期刊文献+
共找到20,766篇文章
< 1 2 250 >
每页显示 20 50 100
FK506 contributes to peripheral nerve regeneration by inhibiting neuroinflammatory responses and promoting neuron survival
1
作者 Yuhui Kou Zongxue Jin +3 位作者 Yusong Yuan Bo Ma Wenyong Xie Na Han 《Neural Regeneration Research》 SCIE CAS 2025年第7期2108-2115,共8页
FK506(Tacrolimus)is a systemic immunosuppressant approved by the U.S.Food and Drug Administration.FK506 has been shown to promote peripheral nerve regeneration,however,its precise mechanism of action and its pathways ... FK506(Tacrolimus)is a systemic immunosuppressant approved by the U.S.Food and Drug Administration.FK506 has been shown to promote peripheral nerve regeneration,however,its precise mechanism of action and its pathways remain unclear.In this study,we established a rat model of sciatic nerve injury and found that FK506 improved the morphology of the injured sciatic nerve,increased the numbers of motor and sensory neurons,reduced inflammatory responses,markedly improved the conduction function of the injured nerve,and promoted motor function recovery.These findings suggest that FK506 promotes peripheral nerve structure recovery and functional regeneration by reducing the intensity of inflammation after neuronal injury and increasing the number of surviving neurons. 展开更多
关键词 FK506 inflammation motor neurons nerve regeneration neuron peripheral nerve injury sensory neurons
下载PDF
Inhibitory gamma-aminobutyric acidergic neurons in the anterior cingulate cortex participate in the comorbidity of pain and emotion
2
作者 Lu Guan Mengting Qiu +10 位作者 Na Li Zhengxiang Zhou Ru Ye Liyan Zhong Yashuang Xu Junhui Ren Yi Liang Xiaomei Shao Jianqiao Fang Junfan Fang Junying Du 《Neural Regeneration Research》 SCIE CAS 2025年第10期2838-2854,共17页
Pain is often comorbid with emotional disorders such as anxiety and depression.Hyperexcitability of the anterior cingulate cortex has been implicated in pain and pain-related negative emotions that arise from impairme... Pain is often comorbid with emotional disorders such as anxiety and depression.Hyperexcitability of the anterior cingulate cortex has been implicated in pain and pain-related negative emotions that arise from impairments in inhibitory gamma-aminobutyric acid neurotransmission.This review primarily aims to outline the main circuitry(including the input and output connectivity)of the anterior cingulate cortex and classification and functions of different gamma-aminobutyric acidergic neurons;it also describes the neurotransmitters/neuromodulators affecting these neurons,their intercommunication with other neurons,and their importance in mental comorbidities associated with chronic pain disorders.Improving understanding on their role in pain-related mental comorbidities may facilitate the development of more effective treatments for these conditions.However,the mechanisms that regulate gamma-aminobutyric acidergic systems remain elusive.It is also unclear as to whether the mechanisms are presynaptic or postsynaptic.Further exploration of the complexities of this system may reveal new pathways for research and drug development. 展开更多
关键词 anterior cingulate cortex ANXIETY chronic pain circuit communication COMORBIDITY depression gamma-aminobutyric acidergic neurons parvalbumin neurons synaptic transmission
下载PDF
Many faces of neuronal activity manipulation in Drosophila
3
作者 Amber Krebs Steffen Kautzmann Christian Klämbt 《Neural Regeneration Research》 SCIE CAS 2025年第9期2574-2576,共3页
Animals exhibit complex responses to external and internal stimuli.The information is computed by interconnected neurons that express numerous ion channels,which modulate the neuronal membrane potential.How can neuron... Animals exhibit complex responses to external and internal stimuli.The information is computed by interconnected neurons that express numerous ion channels,which modulate the neuronal membrane potential.How can neuronal activity orchestrate complex motor patterns or allow learning from previous experience?To answer such questions,we need the ability not only to record,but also to modulate neuronal activity in both space(e.g.,neuronal subsets)and time. 展开更多
关键词 MANIPULATION potential. neuronAL
下载PDF
Small molecule inhibitor DDQ-treated hippocampal neuronal cells show improved neurite outgrowth and synaptic branching
4
作者 Jangampalli Adi Pradeepkiran Priyanka Rawat +2 位作者 Arubala P.Reddy Erika Orlov PHemachandra Reddy 《Neural Regeneration Research》 SCIE CAS 2025年第9期2624-2632,共9页
The process of neurite outgrowth and branching is a crucial aspect of neuronal development and regeneration.Axons and dendrites,sometimes referred to as neurites,are extensions of a neuron's cellular body that are... The process of neurite outgrowth and branching is a crucial aspect of neuronal development and regeneration.Axons and dendrites,sometimes referred to as neurites,are extensions of a neuron's cellular body that are used to start networks.Here we explored the effects of diethyl(3,4-dihydroxyphenethylamino)(quinolin-4-yl)methylphosphonate(DDQ)on neurite developmental features in HT22 neuronal cells.In this work,we examined the protective effects of DDQ on neuronal processes and synaptic outgrowth in differentiated HT22cells expressing mutant Tau(mTau)cDNA.To investigate DDQ chara cteristics,cell viability,biochemical,molecular,western blotting,and immunocytochemistry were used.Neurite outgrowth is evaluated through the segmentation and measurement of neural processes.These neural processes can be seen and measured with a fluorescence microscope by manually tracing and measuring the length of the neurite growth.These neuronal processes can be observed and quantified