Many derivatives of industrially useful cellulose have hydroxyls of the anhydroglucose(AHG) units uncompletely substituted. Since each AHG unit of a cellulose molecule is a trihydric alcohol,consisted of one primary(p...Many derivatives of industrially useful cellulose have hydroxyls of the anhydroglucose(AHG) units uncompletely substituted. Since each AHG unit of a cellulose molecule is a trihydric alcohol,consisted of one primary(position 6) and two secondary hydroxyl groups(positions 2 and 3), the distribution of substituents in these trihydric alcohol units could be different for different derivatives. The展开更多
In this paper, the nitration characteristic of alcohols with mixed acid for the synthesis of energetic mate-rials in a stainless steel microreactor was investigated experimentally. The nitration of iso-octanol with HN...In this paper, the nitration characteristic of alcohols with mixed acid for the synthesis of energetic mate-rials in a stainless steel microreactor was investigated experimentally. The nitration of iso-octanol with HNO3-H2SO4 mixed acid was chosen as a typical model reaction which involved fast and strong exothermic liquid-liquid heterogeneous reaction process. The influences of mixed acid composition, flow rate, organic/aqueous flow ratio and reaction temperature have been investigated. The results indicated that the reaction could be con-ducted safely and stably in the microreactor at 25-40°C, which are enhanced compared to 15°C or below for safe operating conditions in the conventional reactors. Moreover, the 98.2% conversion of iso-octanol could be obtained and no by-products were detected in all cases.展开更多
Nitro aromatic compound can be obtained in high yields via nitration of aromatic compound with wet carbon-based solid acid and NaNO_3 under solvent free oxidation at room temperature.
Certain phenols and naphthols were nitrated regioselectively with Zn(NO)·6HO/TCT in acetonitrile as solvent at room temperature and short reaction time in good yields.The reaction condition was mild.TCT is a chea...Certain phenols and naphthols were nitrated regioselectively with Zn(NO)·6HO/TCT in acetonitrile as solvent at room temperature and short reaction time in good yields.The reaction condition was mild.TCT is a cheap and commercially available reagent.It performed as an acid catalyst in this transformation.展开更多
A mild,efficient and regioselective method for the mononitration of phenolic compounds is described using bismuth subnitrate/ charcoal in the presence of trichloroisocyanuric acid in CH2Cl2 at room temperature.
Four coal samples from Jharia basin,India are treated with nitric acid in glacial acetic acid and aqueous media to find out the chemical,petrographic and spatial structure of the organic mass by X-ray diffraction(XRD)...Four coal samples from Jharia basin,India are treated with nitric acid in glacial acetic acid and aqueous media to find out the chemical,petrographic and spatial structure of the organic mass by X-ray diffraction(XRD)and Fourier Transform Infrared Spectroscopy(FTIR)techniques.X-ray parameters of coal like interlayer spacing(d_(002)),crystallite size(L_(c)),aroamticity(f_(a)),average number of aromatic layers(N_(c)),and coal rank(I_(26)/I_(20))have been determined using profilefitting software.Considerable variation is observed in treated coals in comparison to the demineralized coals.The d_(002)values of treated coals have increased in both the media showing increase in disordering of organic moieties.A linear relationship has been observed between d_(002)values with the volatile matter of the coals.Similarly,the d_(002)values show linear relationship with C_(dmf) contents for demineralized as well as for the treated coals in both the media.The L_(c) and N_(c) values have decreased in treated coals corresponding to demineralized coals.The present study shows that nitration in both the media is capable of removing the aliphatic side chains from the coals and aromaticity(f_(a))increases with increase in rank and shows a linear relationship with the vitrinite reflectance.The corresponding I_(26)/I_(20)values are least for treated coals in glacial acetic acid medium followed by raw and then to treated coals in aqueous medium.FTIR studies show that coal arenes of the raw coals are converted into nitro-arenes in structurally modified coals(SMCs)in both the media,the corresponding bands at 1550-1490 and 1355-1315 cm^(-1) respectively.FTIR study confirms that nitration is the predominant phenomenon,though,oxidation and nitration phenomena takes place simultaneously during treatment with nitric acid to form SMCs.In comparison to raw coals,the SMCs show higher aromaticity and may be easily converted to coal derived products like activated carbon and specialty carbon materials.展开更多
