期刊文献+
共找到2,918篇文章
< 1 2 146 >
每页显示 20 50 100
Application and management of continuous glucose monitoring in diabetic kidney disease
1
作者 Xin-Miao Zhang Quan-Quan Shen 《World Journal of Diabetes》 SCIE 2024年第4期591-597,共7页
Diabetic kidney disease(DKD)is a common complication of diabetes mellitus that contributes to the risk of end-stage kidney disease(ESKD).Wide glycemic var-iations,such as hypoglycemia and hyperglycemia,are broadly fou... Diabetic kidney disease(DKD)is a common complication of diabetes mellitus that contributes to the risk of end-stage kidney disease(ESKD).Wide glycemic var-iations,such as hypoglycemia and hyperglycemia,are broadly found in diabetic patients with DKD and especially ESKD,as a result of impaired renal metabolism.It is essential to monitor glycemia for effective management of DKD.Hemoglobin A1c(HbA1c)has long been considered as the gold standard for monitoring glycemia for>3 months.However,assessment of HbA1c has some bias as it is susceptible to factors such as anemia and liver or kidney dysfunction.Continuous glucose monitoring(CGM)has provided new insights on glycemic assessment and management.CGM directly measures glucose level in interstitial fluid,reports real-time or retrospective glucose concentration,and provides multiple glycemic metrics.It avoids the pitfalls of HbA1c in some contexts,and may serve as a precise alternative to estimation of mean glucose and glycemic variability.Emerging studies have demonstrated the merits of CGM for precise monitoring,which allows fine-tuning of glycemic management in diabetic patients.Therefore,CGM technology has the potential for better glycemic monitoring in DKD patients.More research is needed to explore its application and management in different stages of DKD,including hemodialysis,peritoneal dialysis and kidney transplantation. 展开更多
关键词 Diabetic kidney disease Continuous glucose monitoring Glycemic monitoring HEMODIALYSIS Peritoneal dialysis Kidney transplantation
下载PDF
Continuous glucose monitoring metrics in pregnancy with type 1 diabetes mellitus
2
作者 Mohammad Sadiq Jeeyavudeen Mairi Crosby Joseph M Pappachan 《World Journal of Methodology》 2024年第1期6-17,共12页
Managing diabetes during pregnancy is challenging,given the significant risk it poses for both maternal and foetal health outcomes.While traditional methods involve capillary self-monitoring of blood glucose level mon... Managing diabetes during pregnancy is challenging,given the significant risk it poses for both maternal and foetal health outcomes.While traditional methods involve capillary self-monitoring of blood glucose level monitoring and periodic HbA1c tests,the advent of continuous glucose monitoring(CGM)systems has revolutionized the approach.These devices offer a safe and reliable means of tracking glucose levels in real-time,benefiting both women with diabetes during pregnancy and the healthcare providers.Moreover,CGM systems have shown a low rate of side effects and high feasibility when used in pregnancies complicated by diabetes,especially when paired with continuous subcutaneous insulin infusion pump as hybrid closed loop device.Such a combined approach has been demonstrated to improve overall blood sugar control,lessen the occurrence of preeclampsia and neonatal hypoglycaemia,and minimize the duration of neonatal intensive care unit stays.This paper aims to offer a comprehensive evaluation of CGM metrics specifically tailored for pregnancies impacted by type 1 diabetes mellitus. 展开更多
关键词 Type 1 diabetes mellitus Continuous glucose monitoring PREGNANCY Glycaemic control Continuous glucose monitoring system
下载PDF
Long-term hydrochemical monitoring and geothermometry:understanding groundwater salinization and thermal fluid contamination in Mila’s basin,Northeastern Algeria
3
作者 Yasmina Bouroubi-Ouadfel Adnane Souffi Moulla Abdelkader Khiari 《Acta Geochimica》 EI CAS CSCD 2024年第3期459-477,共19页
The regular hydrochemical monitoring of groundwater in the Mila basin over an extended period has provided valuable insights into the origin of dissolved salts and the hydrogeochemical processes controlling water sali... The regular hydrochemical monitoring of groundwater in the Mila basin over an extended period has provided valuable insights into the origin of dissolved salts and the hydrogeochemical processes controlling water salinization.The data reveals that the shallow Karst aquifer shows an increase in TDS of 162 mg L^(-1) while the ther-mal carbonate aquifer that is also used for drinking water supply exhibits an increase of 178 mg L^(-1).Additionally,significant temperature variations are recorded at the sur-face in the shallow aquifers and the waters are carbo-gaseous.Analysis of dissolved major and minor elements has identified several processes influencing the chemical composition namely:dissolution of evaporitic minerals,reduction of sulphates,congruent and incongruent car-bonates’dissolution,dedolomitization and silicates’weathering.The hydrogeochemical and geothermometric results show a mixing of saline thermal water with recharge water of meteoric origin.Two main geothermalfields have been identified,a partially evolved water reservoir and a water reservoir whosefluid interacts with sulphuric acid(H_(2)S)of magmatic origin.These hot waters that are char-acterized by a strong hydrothermal alteration do ascend through faults and fractures and contribute to the contamination of shallower aquifers.Understanding the geothermometry and the hydrogeochemistry of waters is crucial for managing and protecting the quality of groundwater resources in the Mila basin,in order to ensure sustainable water supply for the region.A conceptual model for groundwater circulation and mineralization acquisition has been established to further enhance under-standing in this regard. 展开更多