with a fluorescent microscope by manually tracing and measuring the length of the neuronal HT22.DDQ-treated mTau-HT22 cells(HT22 cells transfected with cDNA mutant Tau)were seen to display increased levels of synaptophysin,MAP-2,andβ-tubulin.Additionally,we confirmed and noted reduced levels of both total and p-Tau,as well as elevated levels of microtubule-associated protein 2,β-tubulin,synaptophysin,vesicular acetylcholine transporter,and the mitochondrial biogenesis protein-pe roxisome prolife rator-activated receptor-gamma coactivator-1α.In mTa u-expressed HT22 neurons,we observed DDQ enhanced the neurite characteristics and improved neurite development through increased synaptic outgrowth.Our findings conclude that mTa u-HT22(Alzheimer's disease)cells treated with DDQ have functional neurite developmental chara cteristics.The key finding is that,in mTa u-HT22 cells,DDQ preserves neuronal structure and may even enhance nerve development function with mTa u inhibition. 展开更多
关键词 diethyl(3 4-dihydroxyphenethylamino)(quinolin-4-yl)methylphosphonate(DDQ) hippocampal neuronal cells HT22 neurite outgrowth neuronal development small molecule
下载PDF
Induced pluripotent stem cell-related approaches to generate dopaminergic neurons for Parkinson's disease
5
作者 Ling-Xiao Yi Hui Ren Woon +3 位作者 Genevieve Saw Li Zeng Eng King Tan Zhi Dong Zhou 《Neural Regeneration Research》 SCIE CAS 2025年第11期3193-3206,共14页
The progressive loss of dopaminergic neurons in affected patient brains is one of the pathological features of Parkinson's disease,the second most common human neurodegenerative disease.Although the detailed patho... The progressive loss of dopaminergic neurons in affected patient brains is one of the pathological features of Parkinson's disease,the second most common human neurodegenerative disease.Although the detailed pathogenesis accounting for dopaminergic neuron degeneration in Parkinson's disease is still unclear,the advancement of stem cell approaches has shown promise for Parkinson's disease research and therapy.The induced pluripotent stem cells have been commonly used to generate dopaminergic neurons,which has provided valuable insights to improve our understanding of Parkinson's disease pathogenesis and contributed to anti-Parkinson's disease therapies.The current review discusses the practical approaches and potential applications of induced pluripotent stem cell techniques for generating and differentiating dopaminergic neurons from induced pluripotent stem cells.The benefits of induced pluripotent stem cell-based research are highlighted.Various dopaminergic neuron differentiation protocols from induced pluripotent stem cells are compared.The emerging three-dimension-based brain organoid models compared with conventional two-dimensional cell culture are evaluated.Finally,limitations,challenges,and future directions of induced pluripotent stem cell–based approaches are analyzed and proposed,which will be significant to the future application of induced pluripotent stem cell-related techniques for Parkinson's disease. 展开更多
关键词 dopaminergic neurons induced pluripotent stem cells Parkinson's disease stem cell approaches
下载PDF
NOX4 exacerbates Parkinson's disease pathology by promoting neuronal ferroptosis and neuroinflammation
6
作者 Zhihao Lin Changzhou Ying +6 位作者 Xiaoli Si Naijia Xue Yi Liu Ran Zheng Ying Chen Jiali Pu Baorong Zhang 《Neural Regeneration Research》 SCIE CAS 2025年第7期2038-2052,共15页
Parkinson's disease is primarily caused by the loss of dopaminergic neurons in the substantia nigra compacta.Ferroptosis,a novel form of regulated cell death characterized by iron accumulation and lipid peroxidati... Parkinson's disease is primarily caused by the loss of dopaminergic neurons in the substantia nigra compacta.Ferroptosis,a novel form of regulated cell death characterized by iron accumulation and lipid peroxidation,plays a vital role in the death of dopaminergic neurons.However,the molecular mechanisms underlying ferroptosis in dopaminergic neurons have not yet been completely elucidated.NADPH oxidase 4 is related to oxidative stress,however,whether it regulates dopaminergic neuronal ferroptosis remains unknown.The aim of this study was to determine whether NADPH oxidase 4 is involved in dopaminergic neuronal ferroptosis,and if so,by what mechanism.We found that the transcriptional regulator activating transcription factor 3 increased NADPH oxidase 4 expression in dopaminergic neurons and astrocytes in an 1-methyl-4-phenyl-1,2,3,6 tetrahydropyridine-induced Parkinson's disease model.NADPH oxidase 4 inhibition improved the behavioral impairments observed in the Parkinson's disease model animals and reduced the death of dopaminergic neurons.Moreover,NADPH oxidase 4 inhibition reduced lipid peroxidation and iron accumulation in the substantia nigra of the Parkinson's disease model animals.Mechanistically,we found that NADPH oxidase 4 interacted with activated protein kinase Cαto prevent ferroptosis of dopaminergic neurons.Furthermore,by lowering the astrocytic lipocalin-2 expression,NADPH oxidase 4 inhibition reduced 1-methyl-4-phenyl-1,2,3,6 tetrahydropyridine-induced neuroinflammation.These findings demonstrate that NADPH oxidase 4 promotes ferroptosis of dopaminergic neurons and neuroinflammation,which contribute to dopaminergic neuron death,suggesting that NADPH oxidase 4 is a possible therapeutic target for Parkinson's disease. 展开更多
关键词 dopaminergic neuron ferroptosis NADPH oxidase 4(NOX4) NEUROINFLAMMATION Parkinson's disease
下载PDF
Inhibition of the NLRP3 inflammasome attenuates spiral ganglion neuron degeneration in aminoglycoside-induced hearing loss
7
