Self-association system of(R)-1,3-butanediol in dilute carbon tetrachloride(CCl4)solution is studied as a model of molecular association mixture.Analysis methods including FSMWEFA(fixed-size moving window evolving fac...Self-association system of(R)-1,3-butanediol in dilute carbon tetrachloride(CCl4)solution is studied as a model of molecular association mixture.Analysis methods including FSMWEFA(fixed-size moving window evolving factor analysis)combined with PCA(principal component analysis),SIMPLISMA (simple-to-use interactive self-modeling mixture analysis),and ITTFA(iterative target transformation factor analysis)are adopted to resolve infrared spectra of(R)-1,3-butanediol solution.Association number and equilibrium constant are computed.(R)-1,3-butanediol in dilute inert solution is determined as a monomer-trimer equilibrium system.Theoretical investigation of trimer structures is carried out with DFT(density functional theory),and structural factors are analyzed.展开更多
N-acetylatedα-synuclein(αSyn)has long been established as an intrinsically disordered protein associated with a dysfunctional role in Parkinson’s disease.In recent years,a physiologically relevant,higher order conf...N-acetylatedα-synuclein(αSyn)has long been established as an intrinsically disordered protein associated with a dysfunctional role in Parkinson’s disease.In recent years,a physiologically relevant,higher order conformation has been identified as a helical tetramer that is tailored by buried hydrophobic interactions and is distinctively aggregation resistant.The canonical mechanism by which the tetramer assembles remains elusive.As novel biochemical approaches,computational methods,pioneering purification platforms,and powerful imaging techniques continue to develop,puzzling information that once sparked debate as to the veracity of the tetramer has now shed light upon this new counterpart inαSyn neurobiology.Nuclear magnetic resonance and computational studies on multimericαSyn structure have revealed that the protein folding propensity is controlled by small energy barriers that enable large scale reconfiguration.Alternatively,familial mutations ablate tetramerization and reconfigure polymorphic fibrillization.In this review,we will discuss the dynamic landscape ofαSyn quaternary structure with a focus on the tetrameric conformation.展开更多
基金the National Natural Science Foundation of Chinathe YellowRiver Water Conservancy Commission(Grant Nos.50239080 and 40271019)
文摘Self-association system of(R)-1,3-butanediol in dilute carbon tetrachloride(CCl4)solution is studied as a model of molecular association mixture.Analysis methods including FSMWEFA(fixed-size moving window evolving factor analysis)combined with PCA(principal component analysis),SIMPLISMA (simple-to-use interactive self-modeling mixture analysis),and ITTFA(iterative target transformation factor analysis)are adopted to resolve infrared spectra of(R)-1,3-butanediol solution.Association number and equilibrium constant are computed.(R)-1,3-butanediol in dilute inert solution is determined as a monomer-trimer equilibrium system.Theoretical investigation of trimer structures is carried out with DFT(density functional theory),and structural factors are analyzed.
基金supported in part by Award No.18-7(to HRL)from the Commonwealth of Virginia’s Alzheimer’s and Related Diseases Research Award Fund,administered by the Virginia Center on Aging
文摘N-acetylatedα-synuclein(αSyn)has long been established as an intrinsically disordered protein associated with a dysfunctional role in Parkinson’s disease.In recent years,a physiologically relevant,higher order conformation has been identified as a helical tetramer that is tailored by buried hydrophobic interactions and is distinctively aggregation resistant.The canonical mechanism by which the tetramer assembles remains elusive.As novel biochemical approaches,computational methods,pioneering purification platforms,and powerful imaging techniques continue to develop,puzzling information that once sparked debate as to the veracity of the tetramer has now shed light upon this new counterpart inαSyn neurobiology.Nuclear magnetic resonance and computational studies on multimericαSyn structure have revealed that the protein folding propensity is controlled by small energy barriers that enable large scale reconfiguration.Alternatively,familial mutations ablate tetramerization and reconfigure polymorphic fibrillization.In this review,we will discuss the dynamic landscape ofαSyn quaternary structure with a focus on the tetrameric conformation.