关键词 Hydrochemical monitoring HYDROGEOCHEMISTRY SALINIZATION Geothermal reservoir CONTAMINATION Mila’s basin
下载PDF
A Fuzzy Trust Management Mechanism with Dynamic Behavior Monitoring for Wireless Sensor Networks
4
作者 Fu Shiming Zhang Ping Shi Xuehong 《China Communications》 SCIE CSCD 2024年第5期177-189,共13页
Traditional wireless sensor networks(WSNs)are typically deployed in remote and hostile environments for information collection.The wireless communication methods adopted by sensor nodes may make the network highly vul... Traditional wireless sensor networks(WSNs)are typically deployed in remote and hostile environments for information collection.The wireless communication methods adopted by sensor nodes may make the network highly vulnerable to various attacks.Traditional encryption and authentication mechanisms cannot prevent attacks launched by internal malicious nodes.The trust-based security mechanism is usually adopted to solve this problem in WSNs.However,the behavioral evidence used for trust estimation presents some uncertainties due to the open wireless medium and the inexpensive sensor nodes.Moreover,how to efficiently collect behavioral evidences are rarely discussed.To address these issues,in this paper,we present a trust management mechanism based on fuzzy logic and a cloud model.First,a type-II fuzzy logic system is used to preprocess the behavioral evidences and alleviate uncertainty.Then,the cloud model is introduced to estimate the trust values for sensor nodes.Finally,a dynamic behavior monitoring protocol is proposed to provide a balance between energy conservation and safety assurance.Simulation results demonstrate that our trust management mechanism can effectively protect the network from internal malicious attacks while enhancing the energy efficiency of behavior monitoring. 展开更多
关键词 behavior monitoring CLOUD FUZZY TRUST wireless sensor networks
下载PDF
Energy evolution and structural health monitoring of coal under different failure modes:An experimental study
5
作者 Yarong Xue Xueqiu He +4 位作者 Dazhao Song Zhenlei Li Majid Khan Taoping Zhong Fei Yang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第5期917-928,共12页
Structural instability in underground engineering,especially in coal-rock structures,poses significant safety risks.Thus,the development of an accurate monitoring method for the health of coal-rock bodies is crucial.T... Structural instability in underground engineering,especially in coal-rock structures,poses significant safety risks.Thus,the development of an accurate monitoring method for the health of coal-rock bodies is crucial.The focus of this work is on understanding energy evolution patterns in coal-rock bodies under complex conditions by using shear,splitting,and uniaxial compression tests.We examine the changes in energy parameters during various loading stages and the effects of various failure modes,resulting in an innovative energy dissipation-based health evaluation technique for coal.Key results show that coal bodies go through transitions between strain hardening and softening mechanisms during loading,indicated by fluctuations in elastic energy and dissipation energy density.For tensile failure,the energy profile of coal shows a pattern of “high dissipation and low accumulation” before peak stress.On the other hand,shear failure is described by “high accumulation and low dissipation” in energy trends.Different failure modes correlate with an accelerated increase in the dissipation energy before destabilization,and a significant positive correlation is present between the energy dissipation rate and the stress state of the coal samples.A novel mathematical and statistical approach is developed,establishing a dissipation energy anomaly index,W,which categorizes the structural health of coal into different danger levels.This method provides a quantitative standard for early warning systems and is adaptable for monitoring structural health in complex underground engineering environments,contributing to the development of structural health monitoring technology. 展开更多
关键词 energy dissipation structural health monitoring early warning coal-rock mechanics failure mode
下载PDF
Deformation monitoring of long-span railway bridges based on SBAS-InSAR technology
6
作者 Lv Zhou Xinyi Li +4 位作者 Yuanjin Pan Jun Ma Cheng Wang Anping Shi Yukai Chen 《Geodesy and Geodynamics》 EI CSCD 2024年第2期122-132,共11页
The deformation monitoring of long-span railway bridges is significant to ensure the safety of human life and property.The interferometric synthetic aperture radar(In SAR)technology has the advantage of high accuracy ... The deformation monitoring of long-span railway bridges is significant to ensure the safety of human life and property.The interferometric synthetic aperture radar(In SAR)technology has the advantage of high accuracy in bridge deformation monitoring.This study monitored the deformation of the Ganjiang Super Bridge based on the small baseline subsets(SBAS)In SAR technology and Sentinel-1A data.We analyzed the deformation results combined with bridge structure,temperature,and riverbed sediment scouring.The results are as follows:(1)The Ganjiang Super Bridge area is stable overall,with deformation rates ranging from-15.6 mm/yr to 10.7 mm/yr(2)The settlement of the Ganjiang Super Bridge deck gradually increases from the bridge tower toward the main span,which conforms to the typical deformation pattern of a cable-stayed bridge.(3)The sediment scouring from the riverbed cause the serious settlement on the bridge’s east side compared with that on the west side.(4)The bridge deformation negatively correlates with temperature,with a faster settlement at a higher temperature and a slow rebound trend at a lower temperature.The study findings can provide scientific data support for the health monitoring of long-span railway bridges. 展开更多