作者 Jia Fang Zhuangzhuang Li +8 位作者 Pengjun Wang Xiaoxu Zhang Song Mao Yini Li Dongzhen Yu Xiaoyan Li Yazhi Xing Haibo Shi Shankai Yin 《Neural Regeneration Research》 SCIE CAS 2025年第10期3025-3039,共15页
Aminoglycosides are a widely used class of antibacterials renowned for their effectiveness and broad antimicrobial spectrum.However,their use leads to irreversible hearing damage by causing apoptosis of hair cells as ... Aminoglycosides are a widely used class of antibacterials renowned for their effectiveness and broad antimicrobial spectrum.However,their use leads to irreversible hearing damage by causing apoptosis of hair cells as their direct target.In addition,the hearing damage caused by aminoglycosides involves damage of spiral ganglion neurons upon exposure.To investigate the mechanisms underlying spiral ganglion neuron degeneration induced by aminoglycosides,we used a C57BL/6J mouse model treated with kanamycin.We found that the mice exhibited auditory deficits following the acute loss of outer hair cells.Spiral ganglion neurons displayed hallmarks of pyroptosis and exhibited progressive degeneration over time.Transcriptomic profiling of these neurons showed significant upregulation of genes associated with inflammation and immune response,particularly those related to the NLRP3 inflammasome.Activation of the canonical pyroptotic pathway in spiral ganglion neurons was observed,accompanied by infiltration of macrophages and the release of proinflammatory cytokines.Pharmacological intervention targeting NLRP3 using Mcc950 and genetic intervention using NLRP3 knockout ameliorated spiral ganglion neuron degeneration in the injury model.These findings suggest that NLRP3 inflammasome-mediated pyroptosis plays a role in aminoglycoside-induced spiral ganglion neuron degeneration.Inhibition of this pathway may offer a potential therapeutic strategy for treating sensorineural hearing loss by reducing spiral ganglion neuron degeneration. 展开更多
关键词 DEGENERATION hearing loss macrophages Mcc950 neuroinflammation NLRP3 inflammasome OTOTOXICITY pyroptosis sensorineural hearing loss spiral ganglion neuron
下载PDF
FUBP3 mediates the amyloid-β-induced neuronal NLRP3 expression
8
作者 Jing Yao Yuan Li +5 位作者 Xi Liu Wenping Liang Yu Li Liyong Wu Zhe Wang Weihong Song 《Neural Regeneration Research》 SCIE CAS 2025年第7期2068-2083,共16页
Alzheimer's disease is characterized by deposition of amyloid-β,which forms extracellular neuritic plaques,and accumulation of hyperphosphorylated tau,which aggregates to form intraneuronal neurofibrillary tangle... Alzheimer's disease is characterized by deposition of amyloid-β,which forms extracellular neuritic plaques,and accumulation of hyperphosphorylated tau,which aggregates to form intraneuronal neurofibrillary tangles,in the brain.The NLRP3 inflammasome may play a role in the transition from amyloid-βdeposition to tau phosphorylation and aggregation.Because NLRP3 is primarily found in brain microglia,and tau is predominantly located in neurons,it has been suggested that NLRP3 expressed by microglia indirectly triggers tau phosphorylation by upregulating the expression of pro-inflammatory cytokines.Here,we found that neurons also express NLRP3 in vitro and in vivo,and that neuronal NLRP3 regulates tau phosphorylation.Using biochemical methods,we mapped the minimal NLRP3 promoter and identified FUBP3 as a transcription factor regulating NLRP3 expression in neurons.In primary neurons and the neuroblastoma cell line Neuro2A,FUBP3 is required for endogenous NLRP3 expression and tau phosphorylation only when amyloid-βis present.In the brains of aged wild-type mice and a mouse model of Alzheimer's disease,FUBP3 expression was markedly increased in cortical neurons.Transcriptome analysis suggested that FUBP3 plays a role in neuron-mediated immune responses.We also found that FUBP3 trimmed the 5′end of DNA fragments that it bound,implying that FUBP3 functions in stress-induced responses.These findings suggest that neuronal NLRP3 may be more directly involved in the amyloid-β-to–phospho-tau transition than microglial NLRP3,and that amyloid-βfundamentally alters the regulatory mechanism of NLRP3 expression in neurons.Given that FUBP3 was only expressed at low levels in young wild-type mice and was strongly upregulated in the brains of aged mice and Alzheimer's disease mice,FUBP3 could be a safe therapeutic target for preventing Alzheimer's disease progression. 展开更多
关键词 5′end trimming Alzheimer's disease AMYLOID-BETA amyloid-β-dependent transcription FUBP3 INFLAMMASOME inflammation neuron NLRP3 tau transcription factor
下载PDF
Transforming growth factor-beta 1 enhances discharge activity of cortical neurons
9
作者 Zhihui Ren Tian Li +5 位作者 Xueer Liu Zelin Zhang Xiaoxuan Chen Weiqiang Chen Kangsheng Li Jiangtao Sheng 《Neural Regeneration Research》 SCIE CAS 2025年第2期548-556,共9页
