The article is devoted to hitherto never undertaken applying an almost unknown logically formalized axiomatic epistemology-and-axiology system called “Sigma-V” to the Third Newton’s Law of mechanics. The author has...The article is devoted to hitherto never undertaken applying an almost unknown logically formalized axiomatic epistemology-and-axiology system called “Sigma-V” to the Third Newton’s Law of mechanics. The author has continued investigating the extraordinary (paradigm-breaking) hypothesis of formal-axiological interpreting Newton’s mathematical principles of natural philosophy and, thus, has arrived to discrete mathematical modeling a system of formal axiology of nature by extracting and systematical studying its proper algebraic aspect. Along with the proper algebraic machinery, the axiomatic (hypothetic-deductive) method is exploited in this investigation systematically. The research results are the followings. 1) The Third Newton’s Law of mechanics has been modeled by a formal-axiological equation of two-valued algebraic system of metaphysics as formal axiology. (Precise defining the algebraic system is provided.) The formal-axiological equation has been established (and examined) in this algebraic system by accurate computing compositions of relevant evaluation-functions. Precise tabular definitions of the evaluation-functions are given. 2) The wonderful formula representing the Third Newton’s Law (in the relevant physical interpretation of the formal theory Sigma-V) has been derived logically in Sigma-V from the presumption of a-priori-ness of knowledge. A precise axiomatic definition of the nontrivial notion “a-priori-ness of knowledge” is given. The formal derivation is implemented in strict accordance with the rigor standard of D. Hilbert’s formalism;hence, checking the formal derivation submitted in this article is not a difficult task. With respect to proper theoretical physics, the formal inference is a nontrivial scientific novelty which has not been discussed and published elsewhere yet.展开更多
Our study identifies a subtle deviation from Newton’s third law in the derivation of the ideal rocket equation, also known as the Tsiolkovsky Rocket Equation (TRE). TRE can be derived using a 1D elastic collision mod...Our study identifies a subtle deviation from Newton’s third law in the derivation of the ideal rocket equation, also known as the Tsiolkovsky Rocket Equation (TRE). TRE can be derived using a 1D elastic collision model of the momentum exchange between the differential propellant mass element (dm) and the rocket final mass (m1), in which dm initially travels forward to collide with m1 and rebounds to exit through the exhaust nozzle with a velocity that is known as the effective exhaust velocity ve. We observe that such a model does not explain how dm was able to acquire its initial forward velocity without the support of a reactive mass traveling in the opposite direction. We show instead that the initial kinetic energy of dm is generated from dm itself by a process of self-combustion and expansion. In our ideal rocket with a single particle dm confined inside a hollow tube with one closed end, we show that the process of self-combustion and expansion of dm will result in a pair of differential particles each with a mass dm/2, and each traveling away from one another along the tube axis, from the center of combustion. These two identical particles represent the active and reactive sub-components of dm, co-generated in compliance with Newton’s third law of equal action and reaction. Building on this model, we derive a linear momentum ODE of the system, the solution of which yields what we call the Revised Tsiolkovsky Rocket Equation (RTRE). We show that RTRE has a mathematical form that is similar to TRE, with the exception of the effective exhaust velocity (ve) term. The ve term in TRE is replaced in RTRE by the average of two distinct exhaust velocities that we refer to as fast-jet, vx<sub>1</sub>, and slow-jet, vx<sub>2</sub>. These two velocities correspond, respectively, to the velocities of the detonation pressure wave that is vectored directly towards the exhaust nozzle, and the retonation wave that is initially vectored in the direction of rocket propagation, but subsequently becomes reflected from the thrust surface of the combustion chamber to exit through the exhaust nozzle with a time lag behind the detonation wave. The detonation-retonation phenomenon is supported by experimental evidence in the published literature. Finally, we use a convolution model to simulate the composite exhaust pressure wave, highlighting the frequency spectrum of the pressure perturbations that are generated by the mutual interference between the fast-jet and slow-jet components. Our analysis offers insights into the origin of combustion oscillations in rocket engines, with possible extensions beyond rocket engineering into other fields of combustion engineering.展开更多