关键词 SBAS-InSAR Long-span railway bridge Deformation monitoring Bridge structure Time series deformation
下载PDF
Advances in Wireless,Batteryless,Implantable Electronics for Real‑Time,Continuous Physiological Monitoring
7
作者 Hyeonseok Kim Bruno Rigo +2 位作者 Gabriella Wong Yoon Jae Lee Woon‑Hong Yeo 《Nano-Micro Letters》 SCIE EI CSCD 2024年第3期254-302,共49页
This review summarizes recent progress in developing wireless,batteryless,fully implantable biomedical devices for real-time continuous physiological signal monitoring,focusing on advancing human health care.Design co... This review summarizes recent progress in developing wireless,batteryless,fully implantable biomedical devices for real-time continuous physiological signal monitoring,focusing on advancing human health care.Design considerations,such as biological constraints,energy sourcing,and wireless communication,are discussed in achieving the desired performance of the devices and enhanced interface with human tissues.In addition,we review the recent achievements in materials used for developing implantable systems,emphasizing their importance in achieving multi-functionalities,biocompatibility,and hemocompatibility.The wireless,batteryless devices offer minimally invasive device insertion to the body,enabling portable health monitoring and advanced disease diagnosis.Lastly,we summarize the most recent practical applications of advanced implantable devices for human health care,highlighting their potential for immediate commercialization and clinical uses. 展开更多
关键词 Implantable electronics Biomedical systems Batteryless devices Wireless electronics Physiological signal monitoring
下载PDF
Comparative Analysis of ARIMA and LSTM Model-Based Anomaly Detection for Unannotated Structural Health Monitoring Data in an Immersed Tunnel
8
作者 Qing Ai Hao Tian +4 位作者 Hui Wang Qing Lang Xingchun Huang Xinghong Jiang Qiang Jing 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第5期1797-1827,共31页
Structural Health Monitoring(SHM)systems have become a crucial tool for the operational management of long tunnels.For immersed tunnels exposed to both traffic loads and the effects of the marine environment,efficient... Structural Health Monitoring(SHM)systems have become a crucial tool for the operational management of long tunnels.For immersed tunnels exposed to both traffic loads and the effects of the marine environment,efficiently identifying abnormal conditions from the extensive unannotated SHM data presents a significant challenge.This study proposed amodel-based approach for anomaly detection and conducted validation and comparative analysis of two distinct temporal predictive models using SHM data from a real immersed tunnel.Firstly,a dynamic predictive model-based anomaly detectionmethod is proposed,which utilizes a rolling time window for modeling to achieve dynamic prediction.Leveraging the assumption of temporal data similarity,an interval prediction value deviation was employed to determine the abnormality of the data.Subsequently,dynamic predictive models were constructed based on the Autoregressive Integrated Moving Average(ARIMA)and Long Short-Term Memory(LSTM)models.The hyperparameters of these models were optimized and selected using monitoring data from the immersed tunnel,yielding viable static and dynamic predictive models.Finally,the models were applied within the same segment of SHM data,to validate the effectiveness of the anomaly detection approach based on dynamic predictive modeling.A detailed comparative analysis discusses the discrepancies in temporal anomaly detection between the ARIMA-and LSTM-based models.The results demonstrated that the dynamic predictive modelbased anomaly detection approach was effective for dealing with unannotated SHM data.In a comparison between ARIMA and LSTM,it was found that ARIMA demonstrated higher modeling efficiency,rendering it suitable for short-term predictions.In contrast,the LSTM model exhibited greater capacity to capture long-term performance trends and enhanced early warning capabilities,thereby resulting in superior overall performance. 展开更多
关键词 Anomaly detection dynamic predictive model structural health monitoring immersed tunnel LSTM ARIMA
下载PDF
Fiber optic monitoring of an anti-slide pile in a retrogressive landslide
9
作者 Lei Zhang Honghu Zhu +1 位作者 Heming Han Bin Shi 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第1期333-343,共11页