Transforming growth factor-beta 1(TGF-β1)has been extensively studied for its pleiotropic effects on central nervous system diseases.The neuroprotective or neurotoxic effects of TGF-β1 in specific brain areas may de... Transforming growth factor-beta 1(TGF-β1)has been extensively studied for its pleiotropic effects on central nervous system diseases.The neuroprotective or neurotoxic effects of TGF-β1 in specific brain areas may depend on the pathological process and cell types involved.Voltage-gated sodium channels(VGSCs)are essential ion channels for the generation of action potentials in neurons,and are involved in various neuroexcitation-related diseases.However,the effects of TGF-β1 on the functional properties of VGSCs and firing properties in cortical neurons remain unclear.In this study,we investigated the effects of TGF-β1 on VGSC function and firing properties in primary cortical neurons from mice.We found that TGF-β1 increased VGSC current density in a dose-and time-dependent manner,which was attributable to the upregulation of Nav1.3 expression.Increased VGSC current density and Nav1.3 expression were significantly abolished by preincubation with inhibitors of mitogen-activated protein kinase kinase(PD98059),p38 mitogen-activated protein kinase(SB203580),and Jun NH2-terminal kinase 1/2 inhibitor(SP600125).Interestingly,TGF-β1 significantly increased the firing threshold of action potentials but did not change their firing rate in cortical neurons.These findings suggest that TGF-β1 can increase Nav1.3 expression through activation of the ERK1/2-JNK-MAPK pathway,which leads to a decrease in the firing threshold of action potentials in cortical neurons under pathological conditions.Thus,this contributes to the occurrence and progression of neuroexcitatory-related diseases of the central nervous system. 展开更多
关键词 central nervous system cortical neurons ERK firing properties JNK Nav1.3 p38 transforming growth factor-beta 1 traumatic brain injury voltage-gated sodium currents
下载PDF
The burden of upper motor neuron involvement is correlated with the bilateral limb involvement interval in patients with amyotrophic lateral sclerosis:a retrospective observational study
10
作者 Jieying Wu Shan Ye +2 位作者 Xiangyi Liu Yingsheng Xu Dongsheng Fan 《Neural Regeneration Research》 SCIE CAS 2025年第5期1505-1512,共8页
Amyotrophic lateral sclerosis is a rare neurodegenerative disease characterized by the involvement of both upper and lower motor neurons.Early bilateral limb involvement significantly affects patients'daily lives ... Amyotrophic lateral sclerosis is a rare neurodegenerative disease characterized by the involvement of both upper and lower motor neurons.Early bilateral limb involvement significantly affects patients'daily lives and may lead them to be confined to bed.However,the effect of upper and lower motor neuron impairment and other risk factors on bilateral limb involvement is unclear.To address this issue,we retrospectively collected data from 586 amyotrophic lateral sclerosis patients with limb onset diagnosed at Peking University Third Hospital between January 2020 and May 2022.A univariate analysis revealed no significant differences in the time intervals of spread in different directions between individuals with upper motor neuron-dominant amyotrophic lateral sclerosis and those with classic amyotrophic lateral sclerosis.We used causal directed acyclic graphs for risk factor determination and Cox proportional hazards models to investigate the association between the duration of bilateral limb involvement and clinical baseline characteristics in amyotrophic lateral sclerosis patients.Multiple factor analyses revealed that higher upper motor neuron scores(hazard ratio[HR]=1.05,95%confidence interval[CI]=1.01–1.09,P=0.018),onset in the left limb(HR=0.72,95%CI=0.58–0.89,P=0.002),and a horizontal pattern of progression(HR=0.46,95%CI=0.37–0.58,P<0.001)were risk factors for a shorter interval until bilateral limb involvement.The results demonstrated that a greater degree of upper motor neuron involvement might cause contralateral limb involvement to progress more quickly in limb-onset amyotrophic lateral sclerosis patients.These findings may improve the management of amyotrophic lateral sclerosis patients with limb onset and the prediction of patient prognosis. 展开更多
关键词 amyotrophic lateral sclerosis bilateral limb involvement Cox proportional hazards regression model horizontal spread restricted cubic spline analysis time interval upper motor neuron vertical spread
下载PDF
How do neurons age?A focused review on the aging of the microtubular cytoskeleton 被引量:1
11
作者 Brad Richardson Thomas Goedert +2 位作者 Shmma Quraishe Katrin Deinhardt Amritpal Mudher 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第9期1899-1907,共9页
Aging is the leading risk factor for Alzheimer’s disease and other neurodegenerative diseases. We now understand that a breakdown in the neuronal cytoskeleton, mainly underpinned by protein modifications leading to t... Aging is the leading risk factor for Alzheimer’s disease and other neurodegenerative diseases. We now understand that a breakdown in the neuronal cytoskeleton, mainly underpinned by protein modifications leading to the destabilization of microtubules, is central to the pathogenesis of Alzheimer’s disease. This is accompanied by morphological defects across the somatodendritic compartment, axon, and synapse. However, knowledge of what occurs to the microtubule cytoskeleton and morphology of the neuron during physiological aging is comparatively poor. Several recent studies have suggested that there is an age-related increase in the phosphorylation of the key microtubule stabilizing protein tau, a modification, which is known to destabilize the cytoskeleton in Alzheimer’s disease. This indicates that the cytoskeleton and potentially other neuronal structures reliant on the cytoskeleton become functionally compromised during normal physiological aging. The current literature shows age-related reductions in synaptic spine density and shifts in synaptic spine conformation which might explain age-related synaptic functional deficits. However, knowledge of what occurs to the microtubular and actin cytoskeleton, with increasing age is extremely limited. When considering the somatodendritic compartment, a regression in dendrites and loss of dendritic length and volume is reported whilst a reduction in soma volume/size is often seen. However, research into cytoskeletal change is limited to a