In the graph signal processing(GSP)framework,distributed algorithms are highly desirable in processing signals defined on large-scale networks.However,in most existing distributed algorithms,all nodes homogeneously pe...In the graph signal processing(GSP)framework,distributed algorithms are highly desirable in processing signals defined on large-scale networks.However,in most existing distributed algorithms,all nodes homogeneously perform the local computation,which calls for heavy computational and communication costs.Moreover,in many real-world networks,such as those with straggling nodes,the homogeneous manner may result in serious delay or even failure.To this end,we propose active network decomposition algorithms to select non-straggling nodes(normal nodes)that perform the main computation and communication across the network.To accommodate the decomposition in different kinds of networks,two different approaches are developed,one is centralized decomposition that leverages the adjacency of the network and the other is distributed decomposition that employs the indicator message transmission between neighboring nodes,which constitutes the main contribution of this paper.By incorporating the active decomposition scheme,a distributed Newton method is employed to solve the least squares problem in GSP,where the Hessian inverse is approximately evaluated by patching a series of inverses of local Hessian matrices each of which is governed by one normal node.The proposed algorithm inherits the fast convergence of the second-order algorithms while maintains low computational and communication cost.Numerical examples demonstrate the effectiveness of the proposed algorithm.展开更多
Iterative methods based on finite element simulation are effective approaches to design mold shape to compensate springback in sheet metal forming. However, convergence rate of iterative methods is difficult to improv...Iterative methods based on finite element simulation are effective approaches to design mold shape to compensate springback in sheet metal forming. However, convergence rate of iterative methods is difficult to improve greatly. To increase the springback compensate speed of designing age forming mold, process of calculating springback for a certain mold with finite element method is analyzed. Springback compensation is abstracted as finding a solution for a set of nonlinear functions and a springback compensation algorithm is presented on the basis of quasi Newton method. The accuracy of algorithm is verified by developing an ABAQUS secondary development program with MATLAB. Three rectangular integrated panels of dimensions 710 mmx750 mm integrated panels with intersected ribs of 10 mm are selected to perform case studies. The algorithm is used to compute mold contours for the panels with cylinder, sphere and saddle contours respectively and it takes 57%, 22% and 33% iterations as compared to that of displacement adjustment (DA) method. At the end of iterations, maximum deviations on the three panels are 0.618 4 mm, 0.624 1 mm and 0.342 0 mm that are smaller than the deviations determined by DA method (0.740 8 mm, 0.740 8 mm and 0.713 7 mm respectively). In following experimental verification, mold contour for another integrated panel with 400 ram^380 mm size is designed by the algorithm. Then the panel is age formed in an autoclave and measured by a three dimensional digital measurement devise. Deviation between measuring results and the panel's design contour is less than 1 mm. Finally, the iterations with different mesh sizes (40 mm, 35 mm, 30 mm, 25 mm, 20 mm) in finite element models are compared and found no considerable difference. Another possible compensation method, Broyden-Fletcher-Shanmo method, is also presented based on the solving nonlinear fimctions idea. The Broyden-Fletcher-Shanmo method is employed to compute mold contour for the second panel. It only takes 50% iterations compared to that of DA. The proposed method can serve a faster mold contour compensation method for sheet metal forming.展开更多
In this paper, the non-quasi-Newton's family with inexact line search applied to unconstrained optimization problems is studied. A new update formula for non-quasi-Newton's family is proposed. It is proved that the ...In this paper, the non-quasi-Newton's family with inexact line search applied to unconstrained optimization problems is studied. A new update formula for non-quasi-Newton's family is proposed. It is proved that the constituted algorithm with either Wolfe-type or Armijotype line search converges globally and Q-superlinearly if the function to be minimized has Lipschitz continuous gradient.展开更多
The box constrained variational inequality problem can be reformulated as a nonsmooth equation by using median operator.In this paper,we present a smoothing Newton method for solving the box constrained variational in...The box constrained variational inequality problem can be reformulated as a nonsmooth equation by using median operator.In this paper,we present a smoothing Newton method for solving the box constrained variational inequality problem based on a new smoothing approximation function.The proposed algorithm is proved to be well defined and convergent globally under weaker conditions.展开更多