Anti-slide piles are one of the most important reinforcement structures against landslides,and evalu-ating the working conditions is of great significance for landslide mitigation.The widely adopted analytical methods... Anti-slide piles are one of the most important reinforcement structures against landslides,and evalu-ating the working conditions is of great significance for landslide mitigation.The widely adopted analytical methods of pile internal forces include cantilever beam method and elastic foundation beam method.However,due to many assumptions involved in calculation,the analytical models cannot be fully applicable to complex site situations,e.g.landslides with multi-sliding surfaces and pile-soil interface separation as discussed herein.In view of this,the combination of distributed fiber optic sensing(DFOS)and strain-internal force conversion methods was proposed to evaluate the working conditions of an anti-sliding pile in a typical retrogressive landslide in the Three Gorges reservoir area,China.Brillouin optical time domain reflectometry(BOTDR)was utilized to monitor the strain distri-bution along the pile.Next,by analyzing the relative deformation between the pile and its adjacent inclinometer,the pile-soil interface separation was profiled.Finally,the internal forces of the anti-slide pile were derived based on the strain-internal force conversion method.According to the ratio of calculated internal forces to the design values,the working conditions of the anti-slide pile could be evaluated.The results demonstrated that the proposed method could reveal the deformation pattern of the anti-slide pile system,and can quantitatively evaluate its working conditions. 展开更多
关键词 Anti-slide pile Multi-sliding surface Pile-soil interface Brillouin optical time domain reflectometry (BOTDR) Geotechnical monitoring Reservoir landslide
下载PDF
Microarrow sensor array with enhanced skin adhesion for transdermal continuous monitoring of glucose and reactive oxygen species
10
作者 Xinshuo Huang Baoming Liang +9 位作者 Shantao Zheng Feifei Wu Mengyi He Shuang Huang Jingbo Yang Qiangqiang Ouyang Fanmao Liu Jing Liu Hui-jiuan Chen Xi Xie 《Bio-Design and Manufacturing》 SCIE EI CAS CSCD 2024年第1期14-30,共17页
Conventional blood sampling for glucose detection is prone to cause pain and fails to continuously record glucose fluctuations in vivo.Continuous glucose monitoring based on implantable electrodes could induce pain an... Conventional blood sampling for glucose detection is prone to cause pain and fails to continuously record glucose fluctuations in vivo.Continuous glucose monitoring based on implantable electrodes could induce pain and potential tissue inflammation,and the presence of reactive oxygen species(ROS)due to inflammationmay affect glucose detection.Microneedle technology is less invasive,yet microneedle adhesion with skin tissue is limited.In this work,we developed a microarrow sensor array(MASA),which provided enhanced skin surface adhesion and enabled simultaneous detection of glucose and H_(2)O_(2)(representative of ROS)in interstitial fluid in vivo.The microarrows fabricated via laser micromachining were modified with functional coating and integrated into a patch of a three-dimensional(3D)microneedle array.Due to the arrow tip mechanically interlocking with the tissue,the microarrow array could better adhere to the skin surface after penetration into skin.The MASA was demonstrated to provide continuous in vivo monitoring of glucose and H_(2)O_(2) concentrations,with the detection of H_(2)O_(2) providing a valuable reference for assessing the inflammation state.Finally,the MASA was integrated into a monitoring system using custom circuitry.This work provides a promising tool for the stable and reliable monitoring of blood glucose in diabetic patients. 展开更多
关键词 Microarrow sensor array Glucose sensing Reactive oxygen species sensing Integrated system Continuous monitoring
下载PDF
Short-term displacement prediction for newly established monitoring slopes based on transfer learning
11
作者 Yuan Tian Yang-landuo Deng +3 位作者 Ming-zhi Zhang Xiao Pang Rui-ping Ma Jian-xue Zhang 《China Geology》 CAS CSCD 2024年第2期351-364,共14页
This study makes a significant progress in addressing the challenges of short-term slope displacement prediction in the Universal Landslide Monitoring Program,an unprecedented disaster mitigation program in China,wher... This study makes a significant progress in addressing the challenges of short-term slope displacement prediction in the Universal Landslide Monitoring Program,an unprecedented disaster mitigation program in China,where lots of newly established monitoring slopes lack sufficient historical deformation data,making it difficult to extract deformation patterns and provide effective predictions which plays a crucial role in the early warning and forecasting of landslide hazards.A slope displacement prediction method based on transfer learning is therefore proposed.Initially,the method transfers the deformation patterns learned from slopes with relatively rich deformation data by a pre-trained model based on a multi-slope integrated dataset to newly established monitoring slopes with limited or even no useful data,thus enabling rapid and efficient predictions for these slopes.Subsequently,as time goes on and monitoring data accumulates,fine-tuning of the pre-trained model for individual slopes can further improve prediction accuracy,enabling continuous optimization of prediction results.A case study indicates that,after being trained on a multi-slope integrated dataset,the TCN-Transformer model can efficiently serve as a pretrained model for displacement prediction at newly established monitoring slopes.The three-day average RMSE is significantly reduced by 34.6%compared to models trained only on individual slope data,and it also successfully predicts the majority of deformation peaks.The fine-tuned model based on accumulated data on the target newly established monitoring slope further reduced the three-day RMSE by 37.2%,demonstrating a considerable predictive accuracy.In conclusion,taking advantage of transfer learning,the proposed slope displacement prediction method effectively utilizes the available data,which enables the rapid deployment and continual refinement of displacement predictions on newly established monitoring slopes. 展开更多