handful of studies demonstrating reductions in and mislocalizations of microtubule-associated proteins with just one study directly exploring the integrity of the microtubules. In the axon, an increase in axonal diameter and age-related appearance of swellings is reported but like the dendrites, just one study investigates the microtubules directly with others reporting loss or mislocalization of microtubule-associated proteins. Though these are the general trends reported, there are clear disparities between model organisms and brain regions that are worthy of further investigation. Additionally, longitudinal studies of neuronal/cytoskeletal aging should also investigate whether these age-related changes contribute not just to vulnerability to disease but also to the decline in nervous system function and behavioral output that all organisms experience. This will highlight the utility, if any, of cytoskeletal fortification for the promotion of healthy neuronal aging and potential protection against age-related neurodegenerative disease. This review seeks to summarize what is currently known about the physiological aging of the neuron and microtubular cytoskeleton in the hope of uncovering mechanisms underpinning age-related risk to disease. 展开更多
关键词 age-related changes AGING CYTOSKELETON MICROTUBULES neuronal morphology
下载PDF
Dual-targeting AAV9P1-mediated neuronal reprogramming in a mouse model of traumatic brain injury 被引量:1
12
作者 Jingzhou Liu Xin Xin +8 位作者 Jiejie Sun Yueyue Fan Xun Zhou Wei Gong Meiyan Yang Zhiping Li Yuli Wang Yang Yang Chunsheng Gao 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第3期629-635,共7页
Traumatic brain injury results in neuronal loss and glial scar formation.Replenishing neurons and eliminating the consequences of glial scar formation are essential for treating traumatic brain injury.Neuronal reprogr... Traumatic brain injury results in neuronal loss and glial scar formation.Replenishing neurons and eliminating the consequences of glial scar formation are essential for treating traumatic brain injury.Neuronal reprogramming is a promising strategy to convert glial scars to neural tissue.However,previous studies have reported inconsistent results.In this study,an AAV9P1 vector incorporating an astrocyte-targeting P1 peptide and glial fibrillary acidic protein promoter was used to achieve dual-targeting of astrocytes and the glial scar while minimizing off-target effects.The results demonstrate that AAV9P1 provides high selectivity of astrocytes and reactive astrocytes.Moreover,neuronal reprogramming was induced by downregulating the polypyrimidine tract-binding protein 1 gene via systemic administration of AAV9P1 in a mouse model of traumatic brain injury.In summary,this approach provides an improved gene delivery vehicle to study neuronal programming and evidence of its applications for traumatic brain injury. 展开更多
关键词 AAV9P1 ASTROCYTES astrocyte-to-neuron conversion GFAP promoter glial scar induced neurons neuronal reprogramming P1 peptide PTBP1 traumatic brain injury
下载PDF
Post-transcriptional mechanisms controlling neurogenesis and direct neuronal reprogramming 被引量:2
13
作者 Elsa Papadimitriou Dimitra Thomaidou 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第9期1929-1939,共11页
Neurogenesis is a tightly regulated process in time and space both in the developing embryo and in adult neurogenic niches.A drastic change in the transcriptome and proteome of radial glial cells or neural stem cells ... Neurogenesis is a tightly regulated process in time and space both in the developing embryo and in adult neurogenic niches.A drastic change in the transcriptome and proteome of radial glial cells or neural stem cells towards the neuronal state is achieved due to sophisticated mechanisms of epigenetic,transcriptional,and post-transcriptional regulation.Understanding these neurogenic mechanisms is of major importance,not only for shedding light on very complex and crucial developmental processes,but also for the identification of putative reprogramming factors,that harbor hierarchically central regulatory roles in the course of neurogenesis and bare thus the capacity to drive direct reprogramming towards the neuronal fate.The major transcriptional programs that orchestrate the neurogenic process have been the focus of research for many years and key neurogenic transcription factors,as well as repressor complexes,have been identified and employed in direct reprogramming protocols to convert non-neuronal cells,into functional neurons.The post-transcriptional regulation of gene expression during nervous system development has emerged as another important and intricate regulatory layer,strongly contributing to the complexity of the mechanisms controlling neurogenesis and neuronal function.In particular,recent advances are highlighting the importance of specific RNA binding proteins that control major steps of mRNA life cycle during neurogenesis,such as alternative splicing,polyadenylation,stability,and translation.Apart from the RNA binding proteins,microRNAs,a class of small non-coding RNAs that block the translation of their target mRNAs,have also been shown to play crucial roles in all the stages of the neurogenic process,from neural stem/progenitor cell proliferation,neuronal differentiation and migration,to functional maturation.Here,we provide an overview of the most prominent post-transcriptional mechanisms mediated by RNA binding proteins and microRNAs during the neurogenic process,giving particular emphasis on the interplay of specific RNA binding proteins with neurogenic microRNAs.Taking under consideration that the molecular mechanisms of neurogenesis exert high similarity to the ones driving direct neuronal reprogramming,we also discuss the current advances in in vitro and in vivo direct neuronal reprogramming approaches that have employed microRNAs or RNA binding proteins as reprogramming factors,highlighting the so far known mechanisms of their reprogramming action. 展开更多