The development of a new silane reagent derived from tetrachlorosilane (TCS) was applied in the present work. TCS-sodium nitrate (NaNO3) binary reagent and zinc chloride (ZnCl2) were reported here as a homogeneous nit...The development of a new silane reagent derived from tetrachlorosilane (TCS) was applied in the present work. TCS-sodium nitrate (NaNO3) binary reagent and zinc chloride (ZnCl2) were reported here as a homogeneous nitrating system. The later was used for the efficient mono nitration, in most cases, with high para-regioselectivity. The nitration proceeded smoothly under mild condition, fairly clean and in good yields. This readily available and inexpensive system is superior to other methods by avoidance of the use of corrosive nitrating reagents and therefore considered to be convenient in terms of risk reduction, economic advantages and environment protection. The present protocol was convenient and applicable to a variety of aromatic hydrocarbons and could be amenable to high throughput synthesis of combinatorial libraries for potential drug development, which needs to be studied as part of future investigations.展开更多
Experimental results in this work demonstrate that PW12-H2SO4/SiO2 catalyst is a good and durable catalyst for vapor phase nitration of benzene to nitrobenzene (NB) using 65% nitric acid at normal pressure. It retains...Experimental results in this work demonstrate that PW12-H2SO4/SiO2 catalyst is a good and durable catalyst for vapor phase nitration of benzene to nitrobenzene (NB) using 65% nitric acid at normal pressure. It retains the advantages of using H2SO4 as catalyst and the addition of phosphotungstic acid holds back the effusion of sulfuric acid. This new catalyst keeps high activity (the conversion of HNO3 is more than 92%), high selectivity of NB (more than 97%) and high space time yield (STY 1.5 kg NB/kg cat.h) even after 150 h on stream, under condition of 423 K, SV=3200 ml/g h.展开更多
Nitration of aromatic Compounds is triggered by Vilsmeier-Haack reagent (DMF/POCl3) or (DMF/SOCl2) in the presence of KNO3 or NaNO2 under conventional and non-conventional conditions. The reactions af- forded correspo...Nitration of aromatic Compounds is triggered by Vilsmeier-Haack reagent (DMF/POCl3) or (DMF/SOCl2) in the presence of KNO3 or NaNO2 under conventional and non-conventional conditions. The reactions af- forded corresponding Nitro derivatives in very good yield with high regioselectivity. The results obtained in non-conventional methods (Micro wave irradiation, Grinding, Sonication) are comparable with those ob- tained under conventional conditions, but the reaction times of former conditions are substantially shorter than that of the latter.展开更多
Solvent – free Mortar-pestle (grinding) and microwave-assisted nitration reactions (MWANR’s) underwent smoothly in the presence of group V and VI metal salts with high regio-selectivity for anilides, moderately- and...Solvent – free Mortar-pestle (grinding) and microwave-assisted nitration reactions (MWANR’s) underwent smoothly in the presence of group V and VI metal salts with high regio-selectivity for anilides, moderately- and non-activated aro-matic compounds. The reactions were conducted under solvent-free conditions, which afforded good to excellent yields. The observed reaction times in MW assisted conditions are in the range of only few minutes.展开更多
Mechanistic understanding of the active intermediates of 2,6-diaminopyridine(DAP) dinitration in the concentrated nitric-sulfuric acid system is of crucial importance for the selectivity control of target product, i.e...Mechanistic understanding of the active intermediates of 2,6-diaminopyridine(DAP) dinitration in the concentrated nitric-sulfuric acid system is of crucial importance for the selectivity control of target product, i.e., 2,6-diamino-3,5-dinitropyridine(DADNP). The active intermediates determining the product selectivity are theoretically studied. The HSO_(4)^(-)-NO_(2)^(+) complex is proposed as the dominant active nitrating intermediate for the first time, which shows low energy barrier(i.e., 10.19 kcal·mol^(-1),1 kcal = 4.186 k J) for direct dinitration of DAP to DADNP. The formed water during the reaction results in not only the formation of less active SO_(4)^(2-)-NO_(2)^(+) complex, but also the occurance of DAP sulfonation(DAP-SO_(3)H intermediate)to facilitate the formation of mononitration byproduct. Meanwhile, the accompanied thermal effects cause the generation of undesirable pyridine-NHNO_(2) intermediate, which is difficult to be rearranged to yield DADNP, inhibiting the reaction and thus giving low DAP conversion. The insights reported here elucidates the importance of thermal effects elimination and water content control, confirmed experimentally in the batch-and micro-reaction systems.展开更多
Vapor-phase nitration of benzene over solid acid catalyst is expected to be a clean process with no sulfuric acid waste. We investigated this process over solid acidic catalysts utilizing diluted nitric acid (60-70%)...Vapor-phase nitration of benzene over solid acid catalyst is expected to be a clean process with no sulfuric acid waste. We investigated this process over solid acidic catalysts utilizing diluted nitric acid (60-70%) as nitrating agent, and found that supported sulfuric acid catalyst exhibited a very high catalytic activity. Under the conditions of reaction temperature 160-170℃, space velocity (SV) 1200 h-1, the yield and the space-time yield (STY) of nitrobenzene (NB) based on HNO3 were more than 98% and 0.75 kg穔gcat-1穐-1 over 10% H2SO4/SiO2 (by weight) catalyst respectively.展开更多