With more and more researches about improving BP algorithm, there are more improvement methods. The paper researches two improvement algorithms based on quasi-Newton method, DFP algorithm and L-BFGS algorithm. After f...With more and more researches about improving BP algorithm, there are more improvement methods. The paper researches two improvement algorithms based on quasi-Newton method, DFP algorithm and L-BFGS algorithm. After fully analyzing the features of quasi- Newton methods, the paper improves BP neural network algorithm. And the adjustment is made for the problems in the improvement process. The paper makes empirical analysis and proves the effectiveness of BP neural network algorithm based on quasi-Newton method. The improved algorithms are compared with the traditional BP algorithm, which indicates that the imoroved BP algorithm is better.展开更多
In this paper, a regularization Newton method for mixed complementarity problem(MCP) based on the reformulation of MCP in [1] is proposed. Its global convergence is proved under the assumption that F is a P0-function....In this paper, a regularization Newton method for mixed complementarity problem(MCP) based on the reformulation of MCP in [1] is proposed. Its global convergence is proved under the assumption that F is a P0-function. The main feature of our algorithm is that a priori of the existence of an accumulation point for convergence need not to be assumed.展开更多
A one_step smoothing Newton method is proposed for solving the vertical linear complementarity problem based on the so_called aggregation function. The proposed algorithm has the following good features: (ⅰ) It solve...A one_step smoothing Newton method is proposed for solving the vertical linear complementarity problem based on the so_called aggregation function. The proposed algorithm has the following good features: (ⅰ) It solves only one linear system of equations and does only one line search at each iteration; (ⅱ) It is well_defined for the vertical linear complementarity problem with vertical block P 0 matrix and any accumulation point of iteration sequence is its solution.Moreover, the iteration sequence is bounded for the vertical linear complementarity problem with vertical block P 0+R 0 matrix; (ⅲ) It has both global linear and local quadratic convergence without strict complementarity. Many existing smoothing Newton methods do not have the property (ⅲ).展开更多
An algorithm for solving a class of smooth convex programming is given. Using smooth exact multiplier penalty function, a smooth convex programming is minimized to a minimizing strongly convex function on the compact ...An algorithm for solving a class of smooth convex programming is given. Using smooth exact multiplier penalty function, a smooth convex programming is minimized to a minimizing strongly convex function on the compact set was reduced. Then the strongly convex function with a Newton method on the given compact set was minimized.展开更多
This paper proposes an inexact Newton method via the Lanczos decomposed technique for solving the box-constrained nonlinear systems. An iterative direction is obtained by solving an affine scaling quadratic model with...This paper proposes an inexact Newton method via the Lanczos decomposed technique for solving the box-constrained nonlinear systems. An iterative direction is obtained by solving an affine scaling quadratic model with the Lanczos decomposed technique. By using the interior backtracking line search technique, an acceptable trial step length is found along this direction. The global convergence and the fast local convergence rate of the proposed algorithm are established under some reasonable conditions. Furthermore, the results of the numerical experiments show the effectiveness of the pro- posed algorithm.展开更多
In this paper, we establish an inexact parameterized Newton method for solving the B differentiable equations. By introducing a new concept, we prove the local and large range convergence of the method under some wea...In this paper, we establish an inexact parameterized Newton method for solving the B differentiable equations. By introducing a new concept, we prove the local and large range convergence of the method under some weaker assumptions. We have conducted some numerical experiments. The numerical results show that the method is effective.展开更多
Based on the generalized Fischer-Burmeister function, Chen et al in 2008 put forward a regularization semismooth Newton method for solving the nonlinear complementarity problem with a P0-function. In this paper, we in...Based on the generalized Fischer-Burmeister function, Chen et al in 2008 put forward a regularization semismooth Newton method for solving the nonlinear complementarity problem with a P0-function. In this paper, we investigate the above algorithm with the monotone line search replaced by a non-monotone line search. It is shown that the non-monotone algorithm is well-defined, and is globally and locally superlinearly convergent under standard assumptions.展开更多
Based on a smoothing symmetric disturbance FB-function,a smoothing inexact Newton method for solving the nonlinear complementarity problem with P0-function was proposed.It was proved that under mild conditions,the giv...Based on a smoothing symmetric disturbance FB-function,a smoothing inexact Newton method for solving the nonlinear complementarity problem with P0-function was proposed.It was proved that under mild conditions,the given algorithm performed global and superlinear convergence without strict complementarity.For the same linear complementarity problem(LCP),the algorithm needs similar iteration times to the literature.However,its accuracy is improved by at least 4 orders with calculation time reduced by almost 50%,and the iterative number is insensitive to the size of the LCP.Moreover,fewer iterations and shorter time are required for solving the problem by using inexact Newton methods for different initial points.展开更多