关键词 direct neuronal reprogramming in vivo glia-to-neuron conversion microRNAs NEUROGENESIS post-transcriptional regulation RNA binding proteins
下载PDF
Role of lipids in the control of autophagy and primary cilium signaling in neurons 被引量:1
14
作者 María Paz Hernández-Cáceres Daniela Pinto-Nuñez +5 位作者 Patricia Rivera Paulina Burgos Francisco Díaz-Castro Alfredo Criollo Maria Jose Yañez Eugenia Morselli 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第2期264-271,共8页
The brain is,after the adipose tissue,the organ with the greatest amount of lipids and diversity in their composition in the human body.In neurons,lipids are involved in signaling pathways controlling autophagy,a lyso... The brain is,after the adipose tissue,the organ with the greatest amount of lipids and diversity in their composition in the human body.In neurons,lipids are involved in signaling pathways controlling autophagy,a lysosome-dependent catabolic process essential for the maintenance of neuronal homeostasis and the function of the primary cilium,a cellular antenna that acts as a communication hub that transfers extracellular signals into intracellular responses required for neurogenesis and brain development.A crosstalk between primary cilia and autophagy has been established;however,its role in the control of neuronal activity and homeostasis is barely known.In this review,we briefly discuss the current knowledge regarding the role of autophagy and the primary cilium in neurons.Then we review the recent literature about specific lipid subclasses in the regulation of autophagy,in the control of primary cilium structure and its dependent cellular signaling in physiological and pathological conditions,specifically focusing on neurons,an area of research that could have major implications in neurodevelopment,energy homeostasis,and neurodegeneration. 展开更多
关键词 autophagic flux CHOLESTEROL fatty acids GPCR lysosomal storage diseases neuronS NPC1 PHOSPHOINOSITIDES primary cilium
下载PDF
Single-neuron neurodegeneration as a degenerative model for Parkinson’s disease 被引量:2
15
作者 Sandro Huenchuguala Juan Segura-Aguilar 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第3期529-535,共7页
The positive effect of levodopa in the treatment of Parkinson’s disease,although it is limited in time and has severe side effects,has encouraged the scientific community to look for new drugs that can stop the neuro... The positive effect of levodopa in the treatment of Parkinson’s disease,although it is limited in time and has severe side effects,has encouraged the scientific community to look for new drugs that can stop the neurodegenerative process or even regenerate the neuromelanin-containing dopaminergic nigrostriatal neurons.Successful preclinical studies with coenzyme Q10,mitoquinone,isradipine,nilotinib,TCH346,neurturin,zonisamide,deferiprone,prasinezumab,and cinpanemab prompted clinical trials.However,these failed and after more than 50 years levodopa continues to be the key drug in the treatment of the disease,despite its severe side effects after 4–6 years of chronic treatment.The lack of translated successful results obtained in preclinical investigations based on the use of neurotoxins that do not exist in the human body as new drugs for Parkinson’s disease treatment is a big problem.In our opinion,the cause of these failures lies in the experimental animal models involving neurotoxins that do not exist in the human body,such as 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and 6-hydroxydopamine,that induce a very fast,massive and expansive neurodegenerative process,which contrasts with the extremely slow one of neuromelanin-containing dopaminergic neurons.The exceedingly slow progress of the neurodegenerative process of the nigrostriatal neurons in idiopathic Parkinson’s patients is due to(i)a degenerative model in which the neurotoxic effect of an endogenous neurotoxin affects a single neuron,(ii)a neurotoxic event that is not expansive and(iii)the fact that the neurotoxin that triggers the neurodegenerative process is produced inside the neuromelanin-containing dopaminergic neurons.The endogenous neurotoxin that fits this degenerative model involving one single neuron at a time is aminochrome,since it(i)is generated within neuromelanin-containing dopaminergic neurons,(ii)does not cause an expansive neurotoxic effect and(iii)triggers all the mechanisms involved in the neurodegenerative process of the nigrostriatal neurons in idiopathic Parkinson’s disease.In conclusion,based on the hypothesis that the neurodegenerative process of idiopathic Parkinson’s disease corresponds to a single-neuron neurodegeneration model,we must search for molecules that increase the expression of the neuroprotective enzymes DT-diaphorase and glutathione transferase M2-2.It has been observed that the activation of the Kelch-like ECH-associated protein 1/nuclear factor(erythroid-derived 2)-like 2 pathway is associated with the transcriptional activation of the DT-diaphorase and glutathione transferase genes. 展开更多
关键词 1-methyl-4-phenyl-1 2 3 6-tetrahydropyridine 6-HYDROXYDOPAMINE aminochrome dopaminergic neurons DT-diaphorase exogenous neurotoxins glutathione transferase M2-2
下载PDF
Transcriptional regulation in the development and dysfunction of neocortical projection neurons 被引量:1
16