关键词 LANDSLIDE Slope displacement prediction Transfer learning Integrated dataset Transformer Pre-trained model Universal Landslide monitoring Program(ULMP) Geological hazards survey engineering
下载PDF
Implantable Electrochemical Microsensors for In Vivo Monitoring of Animal Physiological Information
12
作者 Jin Zhou Shenghan Zhou +4 位作者 Peidi Fan Xunjia Li Yibin Ying Jianfeng Ping Yuxiang Pan 《Nano-Micro Letters》 SCIE EI CSCD 2024年第3期183-211,共29页
In vivo monitoring of animal physiological information plays a crucial role in promptly alerting humans to potential diseases in animals and aiding in the exploration of mechanisms underlying human diseases.Currently,... In vivo monitoring of animal physiological information plays a crucial role in promptly alerting humans to potential diseases in animals and aiding in the exploration of mechanisms underlying human diseases.Currently,implantable electrochemical microsensors have emerged as a prominent area of research.These microsensors not only fulfill the technical requirements for monitoring animal physiological information but also offer an ideal platform for integration.They have been extensively studied for their ability to monitor animal physiological information in a minimally invasive manner,characterized by their bloodless,painless features,and exceptional performance.The development of implantable electrochemical microsensors for in vivo monitoring of animal physiological information has witnessed significant scientific and technological advancements through dedicated efforts.This review commenced with a comprehensive discussion of the construction of microsensors,including the materials utilized and the methods employed for fabrication.Following this,we proceeded to explore the various implantation technologies employed for electrochemical microsensors.In addition,a comprehensive overview was provided of the various applications of implantable electrochemical microsensors,specifically in the monitoring of diseases and the investigation of disease mechanisms.Lastly,a concise conclusion was conducted on the recent advancements and significant obstacles pertaining to the practical implementation of implantable electrochemical microsensors. 展开更多
关键词 Electrochemical microsensors Implantable sensors In vivo monitoring Animal physiological information
下载PDF
Panoptic UAV:Panoptic Segmentation of UAV Images for Marine Environment Monitoring
13
作者 Yuling Dou Fengqin Yao +7 位作者 Xiandong Wang Liang Qu Long Chen Zhiwei Xu Laihui Ding Leon Bevan Bullock Guoqiang Zhong Shengke Wang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第1期1001-1014,共14页
UAV marine monitoring plays an essential role in marine environmental protection because of its flexibility and convenience,low cost and convenient maintenance.In marine environmental monitoring,the similarity between... UAV marine monitoring plays an essential role in marine environmental protection because of its flexibility and convenience,low cost and convenient maintenance.In marine environmental monitoring,the similarity between objects such as oil spill and sea surface,Spartina alterniflora and algae is high,and the effect of the general segmentation algorithm is poor,which brings new challenges to the segmentation of UAV marine images.Panoramic segmentation can do object detection and semantic segmentation at the same time,which can well solve the polymorphism problem of objects in UAV ocean images.Currently,there are few studies on UAV marine image recognition with panoptic segmentation.In addition,there are no publicly available panoptic segmentation datasets for UAV images.In this work,we collect and annotate UAV images to form a panoptic segmentation UAV dataset named UAV-OUC-SEG and propose a panoptic segmentation method named PanopticUAV.First,to deal with the large intraclass variability in scale,deformable convolution and CBAM attention mechanism are employed in the backbone to obtain more accurate features.Second,due to the complexity and diversity of marine images,boundary masks by the Laplacian operator equation from the ground truth are merged into feature maps to improve boundary segmentation precision.Experiments demonstrate the advantages of PanopticUAV beyond the most other advanced approaches on the UAV-OUC-SEG dataset. 展开更多
关键词 Panoptic segmentation UAV marine monitoring attention mechanism boundary mask enhancement
下载PDF
Early proactive monitoring of DNA-thioguanine in patients with Crohn’s disease predicts thiopurine-induced late leucopenia in NUDT15/TPMT normal metabolizers
14
作者 Ting Yang Kang Chao +9 位作者 Xia Zhu Xue-Ding Wang Sumyuet Chan Yan-Ping Guan Jing Mao Pan Li Shao-Xing Guan Wen Xie Xiang Gao Min Huang 《World Journal of Gastroenterology》 SCIE CAS 2024年第12期1751-1763,共13页