The basic principle of interval arithmetic and the basic algorithm of the interval Newton methods are introduced.The prototype algorithm can not find any zero in an interval that has zero sometimes,that is,it is insta...The basic principle of interval arithmetic and the basic algorithm of the interval Newton methods are introduced.The prototype algorithm can not find any zero in an interval that has zero sometimes,that is,it is instable.So the prototype relaxation procedure is improved in this paper.Additionally,an immediate test of the existence of a solution following branch_and_bound is proposed,which avoids unwanted computations in those intervals that have no solution.The numerical results demonstrat that the improved interval Newton method is superior to prototype algorithm in terms of solution quality,stability and convergent speed.展开更多
The extended linear complementarity problem(denoted by ELCP) can be reformulated as the solution of a nonsmooth system of equations. By the symmetrically perturbed CHKS smoothing function, the ELCP is approximated by ...The extended linear complementarity problem(denoted by ELCP) can be reformulated as the solution of a nonsmooth system of equations. By the symmetrically perturbed CHKS smoothing function, the ELCP is approximated by a family of parameterized smooth equations. A one-step smoothing Newton method is designed for solving the ELCP. The proposed algorithm is proved to be globally convergent under suitable assumptions.展开更多
A judgment criterion to guarantee a point to be a Chen' s approximate zero of Newton method for solving nonlinear equation is sought by dominating sequence techniques. The criterion is based on the fact that the d...A judgment criterion to guarantee a point to be a Chen' s approximate zero of Newton method for solving nonlinear equation is sought by dominating sequence techniques. The criterion is based on the fact that the dominating function may have only one simple positive zero, assuming that the operator is weak Lipschitz continuous, which is much more relaxed and can be checked much more easily than Lipschitz continuous in practice. It is demonstrated that a Chen' s approximate zero may not be a Smale' s approximate zero. The error estimate obtained indicated the convergent order when we use |f(x) | < ε to stop computation in software.The result can also be applied for solving partial derivative and integration equations.展开更多
We consider the inverse problem to determine the shape of a open cavity embedded in the infinite ground plane from knowledge of the far-field pattern of the scattering of TM polarization. For its approximate solution ...We consider the inverse problem to determine the shape of a open cavity embedded in the infinite ground plane from knowledge of the far-field pattern of the scattering of TM polarization. For its approximate solution we propose a regularized Newton iteration scheme. For a foundation of Newton type methods we establish the Fr^chet differentiability of solution to the scattering problem with respect to the boundary of the cavity. Some numerical examples of the feasibility of the method are presented.展开更多
An optimal motion planning scheme based on the quasi-Newton method is proposed for a rigid spacecraft with two momentum wheels. A cost functional is introduced to incorporate the control energy, the final state errors...An optimal motion planning scheme based on the quasi-Newton method is proposed for a rigid spacecraft with two momentum wheels. A cost functional is introduced to incorporate the control energy, the final state errors and the constraints on states. The motion planning for determining control inputs to minimize the cost functional is formulated as a nonlinear optimal control problem. Using the control parametrization, one can transform the infinite dimensional optimal control problem to a finite dimensional one that is solved via the quasi-Newton methods for a feasible trajectory which satisfies the nonholonomic constraint. The optimal motion planning scheme was applied to a rigid spacecraft with two momentum wheels. The simulation results show the effectiveness of the proposed optimal motion planning scheme.展开更多
Tensor complementarity problem (TCP) is a special kind of nonlinear complementarity problem (NCP). In this paper, we introduce a new class of structure tensor and give some examples. By transforming the TCP to the sys...Tensor complementarity problem (TCP) is a special kind of nonlinear complementarity problem (NCP). In this paper, we introduce a new class of structure tensor and give some examples. By transforming the TCP to the system of nonsmooth equations, we develop a semismooth Newton method for the tensor complementarity problem. We prove the monotone convergence theorem for the proposed method under proper conditions.展开更多
In this paper,two-stage stochastic quadratic programming problems with equality constraints are considered.By Monte Carlo simulation-based approximations of the objective function and its first(second)derivative,an in...In this paper,two-stage stochastic quadratic programming problems with equality constraints are considered.By Monte Carlo simulation-based approximations of the objective function and its first(second)derivative,an inexact Lagrange-Newton type method is proposed.It is showed that this method is globally convergent with probability one.In particular,the convergence is local superlinear under an integral approximation error bound condition.Moreover,this method can be easily extended to solve stochastic quadratic programming problems with inequality constraints.展开更多
We present an improved method. If we assume that the objective function is twice continuously differentiable and uniformly convex, we discuss global and superlinear convergence of the improved quasi-Newton method.