作者 Ningxin Wang Rong Wan Ke Tang 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第2期246-254,共9页
Glutamatergic projection neurons generate sophisticated excitatory circuits to integrate and transmit information among different cortical areas,and between the neocortex and other regions of the brain and spinal cord... Glutamatergic projection neurons generate sophisticated excitatory circuits to integrate and transmit information among different cortical areas,and between the neocortex and other regions of the brain and spinal cord.Appropriate development of cortical projection neurons is regulated by certain essential events such as neural fate determination,proliferation,specification,differentiation,migration,survival,axonogenesis,and synaptogenesis.These processes are precisely regulated in a tempo-spatial manner by intrinsic factors,extrinsic signals,and neural activities.The generation of correct subtypes and precise connections of projection neurons is imperative not only to support the basic cortical functions(such as sensory information integration,motor coordination,and cognition)but also to prevent the onset and progression of neurodevelopmental disorders(such as intellectual disability,autism spectrum disorders,anxiety,and depression).This review mainly focuses on the recent progress of transcriptional regulations on the development and diversity of neocortical projection neurons and the clinical relevance of the failure of transcriptional modulations. 展开更多
关键词 autism spectrum disorders COGNITION DIFFERENTIATION excitatory circuits intellectual disability NEOCORTEX neurodevelopmental disorders projection neuron specification transcriptional regulation
下载PDF
Neuronal conversion from glia to replenish the lost neurons 被引量:1
17
作者 Shiyu Liang Jing Zhou +2 位作者 Xiaolin Yu Shuai Lu Ruitian Liu 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第7期1446-1453,共8页
Neuronal injury,aging,and cerebrovascular and neurodegenerative diseases such as cerebral infarction,Alzheimer’s disease,Parkinson’s disease,frontotemporal dementia,amyotrophic lateral sclerosis,and Huntington’s di... Neuronal injury,aging,and cerebrovascular and neurodegenerative diseases such as cerebral infarction,Alzheimer’s disease,Parkinson’s disease,frontotemporal dementia,amyotrophic lateral sclerosis,and Huntington’s disease are characte rized by significant neuronal loss.Unfo rtunately,the neurons of most mammals including humans do not possess the ability to self-regenerate.Replenishment of lost neurons becomes an appealing therapeutic strategy to reve rse the disease phenotype.Transplantation of pluripotent neural stem cells can supplement the missing neurons in the brain,but it carries the risk of causing gene mutation,tumorigenesis,severe inflammation,and obstructive hydrocephalus induced by brain edema.Conversion of neural or non-neural lineage cells into functional neurons is a promising strategy for the diseases involving neuron loss,which may overcome the above-mentioned disadvantages of neural stem cell therapy.Thus far,many strategies to transfo rm astrocytes,fibroblasts,microglia,Muller glia,NG2 cells,and other glial cells to mature and functional neurons,or for the conversion between neuronal subtypes have been developed thro ugh the regulation of transcription factors,polypyrimidine tra ct binding protein 1(PTBP1),and small chemical molecules or are based on a combination of several factors and the location in the central nervous system.However,some recent papers did not obtain expected results,and discrepancies exist.Therefore,in this review,we discuss the history of neuronal transdifferentiation,summarize the strategies for neuronal replenishment and conversion from glia,especially astrocytes,and point out that biosafety,new strategies,and the accurate origin of the truly co nverted neurons in vivo should be focused upon in future studies.It also arises the attention of replenishing the lost neurons from glia by gene therapies such as up-regulation of some transc ription factors or downregulation of PTBP1 or drug interfe rence therapies. 展开更多
关键词 ASTROCYTES neural stem cells neurodegenerative diseases neuron polypyrimidine tract binding protein 1 repair REPROGRAMMING small molecule transcription factor TRANSDIFFERENTIATION
下载PDF
Two-photon live imaging of direct glia-to-neuron conversion in the mouse cortex 被引量:1
18
作者 Zongqin Xiang Shu He +13 位作者 Rongjie Chen Shanggong Liu Minhui Liu Liang Xu Jiajun Zheng Zhouquan Jiang Long Ma Ying Sun Yongpeng Qin Yi Chen Wen Li Xiangyu Wang Gong Chen Wenliang Lei 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第8期1781-1788,共8页
Over the past decade,a growing number of studies have reported transcription factor-based in situ reprogramming that can directly conve rt endogenous glial cells into functional neurons as an alternative approach for ... Over the past decade,a growing number of studies have reported transcription factor-based in situ reprogramming that can directly conve rt endogenous glial cells into functional neurons as an alternative approach for n euro regeneration in the adult mammalian central ne rvous system.Howeve r,many questions remain regarding how a terminally differentiated glial cell can transform into a delicate neuron that forms part of the intricate brain circuitry.In addition,concerns have recently been raised around the absence of astrocyte-to-neuron conversion in astrocytic lineage-tra cing mice.In this study,we employed repetitive two-photon imaging to continuously capture the in situ astrocyte-to-neuron conversion process following ecto pic expression of the neural transcription factor NeuroD1 in both prolife rating reactive astrocytes and