Ultrasonically assisted nitration reactions (USANR) with anilides, moderately activated and non-activated aromatic compounds underwent smoothly and afforded good yields of products with high regio selectivity. Observe...Ultrasonically assisted nitration reactions (USANR) with anilides, moderately activated and non-activated aromatic compounds underwent smoothly and afforded good yields of products with high regio selectivity. Observed longer reaction times (6 - 8 hrs.) in metal catalyzed reactions reduced to (1 - 2 hrs.) under sonication. When ortho position is blocked para derivatives are obtained, and ortho nitro products are obtained when para position is blocked. In case of USANR of aromatic carbonyl and related compounds the effect of sonication is much more effective. The reactions could be completed only in few minutes.展开更多
Nitroaromatics are usually prepared using a mixed acid of nitric acid with strong acids. However, the use of strong acids caused dangerous work-up and the disposal of large amounts of acid-waste. Therefore, much effor...Nitroaromatics are usually prepared using a mixed acid of nitric acid with strong acids. However, the use of strong acids caused dangerous work-up and the disposal of large amounts of acid-waste. Therefore, much effort has been made on the improvement of nitration process without strong acids. We examined solid-phase aromatic nitration with Mg(NO3)2 on silica gel in order to establish the nitration process without strong acids. The nitration of 1,2- and 1,3-, 1,4-dimethoxybenzenes and 4-methylanisole with Mg(NO3)2 proceeded by heating on silica gel at 150°C for 4 - 5 h to produce the nitroaromatics. The nitration of 1,3,5-trimethoxybenzene produced the nitrated dimer, 2,4,6,2’, 4’,6’-hexamethoxy-3-nitrobiphenyl, which was not isolated in other solid-phase nitration. In the cases of naphthalene derivatives, the α-nitrated compounds were obtained. In the cases of p-cresol and 2-naphthol, the esterification occurred at the hydroxyl group to give 4-tolyl nitrate and 2-naphthyl nitrate, respectively. It is synthetic interest to note that nitrate esters were isolated in solid phase. Thus Mg(NO3)2-SiO2 composite was mild reagent for solid-phase nitration. Acidity of Mg(NO3)2-SiO2 composite was determined to be pH 0.96 by the measurement of absorption spectra on a micro spectrophotometer using meso-tetra(p-cyanophenyl)porphyrin as a pH-indicator. Mg(NO3)2-SiO2 composite made acidic conditions. Therefore, it was suggested that Mg(NO3)2 reacted with proton on silica gel to form the NO+2. Thus, electron-rich aromatic hydrocarbons led the efficient nitration through electrophilic attack of NO+2. After the nitration, acidic Mg(NO3)2-SiO2 composite could be turned into neutrality by exposing wet conditions and disposed safely since the composite did not involve harmful elements. Thus the solid-phase nitration using Mg(NO3)2-SiO2 composite will provide safety and environmentally conscious chemical process.展开更多
A practical system of metals-(2,4-pentanedionate) (M(acac)n (M= Fe, Zn, Co and V)) and P2O5 in the pres- ence of HNO3 catalyzes regioselective nitration of ar-himachalene 1 to mono-nitro-ar-himachalene 2 in mod- erate...A practical system of metals-(2,4-pentanedionate) (M(acac)n (M= Fe, Zn, Co and V)) and P2O5 in the pres- ence of HNO3 catalyzes regioselective nitration of ar-himachalene 1 to mono-nitro-ar-himachalene 2 in mod- erate to high yields. Under mild conditions, the selectivity of nitration of 1 to 2 is excellent compared to the classical method using the nitro-sulphuric mixture HNO3/H2SO4, both mono- and di-nitro-ar-himachalene 2 and 3 are obtained. The reaction offers a very good method for the preparation of nitro-aromatic compounds and provides a useful entry to new functionalized terpenic products.展开更多
Composition of bromine and nitric acid in concentrated sulfuric acid is effective for bromination of strongly deactivated aromatic compounds and for nitration and bromination of moderately deactivated compounds in one...Composition of bromine and nitric acid in concentrated sulfuric acid is effective for bromination of strongly deactivated aromatic compounds and for nitration and bromination of moderately deactivated compounds in one stage. The question why brominating agent is more reactive than nitrating agent in relation to strongly deactivated aromatic compounds and is less reactive in relation to moderate deactivated ones is discussed.展开更多
