubbelohde viscometer, to calculate the molecular weight of cellulose; in GPC method, 8% LiC1 / N, N-dimethylacetamide (LiC1/DMAc) was used as the solvent and 0.5% LiC1/DMAc was used as the mobile phase to determine the relative molecular weight and distribution of cellulose and cellulose microspheres. In addition, the determination results were analyzed to compare these two methods. [ Result ] Viscosity-average molecular weight Mr/ of cellulose and cellulose microspheres determined with viscosity method were 224,532 and 16,686, respectively; weight-average molecular weight Mw of cellulose and cellulose microspheres determined with GPC method were 284,196 and 22,345, respectively. [ Conclusion] The determination results of (;PC method are relatively close to the actual value and could truly reflect the characteristics of molecular weialat distribution of eellulose and cellulose mierosr, heres.
基金financially supported by the National Natural Science Foundation of China (No. 21074112)the Natural Science Foundation of Jiangsu Province (No. BK2012185)
文摘A numerical method is developed to compute the development of molecular weight distribution (MWD) curves of linear polymers undergoing chain scission. The method can be applied to complex chain scission kinetics and for arbitrarily complex initial MWD curves. Our method is based on the method of lines (MoL). Different from the existing numerical scheme, we propose the use of logarithmically spaced points. This development ensures the accuracy of the computed MWD curves at low molecular weights, and it does not require a very fine discretization to produce an accurate result.
文摘In this study, the relationship between skin structure and shear strength distribution of thin-wall injection molded polypropylene (PP) molded at different molecular weight and molecular distribution was investigated. Skin-core structure, cross-sectional morphology, crystallinity, crystal orientation, crystal morphology and molecular orientation were evaluated by using polarized optical microscope, differential scanning calorimeter, X-ray spectroscopic analyzer and laser Raman spectroscopy, respectively, while the shear strength distribution was investigated using a micro cutting method called SAICAS (Surface And Interfacial Cutting Analysis System). The results indicated that the difference of molecular weight and molecular weight distribution showed own skin layer thickness. Especially, high molecular weight sample showed thicker layer of the lamellar orientation and molecular orientation than low molecular weight sample. In addition, wide molecular distribution sample showed large crystal orientation layer.
基金supported by the National Natural Science Foundation of China (No. 21607031)Science and Technology Planning Project of Guangdong Province, China (Nos. 2014A010107023, 2015B020230002, and 2016A010103020)
文摘Extracellular polymeric substances(EPS) are organic metabolic compounds excreted by microorganisms. They largely impact microbial aggregate structures and functions.Extracellular polysaccharides(EP) in EPS are responsible for the formation of microbial aggregates. In this work, we successfully separated and characterized EP from EPS of the bacterium Bacillus megaterium TF10. Extraction of EP from EPS was optimized using Sevag's reagent. Chemical characteristics, functional groups, and molecular weight(MW) distribution of EP were compared with the harvested EPS and soluble microbial products(SMP). We found that the polymers of lower MW and free proteins were successfully removed by Sevag's reagent. The higher MW components of EPS were predominantly polysaccharides,while the polymers of lower MW tended to secrete to the supernatant and were described as SMP. A part of the proteins in the EP was polysaccharide-bonded. Our results can be further used in elucidating the complex flocculation mechanisms in which EP play a major role.
文摘The viscoelastic behavior of isotactic polypropylene with ultra-high molecular weight(UHPPH) and broad molecular weight distribution(MWD), produced in the presence of Ziegler-Natta catalyst, was investigated by means of oscillatory rheometry at 180 and 200 ℃, whose loss modulus(G″) plots at 180 and 200 ℃ versus the natural logarithm of angular frequency(ω) present a pronounced maximum at 34.35 and 69.21 rad/s, respectively, and do not show a maximum peak at 0.01-100 rad/s for Ziegler-Natta catalyzing ethylene-propylene random copolymerization(PPR) with a conventional molecular weight and broad MWD. The fact indicates that the high molecular weight is responsible for a maximum peak of G″(ω) vs. lnω curves for UHPPH. This makes it possible to determine the plateau modulus(G 0_N) of UHPPH from a certain experimental temperature G″(ω) curve directly. For UHPPH, the G 0_N determined to be 4.28×10 5 and 3.62×10 5 Pa at 180 and 200 ℃, respectively, decreases with the increase of temperature and is independent of the molecular weight, which directly confirms reputation theoretical prediction that the G 0_N has no relation to the molecular weight.
基金The authors are grateful for the financial supports of this research from the Science and Technology Program of Guangdong(2019A1515011890)National Key R&D Program of China(2017YFD0601003).
文摘Hydroxypropyl methylcellulose acetate succinate(HPMCAS)was successfully synthesized from the reaction of hydroxypropyl methylcellulose with succinic anhydride and acetic anhydride in an acetone/pyridine system.Products with different contents of succinyl groups and acetyl groups were prepared by varying the reaction conditions.In the acetone/pyridine system,equipment corrosion does not occur,the product is easy to wash,and the solvent can be recycled.By varying the concentration of the esterifying agents,products with different ratios of acidic groups can be obtained.Under the optimum conditions,the obtained products had an average molecular weight between 5.39×104 and 5.41×104,a number average molecular weight from 4.97×104 to 5.13×104,and a polydispersity index from 1.05 to 1.08.The products dissolved well in acetone and methanol,and formed films on a mold.The films had good pH-sensitivity,tensile strength,and thermal stability.The formed films could dissolve in solutions with a pH value ranging from 5.4 to 6.4,and are therefore suitable for use as an enteric coating for pharmaceutical dosage forms.