lineage-tra ced astrocytes in the mouse cortex.Time-lapse imaging over several wee ks revealed the ste p-by-step transition from a typical astrocyte with numero us short,tapered branches to a typical neuro n with a few long neurites and dynamic growth cones that actively explored the local environment.In addition,these lineage-converting cells were able to migrate ra dially or to ngentially to relocate to suitable positions.Furthermore,two-photon Ca2+imaging and patch-clamp recordings confirmed that the newly generated neuro ns exhibited synchronous calcium signals,repetitive action potentials,and spontaneous synaptic responses,suggesting that they had made functional synaptic connections within local neural circuits.In conclusion,we directly visualized the step-by-step lineage conversion process from astrocytes to functional neurons in vivo and unambiguously demonstrated that adult mammalian brains are highly plastic with respect to their potential for neuro regeneration and neural circuit reconstruction. 展开更多
关键词 astrocyte-to-neuron conversion Ca2+imaging direct lineage conversion GLIA ASTROCYTE in vivo reprogramming lineage-tracing mice NeuroD1 neuron two-photon imaging
下载PDF
Bromocriptine protects perilesional spinal cord neurons from lipotoxicity after spinal cord injury 被引量:1
19
作者 Ying Peng Zhuoxuan Li +7 位作者 Zhiyang Zhang Yinglun Chen Renyuan Wang Nixi Xu Yuanwu Cao Chang Jiang Zixian Chen Haodong Lin 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第5期1142-1149,共8页
Recent studies have revealed that lipid droplets accumulate in neurons after brain injury and evoke lipotoxicity,damaging the neurons.However,how lipids are metabolized by spinal cord neurons after spinal cord injury ... Recent studies have revealed that lipid droplets accumulate in neurons after brain injury and evoke lipotoxicity,damaging the neurons.However,how lipids are metabolized by spinal cord neurons after spinal cord injury remains unclear.Herein,we investigated lipid metabolism by spinal cord neurons after spinal cord injury and identified lipid-lowering compounds to treat spinal cord injury.We found that lipid droplets accumulated in perilesional spinal cord neurons after spinal cord injury in mice.Lipid droplet accumulation could be induced by myelin debris in HT22 cells.Myelin debris degradation by phospholipase led to massive free fatty acid production,which increased lipid droplet synthesis,β-oxidation,and oxidative phosphorylation.Excessive oxidative phosphorylation increased reactive oxygen species generation,which led to increased lipid peroxidation and HT22 cell apoptosis.Bromocriptine was identified as a lipid-lowering compound that inhibited phosphorylation of cytosolic phospholipase A2 by reducing the phosphorylation of extracellular signal-regulated kinases 1/2 in the mitogen-activated protein kinase pathway,thereby inhibiting myelin debris degradation by cytosolic phospholipase A2 and alleviating lipid droplet accumulation in myelin debris-treated HT22 cells.Motor function,lipid droplet accumulation in spinal cord neurons and neuronal survival were all improved in bromocriptine-treated mice after spinal cord injury.The results suggest that bromocriptine can protect neurons from lipotoxic damage after spinal cord injury via the extracellular signal-regulated kinases 1/2-cytosolic phospholipase A2 pathway. 展开更多
关键词 BROMOCRIPTINE central nervous system cytosolic phospholipase A2 high-content screening lipid droplet lipid metabolism LIPOTOXICITY mitogen-activated protein kinase spinal cord injury spinal cord neurons
下载PDF
Advances in memristor based artificial neuron fabrication-materials,models,and applications
20
作者 Jingyao Bian Zhiyong Liu +5 位作者 Ye Tao Zhongqiang Wang Xiaoning Zhao Ya Lin Haiyang Xu Yichun Liu 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第1期27-50,共24页
Spiking neural network(SNN),widely known as the third-generation neural network,has been frequently investigated due to its excellent spatiotemporal information processing capability,high biological plausibility,and l... Spiking neural network(SNN),widely known as the third-generation neural network,has been frequently investigated due to its excellent spatiotemporal information processing capability,high biological plausibility,and low energy consumption characteristics.Analogous to the working mechanism of human brain,the SNN system transmits information through the spiking action of neurons.Therefore,artificial neurons are critical building blocks for constructing SNN in hardware.Memristors are drawing growing attention due to low consumption,high speed,and nonlinearity characteristics,which are recently introduced to mimic the functions of biological neurons.Researchers have proposed multifarious memristive materials including organic materials,inorganic materials,or even two-dimensional materials.Taking advantage of the unique electrical behavior of these materials,several neuron models are successfully implemented,such as Hodgkin–Huxley model,leaky integrate-and-fire model and integrate-and-fire model.In this review,the recent reports of artificial neurons based on memristive devices are discussed.In addition,we highlight the models and applications through combining artificial neuronal devices with sensors or other electronic devices.Finally,the future challenges and outlooks of memristor-based artificial neurons are discussed,and the development of hardware implementation of brain-like intelligence system based on SNN is also prospected. 展开更多
关键词 artificial neuron MEMRISTOR memristive materials neuron model micro-nano manufacturing spiking neural network
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部