Methamphetamine is an amphetamine-type psychostimulant that can damage dopaminergic neurons and cause characteristic pathological changes similar to neurodegenerative diseases such as Parkinson's disease. However,...Methamphetamine is an amphetamine-type psychostimulant that can damage dopaminergic neurons and cause characteristic pathological changes similar to neurodegenerative diseases such as Parkinson's disease. However, its specific mechanism of action is still unclear. In the present study, we established a Parkinson's disease pathology model by exposing SH-SY5 Y cells and C57 BL/6 J mice to methamphetamine. In vitro experiments were performed with 0, 0.5, 1.0, 1.5, 2.0 or 2.5 mM methamphetamine for 24 hours or 2.0 mM methamphetamine for 0-, 2-, 4-, 8-, 16-, and 24-hour culture of SH-SY5 Y cells. Additional experimental groups of SH-SY5 Y cells were administered a nitric oxide inhibitor, 0.1 mM N-nitro-L-arginine, 1 hour before exposure to 2.0 mM methamphetamine for 24 hours. In vivo experiments: C57 BL/6 J mice were intraperitoneally injected with N-nitro-L-arginine(8 mg/kg), eight times, at intervals of 12 hours. Methamphetamine 15 mg/kg was intraperitoneally injected eight times, at intervals of 12 hours, but 0.5-hour after each N-nitro-L-arginine injection in the combined group. Western blot assay was used to determine the expression of nitric oxide synthase, α-synuclein(α-Syn), 5 G4, nitrated α-synuclein at the residue Tyr39(nT39 α-Syn), cleaved caspase-3, and cleaved poly ADP-ribose polymerase(PARP) in cells and mouse brain tissue. Immunofluorescence staining was conducted to measure the positive reaction of NeuN, nT39 α-Syn and 5 G4. Enzyme linked immunosorbent assay was performed to determine the dopamine levels in the mouse brain. After methamphetamine exposure, α-Syn expression increased; the aggregation of α-Syn 5 G4 increased; nT39 α-Syn, nitric oxide synthase, cleaved caspase-3, and cleaved PARP expression increased in the cultures of SH-SY5 Y cells and in the brains of C57 BL/6 J mice; and dopamine levels were reduced in the mouse brain. These changes were markedly reduced when N-nitro-L-arginine was administered with methamphetamine in both SH-SY5 Y cells and C57 BL/6 J mice. These results suggest that nT39 α-Syn aggregation is involved in methamphetamine neurotoxicity.展开更多
The biological signaling molecule nitric oxide(NO)has recently emerged as a metabolic precursor for the creation of microbial natural products with diversified structures and biological activities.Within the biosynthe...The biological signaling molecule nitric oxide(NO)has recently emerged as a metabolic precursor for the creation of microbial natural products with diversified structures and biological activities.Within the biosynthetic gene clusters(BGCs)of these compounds,genes associated with NO production pathways have been pinpointed.In this study,we employ a nitric oxide synthase(NOS)-guided genome mining strategy for the targeted discovery of NO-derived bacterial natural products and NO-utilizing biocatalysts.We show that a conserved NOS-containing BGC,distributed across several actinobacterial genomes,is responsible for the biosynthesis of lajollamycin,a unique nitro-tetraene-containing antibiotic whose biosynthetic mechanism remains elusive.Through a combination of in vivo and in vitro studies,we unveil the first cytochrome P450 enzyme capable of catalyzing olefin nitration in natural product biosynthesis.These results not only expand the current knowledge about biosynthetic nitration processes but also offer an efficient way for targeted identification of NO-utilizing metabolic pathways and novel nitrating biocatalysts.展开更多
The direct cleavage of C–NO_(2)bonds for reductive denitration of nitroarenes remains a challenging transformation in synthetic organic chemistry.Herein,we report a biocompatible palladium-deposited graphdiyne nanoca...The direct cleavage of C–NO_(2)bonds for reductive denitration of nitroarenes remains a challenging transformation in synthetic organic chemistry.Herein,we report a biocompatible palladium-deposited graphdiyne nanocatalyst(Pd@GDY/DSPE-PEG)that can catalyze reductive denitration of nitroarenes under ambient physiological conditions.Mechanistic studies support this transformation via the oxidative addition of nitroarenes with Pd(0)and subsequent ligand exchange to form arylpalladium hydride.This one-step reductive denitration via Pd@GDY/DSPE-PEG successfully facilitates the repair of the nitrated proteins arising from endogenic ONOO−and restores their physiological function,including blocking the apoptosis pathway in living cells.Moreover,Pd@GDY/DSPE-PEG was further successfully applied for catalytic denitration to reduce the level of 3-nitrotyrosine residues of proteins located in the mouse brain hippocampus in vivo.This study provides an ideal strategy for designing highly active enzymatic mimicking synthetic catalysts for the regulation of the nitrated protein level and the detoxification of nitrative damage of living cells and tissues.展开更多
CeO_(2)-based catalysts are widely investigated for selective catalytic reduction(SCR)of NO with NH3.Interaction of NO/O_(2) with CeO_(2) generally produces two surface species,i.e.,nitrates and nitrites.However,the e...CeO_(2)-based catalysts are widely investigated for selective catalytic reduction(SCR)of NO with NH3.Interaction of NO/O_(2) with CeO_(2) generally produces two surface species,i.e.,nitrates and nitrites.However,the explicit quantification of these two species is still unresolved.Herein,we reported that spectrophotometry characterization was effective in determining surface adsorbed NOx species on CeO_(2) by measuring the corresponding ions(NO_(2)-and NO_(3)^(-))dissolved in aqueous solution.Experimental results show that both nitrate(-NO_(3))and nitrite(-NO_(2))species can be quantitatively evaluated and the accuracy is verified by calibrating with NOx-TPD result.Exclusive transfer of adsorbed NOx from catalyst surface to aqueous solution is confirmed and the dissolution process can be accelerated by ultrasonic treatment.Moreover,useful information related to evolution of surface NOx species under various conditions(O_(2) treatment,different adsorption temperature and duration)and over different catalysts(Fe_(2)O_(3),MnO_(2) and MnOx—CeO_(2))are provided.The result of present study demonstrates the potential of spectrophotometry for quantitative discrimination of surface NOx species on CeO_(2) and other oxide-based materials,which is conducive to mechanism analysis of SCR reaction.展开更多
