Peer-to-peer (P2P) lending offers an alternative way to access credit. Unlike established lending institutions with proven credit risk management practices, P2P platforms rely on numerous independent variables to eval...Peer-to-peer (P2P) lending offers an alternative way to access credit. Unlike established lending institutions with proven credit risk management practices, P2P platforms rely on numerous independent variables to evaluate loan applicants’ creditworthiness. This study aims to estimate default probabilities using a mixture-of-experts neural network in P2P lending. The approach involves coupling unsupervised clustering to capture essential data properties with a classification algorithm based on the mixture-of-experts structure. This classic design enhances model capacity without significant computational overhead. The model was tested using P2P data from Lending Club, comparing it to other methods like Logistic Regression, AdaBoost, Gradient Boosting, Decision Tree, Support Vector Machine, and Random Forest. The hybrid model demonstrated superior performance, with a Mean Squared Error reduction of at least 25%.展开更多
The Self-Organizing Map (SOM) is an unsupervised neural network algorithm that projects high-dimensional data onto a two-dimensional map. The projection preserves the topology of the data so that similar data items wi...The Self-Organizing Map (SOM) is an unsupervised neural network algorithm that projects high-dimensional data onto a two-dimensional map. The projection preserves the topology of the data so that similar data items will be mapped to nearby locations on the map. One of the SOM neural network’s applications is clustering of animals due their features. In this paper we produce an experiment to analyze the SOM in clustering different species of animals.展开更多
This paper advances a new approach based on wavelet and wavelet packet transforms in tandem with a fuzzy cluster neural network,abbreviated WPFCNN.Wavelets and wavelet packets decompose a vibration signal into differe...This paper advances a new approach based on wavelet and wavelet packet transforms in tandem with a fuzzy cluster neural network,abbreviated WPFCNN.Wavelets and wavelet packets decompose a vibration signal into different bands at different levels and provides multiresolution or multiscale views of a signal which is stationary or nonstationary. Fuzzy mathematics processes uncertain problems in engineering and converts the attributes extracted by wavelet packets to fuzzy membership degree.To achieve self-organizing classification,the MAXNET neural network is employed.WPFCNN integrates the advantages of wavelet packets and fuzzy cluster with MAXNET.The approach is adopted to process and classify vibration signal of a NH_3 compressor in a petrochemical plant.The results indicate that it is a useful and effective intelligence classification in the field of condition monitoring and fault diagnosis.展开更多
In this paper, a combination of data clustering and artificial intelligence techniques are used to predict incoming solar radiation on a daily basis. The data clustering technique known as Perceptually Important Point...In this paper, a combination of data clustering and artificial intelligence techniques are used to predict incoming solar radiation on a daily basis. The data clustering technique known as Perceptually Important Points is proposed, where time-series data is grouped into clusters separated by key characteristic points, which are later used as training data for an artificial neural network. The type of network used is known as a Focused Time-Delay Neural Network, and an analysis of the data is performed using the Mean Absolute Percentage Error scheme.展开更多
The three speciations(water extract, adsorption and organic speciations) of Cu, Zn, Fe and Mn in geo-chemical samples were determined by fuzzy cluster-artificial neural network(FC-ANN) method coupled with atomic a...The three speciations(water extract, adsorption and organic speciations) of Cu, Zn, Fe and Mn in geo-chemical samples were determined by fuzzy cluster-artificial neural network(FC-ANN) method coupled with atomic absorption spectrometry. A back-propagation artificial neural network with one input node and three export nodes was constructed, which could forecaste three speciations of heavy metals simultaneously. In the learning sample set, the three speciations of each element were allowed to change in a wide concentration range and the accuracy of the analysis was apparently increased via the learning sample set optimized with the help of the fuzzy cluster analysis. The average relative errors of the three speciations of Cu, Zn, Fe or Mn from 100 geo-chemical samples were less than 5%. The relative standard deviations of the three speciations of each of four heavy metals were 0.008%―4.43%.展开更多