BACKGROUND Thiopurine-induced leucopenia significantly hinders the wide application of thiopurines.Dose optimization guided by nudix hydrolase 15(NUDT15)has significantly reduced the early leucopenia rate,but there ar... BACKGROUND Thiopurine-induced leucopenia significantly hinders the wide application of thiopurines.Dose optimization guided by nudix hydrolase 15(NUDT15)has significantly reduced the early leucopenia rate,but there are no definitive biomarkers for late risk leucopenia prediction.AIM To determine the predictive value of early monitoring of DNA-thioguanine(DNATG)or 6-thioguanine nucleotides(6TGN)for late leucopenia under a NUDT15-guided thiopurine dosing strategy in patients with Crohn’s disease(CD).METHODS Blood samples were collected within two months after thiopurine initiation for detection of metabolite concentrations.Late leucopenia was defined as a leukocyte count<3.5×10^(9)/L over two months.RESULTS Of 148 patients studied,late leucopenia was observed in 15.6%(17/109)of NUDT15/thiopurine methyltransferase(TPMT)normal and 64.1%(25/39)of intermediate metabolizers.In patients suffering late leucopenia,early DNATG levels were significantly higher than in those who did not develop late leucopenia(P=4.9×10^(-13)).The DNATG threshold of 319.43 fmol/μg DNA could predict late leucopenia in the entire sample with an area under the curve(AUC)of 0.855(sensitivity 83%,specificity 81%),and in NUDT15/TPMT normal metabolizers,the predictive performance of a threshold of 315.72 fmol/μg DNA was much more remarkable with an AUC of 0.902(sensitivity 88%,specificity 85%).6TGN had a relatively poor correlation with late leucopenia whether in the entire sample(P=0.021)or NUDT15/TPMT normal or intermediate metabolizers(P=0.018,P=0.55,respectively).CONCLUSION Proactive therapeutic drug monitoring of DNATG could be an effective strategy to prevent late leucopenia in both NUDT15/TPMT normal and intermediate metabolizers with CD,especially the former. 展开更多
关键词 Thiopurine-induced late leucopenia DNA-thioguanine 6-thioguanine nucleotide Proactive therapeutic drug monitoring Crohn’s disease
下载PDF
Semi-implantable device based on multiplexed microfilament electrode cluster for continuous monitoring of physiological ions
15
作者 Shuang Huang Shantao Zheng +9 位作者 Mengyi He Chuanjie Yao Xinshuo Huang Zhengjie Liu Qiangqiang Ouyang Jing Liu Feifei Wu Hang Gao Xi Xie Hui-jiuan Chen 《Bio-Design and Manufacturing》 SCIE EI CAS CSCD 2024年第1期88-103,共16页
Modern medicine is increasingly interested in advanced sensors to detect and analyze biochemical indicators.Ion sensors based on potentiometric methods are a promising platform for monitoring physiological ions in bio... Modern medicine is increasingly interested in advanced sensors to detect and analyze biochemical indicators.Ion sensors based on potentiometric methods are a promising platform for monitoring physiological ions in biological subjects.Current semi-implantable devices are mainly based on single-parameter detection.Miniaturized semi-implantable electrodes for multiparameter sensing have more restrictions on the electrode size due to biocompatibility considerations,but reducing the electrode surface area could potentially limit electrode sensitivity.This study developed a semi-implantable device system comprising a multiplexed microfilament electrode cluster(MMEC)and a printed circuit board for real-time monitoring of intra-tissue K^(+),Ca^(2+),and Na^(+)concentrations.The electrode surface area was less important for the potentiometric sensing mechanism,suggesting the feasibility of using a tiny fiber-like electrode for potentiometric sensing.The MMEC device exhibited a broad linear response(K^(+):2–32 mmol/L;Ca^(2+):0.5–4 mmol/L;Na^(+):10–160 mmol/L),high sensitivity(about 20–45 mV/decade),temporal stability(>2weeks),and good selectivity(>80%)for the above ions.In vitro detection and in vivo subcutaneous and brain experiment results showed that the MMEC system exhibits good multi-ion monitoring performance in several complex environments.This work provides a platform for the continuous real-time monitoring of ion fluctuations in different situations and has implications for developing smart sensors to monitor human health. 展开更多
关键词 Multiplexed microfilament electrode cluster Physiological ion sensing Subcutaneous and brain experiment Wearable platform for multi-ion detection Continuous real-time monitoring system
下载PDF
Establishing a mechanism for international cooperation for Fukushima nuclear-contaminated water monitoring
16
作者 Shumei Yue Xiaodi Yang 《Chinese Journal of Population,Resources and Environment》 2024年第1期20-33,共14页
The Japanese government’s unilateral decision to discharge the nuclear-contaminated water from the Fukushima nuclear power plant into the ocean has caused immense nuclear safety risks.Monitoring the unclear contamina... The Japanese government’s unilateral decision to discharge the nuclear-contaminated water from the Fukushima nuclear power plant into the ocean has caused immense nuclear safety risks.Monitoring the unclear contaminated water is a starting point to combat these risks and seek remedies for the rights and interests of all concerned parties.The establishment of a mechanism for international cooperation in this respect is necessary to handle the risks of the Fukushima nuclear-contaminated water and to lay the foundation of a framework for tackling any future disposal of nuclear-contaminated water following Japan’s example.At present,the international legal systems in the spheres of nuclear safety and security,marine environmental protection,and other areas,as well as the questioning of the monitoring reports of the International Atomic Energy Agency(IAEA)by the relevant parties,the monitoring practices of historical nuclear accidents,and numerous radioactivity monitoring mechanisms have provided the institutional and practical basis for constructing such a mechanism.The