文摘Many derivatives of industrially useful cellulose have hydroxyls of the anhydroglucose(AHG) units uncompletely substituted. Since each AHG unit of a cellulose molecule is a trihydric alcohol,consisted of one primary(position 6) and two secondary hydroxyl groups(positions 2 and 3), the distribution of substituents in these trihydric alcohol units could be different for different derivatives. The
基金Supported by the National Natural Science Foundation of China (20490208)the National High Technology Research and Development Program of China (2007AA030206)the Open Fund of State Key Laboratory of Explosion Science and Technology,BIT (KFJJ06-1)
文摘In this paper, the nitration characteristic of alcohols with mixed acid for the synthesis of energetic mate-rials in a stainless steel microreactor was investigated experimentally. The nitration of iso-octanol with HNO3-H2SO4 mixed acid was chosen as a typical model reaction which involved fast and strong exothermic liquid-liquid heterogeneous reaction process. The influences of mixed acid composition, flow rate, organic/aqueous flow ratio and reaction temperature have been investigated. The results indicated that the reaction could be con-ducted safely and stably in the microreactor at 25-40°C, which are enhanced compared to 15°C or below for safe operating conditions in the conventional reactors. Moreover, the 98.2% conversion of iso-octanol could be obtained and no by-products were detected in all cases.
文摘Nitro aromatic compound can be obtained in high yields via nitration of aromatic compound with wet carbon-based solid acid and NaNO_3 under solvent free oxidation at room temperature.
文摘Certain phenols and naphthols were nitrated regioselectively with Zn(NO)·6HO/TCT in acetonitrile as solvent at room temperature and short reaction time in good yields.The reaction condition was mild.TCT is a cheap and commercially available reagent.It performed as an acid catalyst in this transformation.
基金Financial support by DUBS Research Council is gratefully acknowledged
文摘A mild,efficient and regioselective method for the mononitration of phenolic compounds is described using bismuth subnitrate/ charcoal in the presence of trichloroisocyanuric acid in CH2Cl2 at room temperature.
基金We thank the Director,CSIR-Central Institute of Mining and Fuel Research,Dhanbad for permission to publish this paper.We also thank our colleagues at the Resource Quality Assessment and CTL Research Group for their support.
文摘Four coal samples from Jharia basin,India are treated with nitric acid in glacial acetic acid and aqueous media to find out the chemical,petrographic and spatial structure of the organic mass by X-ray diffraction(XRD)and Fourier Transform Infrared Spectroscopy(FTIR)techniques.X-ray parameters of coal like interlayer spacing(d_(002)),crystallite size(L_(c)),aroamticity(f_(a)),average number of aromatic layers(N_(c)),and coal rank(I_(26)/I_(20))have been determined using profilefitting software.Considerable variation is observed in treated coals in comparison to the demineralized coals.The d_(002)values of treated coals have increased in both the media showing increase in disordering of organic moieties.A linear relationship has been observed between d_(002)values with the volatile matter of the coals.Similarly,the d_(002)values show linear relationship with C_(dmf) contents for demineralized as well as for the treated coals in both the media.The L_(c) and N_(c) values have decreased in treated coals corresponding to demineralized coals.The present study shows that nitration in both the media is capable of removing the aliphatic side chains from the coals and aromaticity(f_(a))increases with increase in rank and shows a linear relationship with the vitrinite reflectance.The corresponding I_(26)/I_(20)values are least for treated coals in glacial acetic acid medium followed by raw and then to treated coals in aqueous medium.FTIR studies show that coal arenes of the raw coals are converted into nitro-arenes in structurally modified coals(SMCs)in both the media,the corresponding bands at 1550-1490 and 1355-1315 cm^(-1) respectively.FTIR study confirms that nitration is the predominant phenomenon,though,oxidation and nitration phenomena takes place simultaneously during treatment with nitric acid to form SMCs.In comparison to raw coals,the SMCs show higher aromaticity and may be easily converted to coal derived products like activated carbon and specialty carbon materials.