文摘The article is devoted to hitherto never undertaken applying an almost unknown logically formalized axiomatic epistemology-and-axiology system called “Sigma-V” to the Third Newton’s Law of mechanics. The author has continued investigating the extraordinary (paradigm-breaking) hypothesis of formal-axiological interpreting Newton’s mathematical principles of natural philosophy and, thus, has arrived to discrete mathematical modeling a system of formal axiology of nature by extracting and systematical studying its proper algebraic aspect. Along with the proper algebraic machinery, the axiomatic (hypothetic-deductive) method is exploited in this investigation systematically. The research results are the followings. 1) The Third Newton’s Law of mechanics has been modeled by a formal-axiological equation of two-valued algebraic system of metaphysics as formal axiology. (Precise defining the algebraic system is provided.) The formal-axiological equation has been established (and examined) in this algebraic system by accurate computing compositions of relevant evaluation-functions. Precise tabular definitions of the evaluation-functions are given. 2) The wonderful formula representing the Third Newton’s Law (in the relevant physical interpretation of the formal theory Sigma-V) has been derived logically in Sigma-V from the presumption of a-priori-ness of knowledge. A precise axiomatic definition of the nontrivial notion “a-priori-ness of knowledge” is given. The formal derivation is implemented in strict accordance with the rigor standard of D. Hilbert’s formalism;hence, checking the formal derivation submitted in this article is not a difficult task. With respect to proper theoretical physics, the formal inference is a nontrivial scientific novelty which has not been discussed and published elsewhere yet.
文摘Our study identifies a subtle deviation from Newton’s third law in the derivation of the ideal rocket equation, also known as the Tsiolkovsky Rocket Equation (TRE). TRE can be derived using a 1D elastic collision model of the momentum exchange between the differential propellant mass element (dm) and the rocket final mass (m1), in which dm initially travels forward to collide with m1 and rebounds to exit through the exhaust nozzle with a velocity that is known as the effective exhaust velocity ve. We observe that such a model does not explain how dm was able to acquire its initial forward velocity without the support of a reactive mass traveling in the opposite direction. We show instead that the initial kinetic energy of dm is generated from dm itself by a process of self-combustion and expansion. In our ideal rocket with a single particle dm confined inside a hollow tube with one closed end, we show that the process of self-combustion and expansion of dm will result in a pair of differential particles each with a mass dm/2, and each traveling away from one another along the tube axis, from the center of combustion. These two identical particles represent the active and reactive sub-components of dm, co-generated in compliance with Newton’s third law of equal action and reaction. Building on this model, we derive a linear momentum ODE of the system, the solution of which yields what we call the Revised Tsiolkovsky Rocket Equation (RTRE). We show that RTRE has a mathematical form that is similar to TRE, with the exception of the effective exhaust velocity (ve) term. The ve term in TRE is replaced in RTRE by the average of two distinct exhaust velocities that we refer to as fast-jet, vx<sub>1</sub>, and slow-jet, vx<sub>2</sub>. These two velocities correspond, respectively, to the velocities of the detonation pressure wave that is vectored directly towards the exhaust nozzle, and the retonation wave that is initially vectored in the direction of rocket propagation, but subsequently becomes reflected from the thrust surface of the combustion chamber to exit through the exhaust nozzle with a time lag behind the detonation wave. The detonation-retonation phenomenon is supported by experimental evidence in the published literature. Finally, we use a convolution model to simulate the composite exhaust pressure wave, highlighting the frequency spectrum of the pressure perturbations that are generated by the mutual interference between the fast-jet and slow-jet components. Our analysis offers insights into the origin of combustion oscillations in rocket engines, with possible extensions beyond rocket engineering into other fields of combustion engineering.