The slagging/fouling due to the accession of fireside deposits on the steam boilers decreases boiler efficiency and availability which leads to unexpected shut-downs. Since it is inevitably associated with the three m...The slagging/fouling due to the accession of fireside deposits on the steam boilers decreases boiler efficiency and availability which leads to unexpected shut-downs. Since it is inevitably associated with the three major factors namely the fuel characteristics, boiler operating conditions and ash behavior, this serious slagging/fouling may be reduced by varying the above three factors. The research develops a generic slagging/fouling prediction tool based on hybrid fuzzy clustering and Artificial Neural Networks (FCANN). The FCANN model presents a good accuracy of 99.85% which makes this model fast in response and easy to be updated with lesser time when compared to single ANN. The comparison between predictions and observations is found to be satisfactory with less input parameters. This should be capable of giving relatively quick responses while being easily implemented for various furnace types.展开更多
To improve the recognition rate of signal modulation recognition methods based on the clustering algorithm under the low SNR, a modulation recognition method is proposed. The characteristic parameter of the signal is ...To improve the recognition rate of signal modulation recognition methods based on the clustering algorithm under the low SNR, a modulation recognition method is proposed. The characteristic parameter of the signal is extracted by using a clustering algorithm, the neural network is trained by using the algorithm of variable gradient correction (Polak-Ribiere) so as to enhance the rate of convergence, improve the performance of recognition under the low SNR and realize modulation recognition of the signal based on the modulation system of the constellation diagram. Simulation results show that the recognition rate based on this algorithm is enhanced over 30% compared with the methods that adopt clustering algorithm or neural network based on the back propagation algorithm alone under the low SNR. The recognition rate can reach 90% when the SNR is 4 dB, and the method is easy to be achieved so that it has a broad application prospect in the modulating recognition.展开更多
Drill wear not only affects the surface smoothness of the hole, but also influences the life of the drill. Drill wear state recognition is important in the manufacturing process, which consists of two steps: first, d...Drill wear not only affects the surface smoothness of the hole, but also influences the life of the drill. Drill wear state recognition is important in the manufacturing process, which consists of two steps: first, decomposing cutting torque components from the original signals by wavelet packet decomposition (WPD); second, extracting wavelet coefficients of different wear states (i.e., slight, normal, or severe wear) with signal features adapting to Welch spectrum. Finally, monitoring and recognition of the feature vectors of cutting torque signal are performed by using the K-means cluster and radial basis function neural network (RBFNN). The experiments on different tool wears of the multivariable features reveal that the results of monitoring and recognition are significant and effective.展开更多
文摘Peer-to-peer (P2P) lending offers an alternative way to access credit. Unlike established lending institutions with proven credit risk management practices, P2P platforms rely on numerous independent variables to evaluate loan applicants’ creditworthiness. This study aims to estimate default probabilities using a mixture-of-experts neural network in P2P lending. The approach involves coupling unsupervised clustering to capture essential data properties with a classification algorithm based on the mixture-of-experts structure. This classic design enhances model capacity without significant computational overhead. The model was tested using P2P data from Lending Club, comparing it to other methods like Logistic Regression, AdaBoost, Gradient Boosting, Decision Tree, Support Vector Machine, and Random Forest. The hybrid model demonstrated superior performance, with a Mean Squared Error reduction of at least 25%.
文摘The Self-Organizing Map (SOM) is an unsupervised neural network algorithm that projects high-dimensional data onto a two-dimensional map. The projection preserves the topology of the data so that similar data items will be mapped to nearby locations on the map. One of the SOM neural network’s applications is clustering of animals due their features. In this paper we produce an experiment to analyze the SOM in clustering different species of animals.