基金supported by National Natural Science Foundation of China(Grant No.61761011)Natural Science Foundation of Guangxi(Grant No.2020GXNSFBA297078).
文摘In the graph signal processing(GSP)framework,distributed algorithms are highly desirable in processing signals defined on large-scale networks.However,in most existing distributed algorithms,all nodes homogeneously perform the local computation,which calls for heavy computational and communication costs.Moreover,in many real-world networks,such as those with straggling nodes,the homogeneous manner may result in serious delay or even failure.To this end,we propose active network decomposition algorithms to select non-straggling nodes(normal nodes)that perform the main computation and communication across the network.To accommodate the decomposition in different kinds of networks,two different approaches are developed,one is centralized decomposition that leverages the adjacency of the network and the other is distributed decomposition that employs the indicator message transmission between neighboring nodes,which constitutes the main contribution of this paper.By incorporating the active decomposition scheme,a distributed Newton method is employed to solve the least squares problem in GSP,where the Hessian inverse is approximately evaluated by patching a series of inverses of local Hessian matrices each of which is governed by one normal node.The proposed algorithm inherits the fast convergence of the second-order algorithms while maintains low computational and communication cost.Numerical examples demonstrate the effectiveness of the proposed algorithm.
文摘Iterative methods based on finite element simulation are effective approaches to design mold shape to compensate springback in sheet metal forming. However, convergence rate of iterative methods is difficult to improve greatly. To increase the springback compensate speed of designing age forming mold, process of calculating springback for a certain mold with finite element method is analyzed. Springback compensation is abstracted as finding a solution for a set of nonlinear functions and a springback compensation algorithm is presented on the basis of quasi Newton method. The accuracy of algorithm is verified by developing an ABAQUS secondary development program with MATLAB. Three rectangular integrated panels of dimensions 710 mmx750 mm integrated panels with intersected ribs of 10 mm are selected to perform case studies. The algorithm is used to compute mold contours for the panels with cylinder, sphere and saddle contours respectively and it takes 57%, 22% and 33% iterations as compared to that of displacement adjustment (DA) method. At the end of iterations, maximum deviations on the three panels are 0.618 4 mm, 0.624 1 mm and 0.342 0 mm that are smaller than the deviations determined by DA method (0.740 8 mm, 0.740 8 mm and 0.713 7 mm respectively). In following experimental verification, mold contour for another integrated panel with 400 ram^380 mm size is designed by the algorithm. Then the panel is age formed in an autoclave and measured by a three dimensional digital measurement devise. Deviation between measuring results and the panel's design contour is less than 1 mm. Finally, the iterations with different mesh sizes (40 mm, 35 mm, 30 mm, 25 mm, 20 mm) in finite element models are compared and found no considerable difference. Another possible compensation method, Broyden-Fletcher-Shanmo method, is also presented based on the solving nonlinear fimctions idea. The Broyden-Fletcher-Shanmo method is employed to compute mold contour for the second panel. It only takes 50% iterations compared to that of DA. The proposed method can serve a faster mold contour compensation method for sheet metal forming.
