期刊文献+
共找到14篇文章
< 1 >
每页显示 20 50 100
Axonal growth inhibitors and their receptors in spinal cord injury:from biology to clinical translation 被引量:2
1
作者 Sílvia Sousa Chambel Célia Duarte Cruz 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第12期2573-2581,共9页
Axonal growth inhibitors are released during traumatic injuries to the adult mammalian central nervous system, including after spinal cord injury. These molecules accumulate at the injury site and form a highly inhibi... Axonal growth inhibitors are released during traumatic injuries to the adult mammalian central nervous system, including after spinal cord injury. These molecules accumulate at the injury site and form a highly inhibitory environment for axonal regeneration. Among these inhibitory molecules, myelinassociated inhibitors, including neurite outgrowth inhibitor A, oligodendrocyte myelin glycoprotein, myelin-associated glycoprotein, chondroitin sulfate proteoglycans and repulsive guidance molecule A are of particular importance. Due to their inhibitory nature, they represent exciting molecular targets to study axonal inhibition and regeneration after central injuries. These molecules are mainly produced by neurons, oligodendrocytes, and astrocytes within the scar and in its immediate vicinity. They exert their effects by binding to specific receptors, localized in the membranes of neurons. Receptors for these inhibitory cues include Nogo receptor 1, leucine-rich repeat, and Ig domain containing 1 and p75 neurotrophin receptor/tumor necrosis factor receptor superfamily member 19(that form a receptor complex that binds all myelin-associated inhibitors), and also paired immunoglobulin-like receptor B. Chondroitin sulfate proteoglycans and repulsive guidance molecule A bind to Nogo receptor 1, Nogo receptor 3, receptor protein tyrosine phosphatase σ and leucocyte common antigen related phosphatase, and neogenin, respectively. Once activated, these receptors initiate downstream signaling pathways, the most common amongst them being the Rho A/ROCK signaling pathway. These signaling cascades result in actin depolymerization, neurite outgrowth inhibition, and failure to regenerate after spinal cord injury. Currently, there are no approved pharmacological treatments to overcome spinal cord injuries other than physical rehabilitation and management of the array of symptoms brought on by spinal cord injuries. However, several novel therapies aiming to modulate these inhibitory proteins and/or their receptors are under investigation in ongoing clinical trials. Investigation has also been demonstrating that combinatorial therapies of growth inhibitors with other therapies, such as growth factors or stem-cell therapies, produce stronger results and their potential application in the clinics opens new venues in spinal cord injury treatment. 展开更多
关键词 chondroitin sulphate proteoglycans collapsin response mediator protein 2 inhibitory molecules leucine-rich repeat and Ig domain containing 1 leucocyte common antigen related myelin-associated glycoprotein neurite outgrowth inhibitor A Nogo receptor 1 Nogo receptor 3 oligodendrocyte myelin glycoprotein p75 neurotrophin receptor Plexin A2 Ras homolog family member A/Rho-associated protein kinase receptor protein tyrosine phosphataseσ repulsive guidance molecule A spinal cord injury tumour necrosis factor receptor superfamily member 19
下载PDF
Neurotrophins and their receptors in satellite glial cells following nerve injury
2
作者 Christian Bjerggaard Vaegter 《Neural Regeneration Research》 SCIE CAS CSCD 2014年第23期2038-2039,共2页
Peripheral neuropathy is a condition where damage resulting from mechanical or pathological mechanisms is inflicted on nerves within the peripheral nervous system (PNS). Physical injury is the most common cause and ... Peripheral neuropathy is a condition where damage resulting from mechanical or pathological mechanisms is inflicted on nerves within the peripheral nervous system (PNS). Physical injury is the most common cause and may result in nerves being partially or completely severed, crushed, compressed or stretched. Other causes include metabolic or endocrine disorders, with e.g., 展开更多