基金This project was supported by National Natural Science Foundation of China
文摘This paper advances a new approach based on wavelet and wavelet packet transforms in tandem with a fuzzy cluster neural network,abbreviated WPFCNN.Wavelets and wavelet packets decompose a vibration signal into different bands at different levels and provides multiresolution or multiscale views of a signal which is stationary or nonstationary. Fuzzy mathematics processes uncertain problems in engineering and converts the attributes extracted by wavelet packets to fuzzy membership degree.To achieve self-organizing classification,the MAXNET neural network is employed.WPFCNN integrates the advantages of wavelet packets and fuzzy cluster with MAXNET.The approach is adopted to process and classify vibration signal of a NH_3 compressor in a petrochemical plant.The results indicate that it is a useful and effective intelligence classification in the field of condition monitoring and fault diagnosis.
文摘In this paper, a combination of data clustering and artificial intelligence techniques are used to predict incoming solar radiation on a daily basis. The data clustering technique known as Perceptually Important Points is proposed, where time-series data is grouped into clusters separated by key characteristic points, which are later used as training data for an artificial neural network. The type of network used is known as a Focused Time-Delay Neural Network, and an analysis of the data is performed using the Mean Absolute Percentage Error scheme.
基金Supported by the National Natural Science Foundation of China(No.29975004)
文摘The three speciations(water extract, adsorption and organic speciations) of Cu, Zn, Fe and Mn in geo-chemical samples were determined by fuzzy cluster-artificial neural network(FC-ANN) method coupled with atomic absorption spectrometry. A back-propagation artificial neural network with one input node and three export nodes was constructed, which could forecaste three speciations of heavy metals simultaneously. In the learning sample set, the three speciations of each element were allowed to change in a wide concentration range and the accuracy of the analysis was apparently increased via the learning sample set optimized with the help of the fuzzy cluster analysis. The average relative errors of the three speciations of Cu, Zn, Fe or Mn from 100 geo-chemical samples were less than 5%. The relative standard deviations of the three speciations of each of four heavy metals were 0.008%―4.43%.
文摘The slagging/fouling due to the accession of fireside deposits on the steam boilers decreases boiler efficiency and availability which leads to unexpected shut-downs. Since it is inevitably associated with the three major factors namely the fuel characteristics, boiler operating conditions and ash behavior, this serious slagging/fouling may be reduced by varying the above three factors. The research develops a generic slagging/fouling prediction tool based on hybrid fuzzy clustering and Artificial Neural Networks (FCANN). The FCANN model presents a good accuracy of 99.85% which makes this model fast in response and easy to be updated with lesser time when compared to single ANN. The comparison between predictions and observations is found to be satisfactory with less input parameters. This should be capable of giving relatively quick responses while being easily implemented for various furnace types.
基金supported by the National Natural Science Foundation of China(6107207061301179)the National Science and Technology Major Project(2010ZX03006-002-04)
文摘To improve the recognition rate of signal modulation recognition methods based on the clustering algorithm under the low SNR, a modulation recognition method is proposed. The characteristic parameter of the signal is extracted by using a clustering algorithm, the neural network is trained by using the algorithm of variable gradient correction (Polak-Ribiere) so as to enhance the rate of convergence, improve the performance of recognition under the low SNR and realize modulation recognition of the signal based on the modulation system of the constellation diagram. Simulation results show that the recognition rate based on this algorithm is enhanced over 30% compared with the methods that adopt clustering algorithm or neural network based on the back propagation algorithm alone under the low SNR. The recognition rate can reach 90% when the SNR is 4 dB, and the method is easy to be achieved so that it has a broad application prospect in the modulating recognition.
文摘Drill wear not only affects the surface smoothness of the hole, but also influences the life of the drill. Drill wear state recognition is important in the manufacturing process, which consists of two steps: first, decomposing cutting torque components from the original signals by wavelet packet decomposition (WPD); second, extracting wavelet coefficients of different wear states (i.e., slight, normal, or severe wear) with signal features adapting to Welch spectrum. Finally, monitoring and recognition of the feature vectors of cutting torque signal are performed by using the K-means cluster and radial basis function neural network (RBFNN). The experiments on different tool wears of the multivariable features reveal that the results of monitoring and recognition are significant and effective.