文摘The development of a new silane reagent derived from tetrachlorosilane (TCS) was applied in the present work. TCS-sodium nitrate (NaNO3) binary reagent and zinc chloride (ZnCl2) were reported here as a homogeneous nitrating system. The later was used for the efficient mono nitration, in most cases, with high para-regioselectivity. The nitration proceeded smoothly under mild condition, fairly clean and in good yields. This readily available and inexpensive system is superior to other methods by avoidance of the use of corrosive nitrating reagents and therefore considered to be convenient in terms of risk reduction, economic advantages and environment protection. The present protocol was convenient and applicable to a variety of aromatic hydrocarbons and could be amenable to high throughput synthesis of combinatorial libraries for potential drug development, which needs to be studied as part of future investigations.
文摘Experimental results in this work demonstrate that PW12-H2SO4/SiO2 catalyst is a good and durable catalyst for vapor phase nitration of benzene to nitrobenzene (NB) using 65% nitric acid at normal pressure. It retains the advantages of using H2SO4 as catalyst and the addition of phosphotungstic acid holds back the effusion of sulfuric acid. This new catalyst keeps high activity (the conversion of HNO3 is more than 92%), high selectivity of NB (more than 97%) and high space time yield (STY 1.5 kg NB/kg cat.h) even after 150 h on stream, under condition of 423 K, SV=3200 ml/g h.
文摘Nitration of aromatic Compounds is triggered by Vilsmeier-Haack reagent (DMF/POCl3) or (DMF/SOCl2) in the presence of KNO3 or NaNO2 under conventional and non-conventional conditions. The reactions af- forded corresponding Nitro derivatives in very good yield with high regioselectivity. The results obtained in non-conventional methods (Micro wave irradiation, Grinding, Sonication) are comparable with those ob- tained under conventional conditions, but the reaction times of former conditions are substantially shorter than that of the latter.
文摘Solvent – free Mortar-pestle (grinding) and microwave-assisted nitration reactions (MWANR’s) underwent smoothly in the presence of group V and VI metal salts with high regio-selectivity for anilides, moderately- and non-activated aro-matic compounds. The reactions were conducted under solvent-free conditions, which afforded good to excellent yields. The observed reaction times in MW assisted conditions are in the range of only few minutes.
基金financially supported by the National Natural Science Foundation of China, China (21922803, 22122807, and 22008072)the Innovation Program of Shanghai Municipal Education Commission, China+1 种基金the Program of Shanghai Academic/Technology Research Leader, China (21XD1421000)the China Postdoctoral Science Foundation, China (2020M671025 and 2019TQ0093)。
文摘Mechanistic understanding of the active intermediates of 2,6-diaminopyridine(DAP) dinitration in the concentrated nitric-sulfuric acid system is of crucial importance for the selectivity control of target product, i.e., 2,6-diamino-3,5-dinitropyridine(DADNP). The active intermediates determining the product selectivity are theoretically studied. The HSO_(4)^(-)-NO_(2)^(+) complex is proposed as the dominant active nitrating intermediate for the first time, which shows low energy barrier(i.e., 10.19 kcal·mol^(-1),1 kcal = 4.186 k J) for direct dinitration of DAP to DADNP. The formed water during the reaction results in not only the formation of less active SO_(4)^(2-)-NO_(2)^(+) complex, but also the occurance of DAP sulfonation(DAP-SO_(3)H intermediate)to facilitate the formation of mononitration byproduct. Meanwhile, the accompanied thermal effects cause the generation of undesirable pyridine-NHNO_(2) intermediate, which is difficult to be rearranged to yield DADNP, inhibiting the reaction and thus giving low DAP conversion. The insights reported here elucidates the importance of thermal effects elimination and water content control, confirmed experimentally in the batch-and micro-reaction systems.
文摘Vapor-phase nitration of benzene over solid acid catalyst is expected to be a clean process with no sulfuric acid waste. We investigated this process over solid acidic catalysts utilizing diluted nitric acid (60-70%) as nitrating agent, and found that supported sulfuric acid catalyst exhibited a very high catalytic activity. Under the conditions of reaction temperature 160-170℃, space velocity (SV) 1200 h-1, the yield and the space-time yield (STY) of nitrobenzene (NB) based on HNO3 were more than 98% and 0.75 kg穔gcat-1穐-1 over 10% H2SO4/SiO2 (by weight) catalyst respectively.