关键词 cell NGF SGC neurotrophins and their receptors in satellite glial cells following nerve injury
下载PDF
Expression of nerve growth factor precursor, mature nerve growth factor and their receptors during cerebral ischemia-reperfusion injury 被引量:3
3
作者 Guoqian He Jian Guo +4 位作者 Jiachuan Duan Wenming Xu Ning Chen Hongxia Li Li He 《Neural Regeneration Research》 SCIE CAS CSCD 2011年第22期1701-1708,共8页
We investigated nerve growth factor precursor (proNGF) and mature NGF expression in ischemic and non-ischemic cortices after cerebral ischemia-reperfusion injury. In both ischemic and non-ischemic cortices, proNGF w... We investigated nerve growth factor precursor (proNGF) and mature NGF expression in ischemic and non-ischemic cortices after cerebral ischemia-reperfusion injury. In both ischemic and non-ischemic cortices, proNGF was found to be present in the extracellular space and cytoplasm. In addition, mature NGF was expressed in extracellular space, but with a very low signal. In ischemic cortex only, proNGF was significantly decreased, reaching a minimal level at 1 day. Mature NGF was increased at 4 hours, then reached a minimal level at 3 days. The p75 neurotrophin receptor (p75NTR) was significantly decreased after ischemia, and increased at 3 days after ischemia. These results confirmed that proNGF was the predominant form of NGF during the pathological process of cerebral ischemia-repeffusion injury. In addition, our findings suggest that ischemic injury may influence the conversion of proNGF to mature NGF, and that proNGF/p75NTR may be involved in reperfusion injury. 展开更多
关键词 cerebral ischemia-reperfusion injury nerve growth factor precursor mature nerve growth factor p75 neurotrophin receptor cell apoptosis
下载PDF
Cellular response toβ-amyloid neurotoxicity in Alzheimer's disease and implications in new therapeutics 被引量:1
4
作者 Haolin Zhang Xianghua Li +3 位作者 Xiaoli Wang Jiayu Xu Felice Elefant Juan Wang 《Animal Models and Experimental Medicine》 CAS CSCD 2023年第1期3-9,共7页
β-Amyloid(Aβ)is a specific pathological hallmark of Alzheimer's disease(AD).Because of its neurotoxicity,AD patients exhibit multiple brain dysfunctions.Disease-modifying therapy(DMT)is the central concept in th... β-Amyloid(Aβ)is a specific pathological hallmark of Alzheimer's disease(AD).Because of its neurotoxicity,AD patients exhibit multiple brain dysfunctions.Disease-modifying therapy(DMT)is the central concept in the development of AD thera-peutics today,and most DMT drugs that are currently in clinical trials are anti-Aβdrugs,such as aducanumab and lecanemab.Therefore,understanding Aβ's neurotoxic mechanism is crucial for Aβ-targeted drug development.Despite its total length of only a few dozen amino acids,Aβis incredibly diverse.In addition to the well-known Aβ_(1-42),N-terminally truncated,glutaminyl cyclase(QC)catalyzed,and pyroglutamate-modified Aβ(pEAβ)is also highly amyloidogenic and far more cytotoxic.The extracel-lular monomeric Aβ_(x-42)(x=1-11)initiates the aggregation to form fibrils and plaques and causes many abnormal cellular responses through cell membrane receptors and receptor-coupled signal pathways.These signal cascades further influence many cel-lular metabolism-related processes,such as gene expression,cell cycle,and cell fate,and ultimately cause severe neural cell damage.However,endogenous cellular anti-Aβdefense processes always accompany the Aβ-induced microenvironment alterations.Aβ-cleaving endopeptidases,Aβ-degrading ubiquitin-proteasome system(UPS),and Aβ-engulfing glial cell immune responses are all essential self-defense mechanisms that we can leverage to develop new drugs.This review discusses some of the most recent advances in understanding Aβ-centric AD mechanisms and suggests prospects for promising anti-Aβstrategies. 展开更多
关键词 Alzheimer's disease(AD) astrocytes ENDOPEPTIDASE glutaminyl cyclase(QC) microglia p75 neurotrophin receptor(p75NTR) proteolysis targeting chimeras(PROTACs) β-Amyloid(Aβ)
下载PDF
Effects of p75 neurotrophin receptor knockout on axonal regeneration in a mouse model of facial nerve injury 被引量:3