mechanism can be promoted by the IAEA through its existing mechanisms or be jointly initiated by China,the Russian Federation,the Republic of Korea,the Democratic People’s Republic of Korea,and the Pacific Island countries,among other stakeholders.Specifically,this mechanism should consist of three levels:first,the framework of the basic legal system,including the cooperative principles of national sovereignty,interest-relatedness,and procedural fairness,and the signing of the Framework Convention on the Monitoring of Fukushima’s nuclear-contaminated water and its Optional Protocol;second,the organizational structure and its responsibilities,which may include the Conference of Parties as the decision-making body,the Secretariat as the central coordinating body,and the monitoring committees in various fields as specific implementing agencies;and third,specific administrative arrangements,which involve the standardization of monitoring,the management system of monitoring networks and stations,the rules for monitoring procedures,and the rules for the utilization of the monitoring data,etc.With the urgent need for the scientific and fair monitoring of Fukushima’s nuclear-contaminated water,China,as a stakeholder country,can promote the establishment of such a mechanism for monitoring nuclear-contaminated water through the following paths:①It is necessary to clarify the factors affecting the construction of an international cooperation mechanism for monitoring nuclear-contaminated water so as to ascertain the standpoints of the stakeholders,claims of their interests,contents of their cooperation,and the relevant international relations.②On the basis of existing practices,China should consider improving the monitoring mechanism to cope with the risks of the discharge of Fukushima’s nuclear-contaminated water by formulating targeted policies and systems,setting up specialized monitoring institutions,and establishing a systematic monitoring network system.③This is an effective way for China to actively promote the participation of stakeholders in the construction of an international cooperation mechanism for monitoring nuclear-contaminated water in Fukushima by further innovating the dissemination mechanism to address the risk of Fukushima’s nuclear-contaminated water discharging into the sea and facilitating the identification of issues for international cooperation in monitoring Fukushima’s nuclear-contaminated water based on the concept of a community with a shared future for mankind. 展开更多
关键词 Nuclear safety Fukushima nuclear-contaminated water Nuclear-contaminated water monitoring Mechanism for international cooperation
下载PDF
Development of Spectral Features for Monitoring Rice Bacterial Leaf Blight Disease Using Broad-Band Remote Sensing Systems
17
作者 Jingcheng Zhang Xingjian Zhou +3 位作者 Dong Shen Qimeng Yu Lin Yuan Yingying Dong 《Phyton-International Journal of Experimental Botany》 SCIE 2024年第4期745-762,共18页
As an important rice disease, rice bacterial leaf blight (RBLB, caused by the bacterium Xanthomonas oryzae pv.oryzae), has become widespread in east China in recent years. Significant losses in rice yield occurred as ... As an important rice disease, rice bacterial leaf blight (RBLB, caused by the bacterium Xanthomonas oryzae pv.oryzae), has become widespread in east China in recent years. Significant losses in rice yield occurred as a result ofthe disease’s epidemic, making it imperative to monitor RBLB at a large scale. With the development of remotesensing technology, the broad-band sensors equipped with red-edge channels over multiple spatial resolutionsoffer numerous available data for large-scale monitoring of rice diseases. However, RBLB is characterized by rapiddispersal under suitable conditions, making it difficult to track the disease at a regional scale with a single sensorin practice. Therefore, it is necessary to identify or construct features that are effective across different sensors formonitoring RBLB. To achieve this goal, the spectral response of RBLB was first analyzed based on the canopyhyperspectral data. Using the relative spectral response (RSR) functions of four representative satellite or UAVsensors (i.e., Sentinel-2, GF-6, Planet, and Rededge-M) and the hyperspectral data, the corresponding broad-bandspectral data was simulated. According to a thorough band combination and sensitivity analysis, two novel spectralindices for monitoring RBLB that can be effective across multiple sensors (i.e., RBBRI and RBBDI) weredeveloped. An optimal feature set that includes the two novel indices and a classical vegetation index was formed.The capability of such a feature set in monitoring RBLB was assessed via FLDA and SVM algorithms. The resultdemonstrated that both constructed novel indices exhibited high sensitivity to the disease across multiple sensors.Meanwhile, the feature set yielded an overall accuracy above 90% for all sensors, which indicates its cross-sensorgenerality in monitoring RBLB. The outcome of this research permits disease monitoring with different remotesensing data over a large scale. 展开更多
关键词 Rice bacterial leaf blight analysis of spectral response multispectral data simulation vegetation indices cross-sensor disease monitoring
下载PDF
Monitoring seismicity in the southern Sichuan Basin using a machine learning workflow
18
作者 Kang Wang Jie Zhang +2 位作者 Ji Zhang Zhangyu Wang Huiyu Zhu 《Earthquake Research Advances》 CSCD 2024年第1期59-66,共8页