文摘Ultrasonically assisted nitration reactions (USANR) with anilides, moderately activated and non-activated aromatic compounds underwent smoothly and afforded good yields of products with high regio selectivity. Observed longer reaction times (6 - 8 hrs.) in metal catalyzed reactions reduced to (1 - 2 hrs.) under sonication. When ortho position is blocked para derivatives are obtained, and ortho nitro products are obtained when para position is blocked. In case of USANR of aromatic carbonyl and related compounds the effect of sonication is much more effective. The reactions could be completed only in few minutes.
文摘Nitroaromatics are usually prepared using a mixed acid of nitric acid with strong acids. However, the use of strong acids caused dangerous work-up and the disposal of large amounts of acid-waste. Therefore, much effort has been made on the improvement of nitration process without strong acids. We examined solid-phase aromatic nitration with Mg(NO3)2 on silica gel in order to establish the nitration process without strong acids. The nitration of 1,2- and 1,3-, 1,4-dimethoxybenzenes and 4-methylanisole with Mg(NO3)2 proceeded by heating on silica gel at 150°C for 4 - 5 h to produce the nitroaromatics. The nitration of 1,3,5-trimethoxybenzene produced the nitrated dimer, 2,4,6,2’, 4’,6’-hexamethoxy-3-nitrobiphenyl, which was not isolated in other solid-phase nitration. In the cases of naphthalene derivatives, the α-nitrated compounds were obtained. In the cases of p-cresol and 2-naphthol, the esterification occurred at the hydroxyl group to give 4-tolyl nitrate and 2-naphthyl nitrate, respectively. It is synthetic interest to note that nitrate esters were isolated in solid phase. Thus Mg(NO3)2-SiO2 composite was mild reagent for solid-phase nitration. Acidity of Mg(NO3)2-SiO2 composite was determined to be pH 0.96 by the measurement of absorption spectra on a micro spectrophotometer using meso-tetra(p-cyanophenyl)porphyrin as a pH-indicator. Mg(NO3)2-SiO2 composite made acidic conditions. Therefore, it was suggested that Mg(NO3)2 reacted with proton on silica gel to form the NO+2. Thus, electron-rich aromatic hydrocarbons led the efficient nitration through electrophilic attack of NO+2. After the nitration, acidic Mg(NO3)2-SiO2 composite could be turned into neutrality by exposing wet conditions and disposed safely since the composite did not involve harmful elements. Thus the solid-phase nitration using Mg(NO3)2-SiO2 composite will provide safety and environmentally conscious chemical process.
文摘A practical system of metals-(2,4-pentanedionate) (M(acac)n (M= Fe, Zn, Co and V)) and P2O5 in the pres- ence of HNO3 catalyzes regioselective nitration of ar-himachalene 1 to mono-nitro-ar-himachalene 2 in mod- erate to high yields. Under mild conditions, the selectivity of nitration of 1 to 2 is excellent compared to the classical method using the nitro-sulphuric mixture HNO3/H2SO4, both mono- and di-nitro-ar-himachalene 2 and 3 are obtained. The reaction offers a very good method for the preparation of nitro-aromatic compounds and provides a useful entry to new functionalized terpenic products.
文摘Composition of bromine and nitric acid in concentrated sulfuric acid is effective for bromination of strongly deactivated aromatic compounds and for nitration and bromination of moderately deactivated compounds in one stage. The question why brominating agent is more reactive than nitrating agent in relation to strongly deactivated aromatic compounds and is less reactive in relation to moderate deactivated ones is discussed.
基金supported by the National Natural Science Foundation of China,No.81373240(to PMQ)and 81671865(to PMQ)
文摘Methamphetamine is an amphetamine-type psychostimulant that can damage dopaminergic neurons and cause characteristic pathological changes similar to neurodegenerative diseases such as Parkinson's disease. However, its specific mechanism of action is still unclear. In the present study, we established a Parkinson's disease pathology model by exposing SH-SY5 Y cells and C57 BL/6 J mice to methamphetamine. In vitro experiments were performed with 0, 0.5, 1.0, 1.5, 2.0 or 2.5 mM methamphetamine for 24 hours or 2.0 mM methamphetamine for 0-, 2-, 4-, 8-, 16-, and 24-hour culture of SH-SY5 Y cells. Additional experimental groups of SH-SY5 Y cells were administered a nitric oxide inhibitor, 0.1 mM N-nitro-L-arginine, 1 hour before exposure to 2.0 mM methamphetamine for 24 hours. In vivo experiments: C57 BL/6 J mice were intraperitoneally injected with N-nitro-L-arginine(8 mg/kg), eight times, at intervals of 12 hours. Methamphetamine 15 mg/kg was intraperitoneally injected eight times, at intervals of 12 hours, but 0.5-hour after each N-nitro-L-arginine injection in the combined group. Western blot assay was used to determine the expression of nitric oxide synthase, α-synuclein(α-Syn), 5 G4, nitrated α-synuclein at the residue Tyr39(nT39 α-Syn), cleaved caspase-3, and cleaved poly ADP-ribose polymerase(PARP) in cells and mouse brain tissue. Immunofluorescence staining was conducted to measure the positive reaction of NeuN, nT39 α-Syn and 5 G4. Enzyme linked immunosorbent assay was performed to determine the dopamine levels in the mouse brain. After methamphetamine exposure, α-Syn expression increased; the aggregation of α-Syn 5 G4 increased; nT39 α-Syn, nitric oxide synthase, cleaved caspase-3, and cleaved PARP expression increased in the cultures of SH-SY5 Y cells and in the brains of C57 BL/6 J mice; and dopamine levels were reduced in the mouse brain. These changes were markedly reduced when N-nitro-L-arginine was administered with methamphetamine in both SH-SY5 Y cells and C57 BL/6 J mice. These results suggest that nT39 α-Syn aggregation is involved in methamphetamine neurotoxicity.