5
作者 Fenghe Zhang Ping Huang +1 位作者 Pishan Yang Xue Zhang 《Neural Regeneration Research》 SCIE CAS CSCD 2009年第8期565-569,共5页
BACKGROUND: Previous studies have shown that p75 neurotrophin receptor plays an important role in peripheral nerve injury. However, the role of p75 neurotrophin receptor in the regeneration of peripheral nerves remai... BACKGROUND: Previous studies have shown that p75 neurotrophin receptor plays an important role in peripheral nerve injury. However, the role of p75 neurotrophin receptor in the regeneration of peripheral nerves remains poorly understood. OBJECTIVE: To study the effect of p75 neurotrophin receptor on facial nerve regeneration. DESIGN, TIME AND SETTING: A randomized controlled experiment was performed in the Regeneration Laboratory of Flinders University, Australia and the Biomedical Laboratory of Dentistry School, Shandong University from March 2005 to February 2006. MATERIALS: Cholera toxin B subunit, fast blue, and biotin rabbit-anti goat IgG were provided by Sigma, USA; goat-anti choleratoxin B subunit ant/body was provided by List Biologicals, USA. METHODS: In p75 neurotrophin receptor knockout and wild type 129/sv mice, the facial nerves on one side were crushed. At days 2 and 4 following injury, regenerating motor neurons in the facial nuclei were labeled by fast blue, and the regenerating axon was labeled by the anterograde tracer choleratoxin B subunit. MAIN OUTCOME MEASURES: Axonal regenerative velocity and number were detected by immunohistochemical staining of choleratoxin B subunit, growth-associated protein, protein gene product 9.5, and calcitonin-gene-related peptide; survival of motor neurons in the facial nuclei was detected by retrograde fast blue. RESULTS: Axonal growth in the facial nerve of p75 neurotrophin receptor knockout mice was significantly less than in wild type mice. At day 7 after injury, the number of regenerating motor neurons in p75 neurotrophin receptor knockout mice remained significantly less than in wild type mice (P 〈 0.05). The number of positively stained fibers for growth-associated protein-43, protein gene product 9.5, and calcitonin-gene-related peptide in p75 neurotrophin receptor knockout mice was significantly less than in wild type mice (P 〈 0.01). CONCLUSION: p75 neurotrophin receptor promoted axonal regeneration and enhanced the survival rate of motor neurons following facial nerve injury. 展开更多
关键词 p75 neurotrophin receptors cholera toxin B subunit fast blue REGENERATION MOUSE gene knockout
下载PDF
p75 neurotrophin receptor signal pathway influence on apoptosis in anterior horn neurons of the spinal cord in a rat model of cauda equina compression injury 被引量:1
6
作者 Haopeng Li Jie Chen Xijing He Siyue Xu Yu Liu 《Neural Regeneration Research》 SCIE CAS CSCD 2009年第12期979-985,共7页
BACKGROUND: Studies have demonstrated that cauda equina compression results in apoptosis of motor neurons in the spinal cord. The combination of p75 neurotrophin receptor (p75NTR) and precursor of nerve growth fact... BACKGROUND: Studies have demonstrated that cauda equina compression results in apoptosis of motor neurons in the spinal cord. The combination of p75 neurotrophin receptor (p75NTR) and precursor of nerve growth factor (pro-NGF) expression initiates the apoptotic pathway and induces neuronal apoptosis. However, few reports have focused on the p75-mediated mechanism of neuronal apoptosis following cauda equine compression injury OBJECTIVE: To determine apoptosis of spinal cord neurons and activation of the pro-NGF-p75NTR-JNK(c-Jun N-terminal kinase) signal pathway in rats following cauda equina compression, and to verify experimental outcomes. DESIGN, TIME AND SETTING: A randomized, controlled, in vivo experiment was performed at the Medical Experimental Center of Xi'an Jiaotong University between April and November in 2008. MATERIALS: Streptavidin-perosidase kit was purchased from Wuhan Boster, China; in situ end labeling detection kit was provided by Promega, USA; type AEG-220G electron microscope was purchased from Hitachi, Japan. METHODS: A total of 48 healthy, adult, female, Sprague Dawley rats were randomly assigned to three groups: normal (n = 6), sham-surgery (n = 6), and compression (n = 36). The compression group was randomly assigned to six subsets at 1,3, 5, 7, 14, and 28 days, respectively, with 6 rats in each subset. A cylindrical silica gel stick was implanted into the rats to compress 75% of the vertebral canal in the compression group; in the sham-surgery group, only vertebral resection was performed; and no procedures were performed in the normal group. MAIN OUTCOME MEASURES: At 1,3, 5, 7, 14, and 28 days following compression, L2-3 spinal cord segments were processed for immunohistochemistry, in situ cell apoptosis detection, and transmission electron microscopy observation. Nissl staining was used to observe neuronal survival in the L2 spinal cord segment. Immunohistochemistry was applied to detect expressions of pro-NGF, p75NTR, and JNK in the L2 segment. TUNEL fluorometric method was used to observe apoptosis of neurons in the L2 segment. RESULTS: In the normal and sham-surgery groups, little neuronal apoptosis was observed in the L2-3 spinal cord segment. At 3 days after compression injury, pro-NGF, p75NTR and JNK expression was observed in the spinal cord. Expression levels reached a peak at 7 days, and then gradually decreased. In the compression and sham-surgery groups, neurons primarily expressed pro-NGF and p75NTR. The number of JNK-positive neurons in the compression group was dramatically increased compared with the sham-surgery group (P〈 0.05). A few neurons were apoptotic in the spinal cord 1 day after compression injury. The number of apoptotic neurons gradually increased and reached a peak at 7 days, and subsequently decreased. Apoptosis was still detectable at 28 days. There was a positive correlation between p75NTR expression and neuronal apoptosis (r= 0.75, P〈 0.05). CONCLUSION: Following cauda equina compression injury, apoptosis of spinal cord neurons was observed. The compression-induced neuronal apoptosis was associated with p75NTR expression in the L2-3 spinal cord segment. 展开更多
关键词 cauda equina syndrome p75 neurotrophin receptor spinal cord NEURONS APOPTOSIS anterior horn
下载PDF
Role of the nerve growth factor precursor-neurotrophin receptor p75 and sortilin pathway on apoptosis in the brain of patients with intracerebral hemorrhage 被引量:1
7
作者 Gang Bao Qi Li +5 位作者 Yuliang Han Ning Wang Shiwen Guo Jinning Song Baixiang He Kai Wang 《Neural Regeneration Research》 SCIE CAS CSCD 2011年第22期1696-1700,共5页
This study demonstrated that brain areas surrounding the site of hematoma following intracerebral hemorrhage are characterized by significantly increased apoptosis and expression of neurotrophin receptor p75 and sorti... This study demonstrated that brain areas surrounding the site of hematoma following intracerebral hemorrhage are characterized by significantly increased apoptosis and expression of neurotrophin receptor p75 and sortilin. However, as detected by terminal deoxynucleotidyl transferase dUTP nick end labeling and immunohistochemical staining, there was no significant change in nerve growth factor precursor expression levels. The appearance of neurotrophin receptor p75 expressing cells was positively correlated with cells that were detected by terminal deoxynucleotidyl transferase dUTP nick end labeling. These findings confirm that the nerve growth factor precursor-neurotrophin receptor p75-sortilin heterotrimeric complex-mediated apoptosis pathway may play an important role in cellular apoptosis following intracerebral hemorrhage. 展开更多
关键词 intracerebral hemorrhage cellular apoptosis nerve growth factor precursor neurotrophin receptor p75 SORTILIN
下载PDF
Biodegradable magnesium wire promotes regeneration of compressed sciatic nerves 被引量:3
8
作者 Bo-han Li Ke Yang Xiao Wang 《Neural Regeneration Research》 SCIE CAS CSCD 2016年第12期2012-2017,共6页