文摘In this paper, the non-quasi-Newton's family with inexact line search applied to unconstrained optimization problems is studied. A new update formula for non-quasi-Newton's family is proposed. It is proved that the constituted algorithm with either Wolfe-type or Armijotype line search converges globally and Q-superlinearly if the function to be minimized has Lipschitz continuous gradient.
基金Supported by the NNSF of China(11071041)Supported by the Fujian Natural Science Foundation(2009J01002)Supported by the Fujian Department of Education Foundation(JA11270)
文摘The box constrained variational inequality problem can be reformulated as a nonsmooth equation by using median operator.In this paper,we present a smoothing Newton method for solving the box constrained variational inequality problem based on a new smoothing approximation function.The proposed algorithm is proved to be well defined and convergent globally under weaker conditions.
文摘With more and more researches about improving BP algorithm, there are more improvement methods. The paper researches two improvement algorithms based on quasi-Newton method, DFP algorithm and L-BFGS algorithm. After fully analyzing the features of quasi- Newton methods, the paper improves BP neural network algorithm. And the adjustment is made for the problems in the improvement process. The paper makes empirical analysis and proves the effectiveness of BP neural network algorithm based on quasi-Newton method. The improved algorithms are compared with the traditional BP algorithm, which indicates that the imoroved BP algorithm is better.
基金This subject is supported by the NSF of China (10171055,10226022) NSF of Shandong province(Y2003A02)
文摘In this paper, a regularization Newton method for mixed complementarity problem(MCP) based on the reformulation of MCP in [1] is proposed. Its global convergence is proved under the assumption that F is a P0-function. The main feature of our algorithm is that a priori of the existence of an accumulation point for convergence need not to be assumed.
文摘A one_step smoothing Newton method is proposed for solving the vertical linear complementarity problem based on the so_called aggregation function. The proposed algorithm has the following good features: (ⅰ) It solves only one linear system of equations and does only one line search at each iteration; (ⅱ) It is well_defined for the vertical linear complementarity problem with vertical block P 0 matrix and any accumulation point of iteration sequence is its solution.Moreover, the iteration sequence is bounded for the vertical linear complementarity problem with vertical block P 0+R 0 matrix; (ⅲ) It has both global linear and local quadratic convergence without strict complementarity. Many existing smoothing Newton methods do not have the property (ⅲ).
文摘An algorithm for solving a class of smooth convex programming is given. Using smooth exact multiplier penalty function, a smooth convex programming is minimized to a minimizing strongly convex function on the compact set was reduced. Then the strongly convex function with a Newton method on the given compact set was minimized.
基金Project supported by the National Natural Science Foundation of China (No. 10871130)the Ph. D.Programs Foundation of Ministry of Education of China (No. 20093127110005)the Shanghai Leading Academic Discipline Project (No. T0401)
文摘This paper proposes an inexact Newton method via the Lanczos decomposed technique for solving the box-constrained nonlinear systems. An iterative direction is obtained by solving an affine scaling quadratic model with the Lanczos decomposed technique. By using the interior backtracking line search technique, an acceptable trial step length is found along this direction. The global convergence and the fast local convergence rate of the proposed algorithm are established under some reasonable conditions. Furthermore, the results of the numerical experiments show the effectiveness of the pro- posed algorithm.
文摘In this paper, we establish an inexact parameterized Newton method for solving the B differentiable equations. By introducing a new concept, we prove the local and large range convergence of the method under some weaker assumptions. We have conducted some numerical experiments. The numerical results show that the method is effective.
基金Supported by the Science Technology Development Plan of Tianjin (No.06YFGZGX05600)
文摘Based on the generalized Fischer-Burmeister function, Chen et al in 2008 put forward a regularization semismooth Newton method for solving the nonlinear complementarity problem with a P0-function. In this paper, we investigate the above algorithm with the monotone line search replaced by a non-monotone line search. It is shown that the non-monotone algorithm is well-defined, and is globally and locally superlinearly convergent under standard assumptions.