基金supported by the National Natural Science Foundation of China(32122005 and 32370051)to Y.-L.D.
文摘The biological signaling molecule nitric oxide(NO)has recently emerged as a metabolic precursor for the creation of microbial natural products with diversified structures and biological activities.Within the biosynthetic gene clusters(BGCs)of these compounds,genes associated with NO production pathways have been pinpointed.In this study,we employ a nitric oxide synthase(NOS)-guided genome mining strategy for the targeted discovery of NO-derived bacterial natural products and NO-utilizing biocatalysts.We show that a conserved NOS-containing BGC,distributed across several actinobacterial genomes,is responsible for the biosynthesis of lajollamycin,a unique nitro-tetraene-containing antibiotic whose biosynthetic mechanism remains elusive.Through a combination of in vivo and in vitro studies,we unveil the first cytochrome P450 enzyme capable of catalyzing olefin nitration in natural product biosynthesis.These results not only expand the current knowledge about biosynthetic nitration processes but also offer an efficient way for targeted identification of NO-utilizing metabolic pathways and novel nitrating biocatalysts.
基金support from the National Natural Science Foundation of China(grant nos.22021002,22020102005,and 22022705)the CAS-Croucher Funding Scheme for Joint Laboratories.
文摘The direct cleavage of C–NO_(2)bonds for reductive denitration of nitroarenes remains a challenging transformation in synthetic organic chemistry.Herein,we report a biocompatible palladium-deposited graphdiyne nanocatalyst(Pd@GDY/DSPE-PEG)that can catalyze reductive denitration of nitroarenes under ambient physiological conditions.Mechanistic studies support this transformation via the oxidative addition of nitroarenes with Pd(0)and subsequent ligand exchange to form arylpalladium hydride.This one-step reductive denitration via Pd@GDY/DSPE-PEG successfully facilitates the repair of the nitrated proteins arising from endogenic ONOO−and restores their physiological function,including blocking the apoptosis pathway in living cells.Moreover,Pd@GDY/DSPE-PEG was further successfully applied for catalytic denitration to reduce the level of 3-nitrotyrosine residues of proteins located in the mouse brain hippocampus in vivo.This study provides an ideal strategy for designing highly active enzymatic mimicking synthetic catalysts for the regulation of the nitrated protein level and the detoxification of nitrative damage of living cells and tissues.
基金Project supported by the National Natural Science Foundation of China(22276097,21976081)the Major Scientificand Technological Project of Bingtuan(2018AA002)。
文摘CeO_(2)-based catalysts are widely investigated for selective catalytic reduction(SCR)of NO with NH3.Interaction of NO/O_(2) with CeO_(2) generally produces two surface species,i.e.,nitrates and nitrites.However,the explicit quantification of these two species is still unresolved.Herein,we reported that spectrophotometry characterization was effective in determining surface adsorbed NOx species on CeO_(2) by measuring the corresponding ions(NO_(2)-and NO_(3)^(-))dissolved in aqueous solution.Experimental results show that both nitrate(-NO_(3))and nitrite(-NO_(2))species can be quantitatively evaluated and the accuracy is verified by calibrating with NOx-TPD result.Exclusive transfer of adsorbed NOx from catalyst surface to aqueous solution is confirmed and the dissolution process can be accelerated by ultrasonic treatment.Moreover,useful information related to evolution of surface NOx species under various conditions(O_(2) treatment,different adsorption temperature and duration)and over different catalysts(Fe_(2)O_(3),MnO_(2) and MnOx—CeO_(2))are provided.The result of present study demonstrates the potential of spectrophotometry for quantitative discrimination of surface NOx species on CeO_(2) and other oxide-based materials,which is conducive to mechanism analysis of SCR reaction.