Magnesium(Mg) wire has been shown to be biodegradable and have anti-inflammatory properties. It can induce Schwann cells to secrete nerve growth factor and promote the regeneration of nerve axons after central nervo... Magnesium(Mg) wire has been shown to be biodegradable and have anti-inflammatory properties. It can induce Schwann cells to secrete nerve growth factor and promote the regeneration of nerve axons after central nervous system injury. We hypothesized that biodegradable Mg wire may enhance compressed peripheral nerve regeneration. A rat acute sciatic nerve compression model was made, and AZ31 Mg wire(3 mm diameter; 8 mm length) bridged at both ends of the nerve. Our results demonstrate that sciatic functional index, nerve growth factor, p75 neurotrophin receptor, and tyrosine receptor kinase A m RNA expression are increased by Mg wire in Mg model. The numbers of cross section nerve fibers and regenerating axons were also increased. Sciatic nerve function was improved and the myelinated axon number was increased in injured sciatic nerve following Mg treatment. Immunofluorescence histopathology showed that there were increased vigorous axonal regeneration and myelin sheath coverage in injured sciatic nerve after Mg treatment. Our findings confirm that biodegradable Mg wire can promote the regeneration of acute compressed sciatic nerves. 展开更多
关键词 nerve regeneration peripheral nerve regeneration biodegradable magnesium wire sciatic nerve rats nerve growth factor P75 neurotrophin receptor tyrosine receptor kinase A neural regeneration
下载PDF
Minocycline inhibits the production of the precursor form of nerve growth factor by retinal microglial cells
9
作者 Xiaochun Yang Xuanchu Duan 《Neural Regeneration Research》 SCIE CAS CSCD 2013年第4期320-327,共8页
A rat model of acute ocular hypertension was established by enhancing the perfusion of balanced salt solution in the anterior chamber of the right eye. Minocycline (90 mg/kg) was administered intraperitoneally into ... A rat model of acute ocular hypertension was established by enhancing the perfusion of balanced salt solution in the anterior chamber of the right eye. Minocycline (90 mg/kg) was administered intraperitoneally into rats immediately after the operation for 3 consecutive days. Immunofluorescence, western blot assay and PCR detection revealed that the expression of the precursor form of nerve growth factor, nerve growth factor and the p75 neurotrophin receptor, and the mRNA expression of nerve growth factor and the p75 neurotrophin receptor, increased after acute ocular hypertension. The number of double-labeled CD11B- and precursor form of nerve growth factor-positive cells, glial fibrillary acidic protein- and p75 neurotrophin receptor-positive cells glial fibrillary acidic protein- and caspase-3-positive cells in the retina markedly increased after acute ocular hypertension. The above-described expression decreased after minocycline treatment. These results suggested that minocycline inhibited the increased expression of the precursor form of nerve growth factor in microglia, the p75 neurotrophin receptor in astroglia, and protected cells from apoptosis. 展开更多
关键词 neural regeneration biological factor precursor form of nerve growthfactor p75 neurotrophin receptor MINOCYCLINE apoptosis nerve growth factor acute ocular hypertension retina photographs-containing paper neuroregeneration
下载PDF
Adenovirus-mediated short hairpin RNA interference against p75 neurotrophin receptor in pheochromocytoma cells
10
作者 Dongxu Feng Haopeng Li +2 位作者 Siyue Xu YU Liu Xiaofei Hou 《Neural Regeneration Research》 SCIE CAS CSCD 2011年第7期517-522,共6页
Previous studies have confirmed that motor neuron apoptosis in the anterior horn of the lumbosacral spinal cord is positively correlated with p75 neurotrophin receptor (p75NTR) expression in rat models of cauda equi... Previous studies have confirmed that motor neuron apoptosis in the anterior horn of the lumbosacral spinal cord is positively correlated with p75 neurotrophin receptor (p75NTR) expression in rat models of cauda equina syndrome. This study used adenovirus to carry a short hairpin RNA (shRNA) for p75NTR gene silencing, to reduce p75NTR expression in the damaged phase and to decrease motor neuron apoptosis. Three p75 siRNA template oligonucleotide segments (shRNA) were designed, and cloned into the 1.0 CMV shuttle vector. HEK293 cells were cotransfected with shuttle vector (carrying shRNA) and an adenovirus vector framework expressing enhanced green fluorescent protein. Thus, this study successfully obtained adenovirus carrying p75shRNA. The obtained viruses were named Ad.shRNA1, Ad.shRNA2, and Ad.shRNA3. The recombinant adenoviruses were separately used to infect cultured pheochromocytoma cells (PC12). Forty-eight hours later, p75NTR mRNA and total protein were analyzed from the PC12 cells. Compared with the negative controls, RNA interference rates were separately 98.49 ± 0.68%, 95.08 ± 1.79% and 96.60 ± 1.14% at the mRNA level, and 72.89 ± 2.17%, 58.83 ± 1.15% and 59.88 ± 0.44% at the protein level in the Ad.shRNA1, Ad.shRNA2, and Ad.shRNA3 groups, respectively. Thus, recombinant adenovirus shRNA-mediated gene silencing successfully suppressed p75NTR expression. 展开更多
关键词 p75 neurotrophin receptor RNA interference ADENOVIRUS rat pheochromocytoma cells human embryonic kidney 293 cells APOPTOSIS cauda equina syndrome
下载PDF
3,4-methylenedioxyamphetamine upregulates p75 neurotrophin receptor protein expression in the rat brain
11
作者 Chaomin Wang Zugui Peng Weihong Kuang Hanyu Zheng Jiang Long Xue Wang 《Neural Regeneration Research》 SCIE CAS CSCD 2012年第12期955-959,共5页
The p75 neurotrophin receptor, which is a member of the tumor necrosis factor receptor superfamil facilitates apoptosis during development and following central nervous system injury. Previous studies have shown that ... The p75 neurotrophin receptor, which is a member of the tumor necrosis factor receptor superfamil facilitates apoptosis during development and following central nervous system injury. Previous studies have shown that programmed cell death is likely involved in the neurotoxic effects of 3, 4-methylenedioxy-N-methylamphetamine (MDMA), because MDMA induces apoptosis of immortalized neurons through regulation of proteins belonging to the Bcl-2 family. In the present study, intrapedtoneal injection of different doses of MDMA (20, 50, and 100 mg/kg) induced significant behavioral changes, such as increased excitability, increased activity, and irritability in rats. Moreover, changes exhibited dose-dependent adaptation. Following MDMA injection in rat brain tissue, the number of apoptotic cells dose-dependently increased and p75 neurotrophin receptor expression significantly increased in the prefrontal cortex, cerebellum, and hippocampus. These findings confirmed that MDMA induced neuronal apoptosis, and results suggested that this effect was related by upregulated protein expression of the p75 neurotrophin receptor. 展开更多
关键词 3 4-methylenedioxyamphetamine APOPTOSIS CYTOTOXICITY neural regeneration p75 neurotrophin receptor
下载PDF
Association between p75 neurotrophin receptor gene expression and cell apoptosis in tissues surrounding hematomas in rat models of intracerebral hemorrhage
12
作者 Baixiang He Gang Bao +3 位作者 Shiwen Guo Gaofeng Xu Qi Li Ning Wang 《Neural Regeneration Research》 SCIE CAS CSCD 2012年第8期589-594,共6页
Animal models of intracerebral hemorrhage were established by injection of autologous blood into the caudate nucleus in rats. Cell apoptosis was measured by flow cytometry and immunohistochemical staining of the p75 n... Animal models of intracerebral hemorrhage were established by injection of autologous blood into the caudate nucleus in rats. Cell apoptosis was measured by flow cytometry and immunohistochemical staining of the p75 neurotrophin receptor. p75 neurotrophin receptor protein was detected by immunohistochemistry. p75 neurotrophin receptor mRNA was examined by quantitative real-time polymerase chain reactions. At 24 hours after modeling, cellular apoptosis occured around hematoma with upregulation of p75 neurotrophin receptor protein and mRNA was observed, which directly correlated to apoptosis. This observation indicated that p75 neurotrophin receptor upregulation was associated with cell apoptosis around hematomas after intracerebral hemorrhage. 展开更多
关键词 intracerebral hemorrhage apoptosis p75 neurotrophin receptor neural regeneration
