The North China Plain,where summer corn(Zea mays L.)and winter wheat(Triticum aestivum L.)are the major crops grown,is a major agricultural area in China.Permeable soils make the region susceptible to groundwater poll...The North China Plain,where summer corn(Zea mays L.)and winter wheat(Triticum aestivum L.)are the major crops grown,is a major agricultural area in China.Permeable soils make the region susceptible to groundwater pollution by NO_3-N,which is applied to fields in large amounts of more than 400 kg NO_3-N ha^(-1)as fertilizer.A field experiment was established in 2002 to examine the relationship among N fertilization rate,soil NO_3-N,and NO_3-N groundwater contamination.Two adjacent fields were fertilized with local farmers' N fertilization rate(LN)and double the normal application rate(HN),respectively,and managed under otherwise identical conditions.The fields were under a traditional summer corn/winter wheat rotation.Over a 22-month period,we monitored NO_3-N concentrations in both bulk soil and soil pore water in 20-40 cm increments up to 180 cm depth.We also monitored NO_3-N concentrations in groundwater and the depth of the groundwater table.No significant differences in soil NO_3-N were observed between the LN and HN treatment.We identified NO_3-N plumes moving downward through the soil profile.The HN treatment resulted in significantly higher groundwater NO_3-N,relative to the LN treatment,with groundwater NO_3-N consistently exceeding the maximum safe level of 10 mg L^(-1),but groundwater NO_3-N above the maximum safe level was also observed in the LN treatment after heavy rain.Heavy rain in June,July,and August 2003 caused increased NO_3-N leaching through the soil and elevated NO_3-N concentrations in the groundwater.Concurrent rise of the groundwater table into NO_3-N- rich soil layers also contributed to the increased NO_3-N concentrations in the groundwater.Our results indicate that under conditions of average rainfall,soil NO_3-N was accumulated in the soil profile.The subsequent significantly higher- than-average rainfalls continuously flushed the soil NO_3-N into deeper layers and raised the groundwater table,which caused continuous groundwater contamination with NO_3-N.The results suggest that under common farming practices in the North China Plain,groundwater contamination with NO_3-N was likely,especially during heavy rainfalls,and the degree of groundwater contamination appeared to be proportional to the N application rates.Decreasing fertilization rates, splitting fertilizer inputs,and optimizing irrigation scheduling had potential to reduce groundwater NO_3-N contamination.展开更多
A field experiment about effects of nitrogen application rates and different NO3-N to NH4-N ratios on agronomic, chemical and biological characteristics as well as yield and quality of flue-cured tobacco grown in a bl...A field experiment about effects of nitrogen application rates and different NO3-N to NH4-N ratios on agronomic, chemical and biological characteristics as well as yield and quality of flue-cured tobacco grown in a black soil was conducted from 2004 to 2005 in Heilongjiang Province. The results showed that the nitrogen application rates at 45 kg·hm^-2 with the ratio of 75% NO3-N to 25% NH4-N resulted in the highest potassium and reducing sugar contents in the flue-cured tobacco leaving with the highest quality grade and value. It is recommended that this ni- trogen application rate and NO3-N to NH4-N ratio should be widely applied on flue-cured tobacco grown in the black soil in Heilongjiang Province.展开更多
基金Project supported by the Knowledge Innovation Program of the Chinese Academy of Sciences(No.kzc x2-yw-406)the National Basic Research Program of China(No.2005CB121103).
文摘The North China Plain,where summer corn(Zea mays L.)and winter wheat(Triticum aestivum L.)are the major crops grown,is a major agricultural area in China.Permeable soils make the region susceptible to groundwater pollution by NO_3-N,which is applied to fields in large amounts of more than 400 kg NO_3-N ha^(-1)as fertilizer.A field experiment was established in 2002 to examine the relationship among N fertilization rate,soil NO_3-N,and NO_3-N groundwater contamination.Two adjacent fields were fertilized with local farmers' N fertilization rate(LN)and double the normal application rate(HN),respectively,and managed under otherwise identical conditions.The fields were under a traditional summer corn/winter wheat rotation.Over a 22-month period,we monitored NO_3-N concentrations in both bulk soil and soil pore water in 20-40 cm increments up to 180 cm depth.We also monitored NO_3-N concentrations in groundwater and the depth of the groundwater table.No significant differences in soil NO_3-N were observed between the LN and HN treatment.We identified NO_3-N plumes moving downward through the soil profile.The HN treatment resulted in significantly higher groundwater NO_3-N,relative to the LN treatment,with groundwater NO_3-N consistently exceeding the maximum safe level of 10 mg L^(-1),but groundwater NO_3-N above the maximum safe level was also observed in the LN treatment after heavy rain.Heavy rain in June,July,and August 2003 caused increased NO_3-N leaching through the soil and elevated NO_3-N concentrations in the groundwater.Concurrent rise of the groundwater table into NO_3-N- rich soil layers also contributed to the increased NO_3-N concentrations in the groundwater.Our results indicate that under conditions of average rainfall,soil NO_3-N was accumulated in the soil profile.The subsequent significantly higher- than-average rainfalls continuously flushed the soil NO_3-N into deeper layers and raised the groundwater table,which caused continuous groundwater contamination with NO_3-N.The results suggest that under common farming practices in the North China Plain,groundwater contamination with NO_3-N was likely,especially during heavy rainfalls,and the degree of groundwater contamination appeared to be proportional to the N application rates.Decreasing fertilization rates, splitting fertilizer inputs,and optimizing irrigation scheduling had potential to reduce groundwater NO_3-N contamination.
文摘A field experiment about effects of nitrogen application rates and different NO3-N to NH4-N ratios on agronomic, chemical and biological characteristics as well as yield and quality of flue-cured tobacco grown in a black soil was conducted from 2004 to 2005 in Heilongjiang Province. The results showed that the nitrogen application rates at 45 kg·hm^-2 with the ratio of 75% NO3-N to 25% NH4-N resulted in the highest potassium and reducing sugar contents in the flue-cured tobacco leaving with the highest quality grade and value. It is recommended that this ni- trogen application rate and NO3-N to NH4-N ratio should be widely applied on flue-cured tobacco grown in the black soil in Heilongjiang Province.