基金Supported by the National Natural Science Foundation of China(No.51205286)
文摘Based on a smoothing symmetric disturbance FB-function,a smoothing inexact Newton method for solving the nonlinear complementarity problem with P0-function was proposed.It was proved that under mild conditions,the given algorithm performed global and superlinear convergence without strict complementarity.For the same linear complementarity problem(LCP),the algorithm needs similar iteration times to the literature.However,its accuracy is improved by at least 4 orders with calculation time reduced by almost 50%,and the iterative number is insensitive to the size of the LCP.Moreover,fewer iterations and shorter time are required for solving the problem by using inexact Newton methods for different initial points.
文摘The basic principle of interval arithmetic and the basic algorithm of the interval Newton methods are introduced.The prototype algorithm can not find any zero in an interval that has zero sometimes,that is,it is instable.So the prototype relaxation procedure is improved in this paper.Additionally,an immediate test of the existence of a solution following branch_and_bound is proposed,which avoids unwanted computations in those intervals that have no solution.The numerical results demonstrat that the improved interval Newton method is superior to prototype algorithm in terms of solution quality,stability and convergent speed.
基金Supported by the NNSF of China(11071041, 11171257)
文摘The extended linear complementarity problem(denoted by ELCP) can be reformulated as the solution of a nonsmooth system of equations. By the symmetrically perturbed CHKS smoothing function, the ELCP is approximated by a family of parameterized smooth equations. A one-step smoothing Newton method is designed for solving the ELCP. The proposed algorithm is proved to be globally convergent under suitable assumptions.
文摘A judgment criterion to guarantee a point to be a Chen' s approximate zero of Newton method for solving nonlinear equation is sought by dominating sequence techniques. The criterion is based on the fact that the dominating function may have only one simple positive zero, assuming that the operator is weak Lipschitz continuous, which is much more relaxed and can be checked much more easily than Lipschitz continuous in practice. It is demonstrated that a Chen' s approximate zero may not be a Smale' s approximate zero. The error estimate obtained indicated the convergent order when we use |f(x) | < ε to stop computation in software.The result can also be applied for solving partial derivative and integration equations.
基金The NNSF(10626017)of Chinathe Science Foundation(11511276)of the Education Committee of Heilongjiang Provincethe Foundation(LBH-Q05114)of Heilongjiang Province
文摘We consider the inverse problem to determine the shape of a open cavity embedded in the infinite ground plane from knowledge of the far-field pattern of the scattering of TM polarization. For its approximate solution we propose a regularized Newton iteration scheme. For a foundation of Newton type methods we establish the Fr^chet differentiability of solution to the scattering problem with respect to the boundary of the cavity. Some numerical examples of the feasibility of the method are presented.
基金Project supported by the National Natural Science Foundation of China (No. 10372014).
文摘An optimal motion planning scheme based on the quasi-Newton method is proposed for a rigid spacecraft with two momentum wheels. A cost functional is introduced to incorporate the control energy, the final state errors and the constraints on states. The motion planning for determining control inputs to minimize the cost functional is formulated as a nonlinear optimal control problem. Using the control parametrization, one can transform the infinite dimensional optimal control problem to a finite dimensional one that is solved via the quasi-Newton methods for a feasible trajectory which satisfies the nonholonomic constraint. The optimal motion planning scheme was applied to a rigid spacecraft with two momentum wheels. The simulation results show the effectiveness of the proposed optimal motion planning scheme.
文摘Tensor complementarity problem (TCP) is a special kind of nonlinear complementarity problem (NCP). In this paper, we introduce a new class of structure tensor and give some examples. By transforming the TCP to the system of nonsmooth equations, we develop a semismooth Newton method for the tensor complementarity problem. We prove the monotone convergence theorem for the proposed method under proper conditions.
基金Partly supported by the National Natural Science Foundation of China( 1 0 1 71 0 5 5 )
文摘In this paper,two-stage stochastic quadratic programming problems with equality constraints are considered.By Monte Carlo simulation-based approximations of the objective function and its first(second)derivative,an inexact Lagrange-Newton type method is proposed.It is showed that this method is globally convergent with probability one.In particular,the convergence is local superlinear under an integral approximation error bound condition.Moreover,this method can be easily extended to solve stochastic quadratic programming problems with inequality constraints.
文摘We present an improved method. If we assume that the objective function is twice continuously differentiable and uniformly convex, we discuss global and superlinear convergence of the improved quasi-Newton method.