下载PDF
Elevated Levels of Naturally-Occurring Autoantibodies Against the Extracellular Domain of p75NTR Aggravate the Pathology of Alzheimer's Disease
13
作者 Chen-Yang He Ding-Yuan Tian +12 位作者 Si-Han Chen Wang-Sheng Jin Yuan Cheng Jia-Yan Xin Wei-Wei Li Gui-Hua Zeng Cheng-Rong Tan Jie-Ming Jian Dong-Yu Fan Jun-Rong Ren Yu-Hui Liu Yan-Jiang Wang Fan Zeng 《Neuroscience Bulletin》 SCIE CAS CSCD 2023年第2期261-272,共12页
The extracellular domain(p75ECD)of p75 neurotrophin receptor(p75NTR)antagonizes Aβ neurotoxicity and promotes Aβclearance in Alzheimer’s disease(AD).The impaired shedding of p75ECD is a key pathological process in ... The extracellular domain(p75ECD)of p75 neurotrophin receptor(p75NTR)antagonizes Aβ neurotoxicity and promotes Aβclearance in Alzheimer’s disease(AD).The impaired shedding of p75ECD is a key pathological process in AD,but its regulatory mechanism is largely unknown.This study was designed to investigate the presence and alterations of naturally-occurring autoantibodies against p75ECD(p75ECD-NAbs)in AD patients and their effects on AD pathology.We found that the cerebrospinal fluid(CSF)level of p75ECD-NAbs was increased in AD,and negatively associated with the CSF levels of p75ECD.Transgenic AD mice actively immunized with p75ECD showed a lower level of p75ECD and more severe AD pathology in the brain,as well as worse cognitive functions than the control groups,which were immunized with Re-p75ECD(the reverse sequence of p75ECD)and phosphate-buffered saline,respectively.These findings demonstrate the impact of p75ECD-NAbs on p75NTR/p75ECD imbalance,providing a novel insight into the role of autoimmunity and p75NTR in AD. 展开更多
关键词 Alzheimer’s disease p75 neurotrophin receptor Extracellular domain AUTOANTIBODY Amyloidbeta Immunity
原文传递
Different apoptotic reactions of dorsal root ganglion A- and B-cells after sciatic nerve axotomy: effect of p75 neurotrophin receptor 被引量:2
14
作者 JIANG Yun Johannes Jakobsen 《Chinese Medical Journal》 SCIE CAS CSCD 2010年第19期2695-2700,共6页
Background By unbiased stereological methods, we have observed preferential dorsal root ganglion (DRG) B-cell loss in rodents after nerve injury, and caspase-3 activation and cell loss were related to the present of... Background By unbiased stereological methods, we have observed preferential dorsal root ganglion (DRG) B-cell loss in rodents after nerve injury, and caspase-3 activation and cell loss were related to the present of p75 receptor (p75^NTR). We hypothesized that DRG B-cells express higher levels of pro-apoptotic proteins as compared to A-cells and the expressions of pro-apoptotic proteins can be reduced by depletion of p75^NTR. This study aimed to identify the p75NTR involved apoptotic pathway in DRG neurons after nerve injury. Methods The p75NTR knockout mice (p75-/-) and wildtype Balb/C mice (p75+/+) were used in this study. The expressions of pro-apoptotic proteins, c-Jun-N-terminal kinase (JNK), c-jun and p38 in DRG were evaluated with immunohistochemistry 2 and 7 days following unilateral sciatic nerve transection. In addition, extra-cellular related kinase (ERK), a transducer of survival signals, was also tested with immunohistochemistry and Western blotting methods in these animal models. Results Phosphorylated JNK (P-JNK) and phosphorylated p38 (P-p38) were mainly located in small B-cells, whereas phosphorylated c-jun (P-c-jun) was located in both A- and B-cells. Phosphorylated ERK (P-ERK) was located in both B-cells and satellite cells. Axotomy dramatically increased the expressions of P-JNK and P-c-jun (paired t-test), with no influence on the expressions of P-p38 and P-ERK. Furthermore, the increase of P-JNK in p75+/+ mice 2 days after nerve axotomy was approximately 2.2-folds of that in p75-/- mice (P=-0.001, unpaired t-test). Conclusion p75NTR-dependent JNK-caspase-3 pathway is involved in DRG B-cell loss after nerve injury and JNK is not the unique upstream of c-jun activation. 展开更多
关键词 dorsal root ganglia APOPTOSIS p75 neurotrophin receptor AXOTOMY
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部