Monitoring seismicity in real time provides significant benefits for timely earthquake warning and analyses.In this study,we propose an automatic workflow based on machine learning(ML)to monitor seismicity in the sout... Monitoring seismicity in real time provides significant benefits for timely earthquake warning and analyses.In this study,we propose an automatic workflow based on machine learning(ML)to monitor seismicity in the southern Sichuan Basin of China.This workflow includes coherent event detection,phase picking,and earthquake location using three-component data from a seismic network.By combining Phase Net,we develop an ML-based earthquake location model called Phase Loc,to conduct real-time monitoring of the local seismicity.The approach allows us to use synthetic samples covering the entire study area to train Phase Loc,addressing the problems of insufficient data samples,imbalanced data distribution,and unreliable labels when training with observed data.We apply the trained model to observed data recorded in the southern Sichuan Basin,China,between September 2018 and March 2019.The results show that the average differences in latitude,longitude,and depth are 5.7 km,6.1 km,and 2 km,respectively,compared to the reference catalog.Phase Loc combines all available phase information to make fast and reliable predictions,even if only a few phases are detected and picked.The proposed workflow may help real-time seismic monitoring in other regions as well. 展开更多
关键词 Earthquake monitoring Machine learning Local seismicity Gaussian waveform Sparse stations
下载PDF
VR-based digital twin for remote monitoring of mining equipment:Architecture and a case study
19
作者 Jovana PLAVŠIĆ Ilija MIŠKOVIĆNorman BKeevil 《虚拟现实与智能硬件(中英文)》 EI 2024年第2期100-112,共13页
Background Traditional methods for monitoring mining equipment rely primarily on visual inspections,which are time-consuming,inefficient,and hazardous.This article introduces a novel approach to monitoring mission-cri... Background Traditional methods for monitoring mining equipment rely primarily on visual inspections,which are time-consuming,inefficient,and hazardous.This article introduces a novel approach to monitoring mission-critical systems and services in the mining industry by integrating virtual reality(VR)and digital twin(DT)technologies.VR-based DTs enable remote equipment monitoring,advanced analysis of machine health,enhanced visualization,and improved decision making.Methods This article presents an architecture for VR-based DT development,including the developmental stages,activities,and stakeholders involved.A case study on the condition monitoring of a conveyor belt using real-time synthetic vibration sensor data was conducted using the proposed methodology.The study demonstrated the application of the methodology in remote monitoring and identified the need for further development for implementation in active mining operations.The article also discusses interdisciplinarity,choice of tools,computational resources,time and cost,human involvement,user acceptance,frequency of inspection,multiuser environment,potential risks,and applications beyond the mining industry.Results The findings of this study provide a foundation for future research in the domain of VR-based DTs for remote equipment monitoring and a novel application area for VR in mining. 展开更多
关键词 Virtual reality Digital twin Condition monitoring Mining equipment
下载PDF
About Some Aspects of Use of Optical Sensors for Monitoring the Aquatic Environment
20
作者 Ferdenant Mkrtchyan Vladimiir Soldatov Maxim Mkrtchyan 《Journal of Environmental & Earth Sciences》 CAS 2024年第1期1-10,共10页
Multi-channel polarization optical technology is increasingly used for prompt monitoring of water systems.Optical devices during the assessment of water quality determine the intensity of light through the studied aqu... Multi-channel polarization optical technology is increasingly used for prompt monitoring of water systems.Optical devices during the assessment of water quality determine the intensity of light through the studied aquatic environment.Spectrophotometric devices measure the spectrum of weakening of light through the aquatic environment.Spectroellipsometric devices receive spectra in vertical and horizontal polarizations.The presented article develops an adaptive optical hardware and image system for monitoring water bodies.The system is combined.It consists of 2 parts:1)automated spectrophotometer-refractometer,and 2)adaptive spectroellipsometer.The system is equipped with a corresponding algorithmic and software,including algorithms for identifying spectral curves,databases and knowledge of spectral curves algorithms for solving reverse problems.The presented system is original since it differs from modern foreign systems by a new method of spectrophotometric and spectroellipsometric measurements,an original elemental base of polarization optics and a comprehensive mathematical approach to assessing the quality of a water body.There are no rotating polarization elements in the system.Therefore,this makes it possible to increase the signal-to-noise ratio and,as a result,improve measurement stability and simplify multichannel spectrophotometers and spectroellipsometers.The proposed system can be used in various water systems where it is necessary to assess water quality or identify the presence of a certain set of chemical elements. 展开更多
关键词 monitoring Aquatic environment Polarization optics Water object POLLUTANTS Spectral images Classification Identification
下载PDF
上一页 1 2 146 下一页 到第
使用帮助 返回顶部