[Objective] This study was conducted to investigate the demands for N, P and K by wheat in wheat cotton intercropping system in high-fertility field of Hebei Province. [Method] The experiment adopted randomized block ...[Objective] This study was conducted to investigate the demands for N, P and K by wheat in wheat cotton intercropping system in high-fertility field of Hebei Province. [Method] The experiment adopted randomized block arrangement. Five treatments (0, 75, 150, 225 and 300 kg/hm2) were designed for N, P and K. Wheat tillering, ear number, yield and yield components were investigated. [Result] Wheat yield increased significantly with the application of N fertilizer. The number of ears per unit area, number of grains per ear, 1 000-grain weight and yield were im- proved with N increasing. P fertilizer improved wheat yield at a certain degree, but K had no effect on wheat yield. ]Conclusion] The optimum fertilization for wheat-cot- ton intercropping system was N at 225-300 kg/hm2 and P2Os at 150 kg/hm2; and there is no need to apply K.展开更多
In this paper, the effect of different fertilizer treatments on the main indexes of growth and development and dry matter accumulation of perennial mulberry, which is cut and pruned in summer, were studied with ‘3414...In this paper, the effect of different fertilizer treatments on the main indexes of growth and development and dry matter accumulation of perennial mulberry, which is cut and pruned in summer, were studied with ‘3414’ field experiment design. The results showed that N, P, and K at proper amounts could promote mulberry growth and development, improve its dry matter content, increase its dry matter accumulation. The effects of N, P, K on leaf yield per plant were respectively expressed as follows: N2 N3 N1 N0 , P2 P1 P3 P0 , K2 K1 K3 K0 . It can be concluded that the recommended fertilizer amounts of dry matter accumulations in mulberry leaf were 694.36 kg/hm2 of N, 198.15 kg/hm2 of P, and 274.26 kg/hm2 of K and the dry matter achieved the maximum at 8 045.04 kg/hm2 . The recommended fertilizer amounts of accumulated dry matter in branch were 1 000.05 kg/hm2 of N, 242.04 kg/hm2 of P, and 218.01 kg/hm 2 of K, and the dry matter achieved the maximum at 5 969.05 kg/hm2 . The recommended fertilizer amount in young shoots were 883.76 kg/hm2 of N, 204.48 kg/hm2 of P and 426.59 kg/hm2 of K and dry matter achieved the maximum at 1 410.24 kg/hm2 . This paper could provide reference for the construction of highly-qualified mulberry field in Sichuan hilly area.展开更多
The parasitic weed Striga poses a serious threat to cereal production in sub-Saharan Africa. For many years, technological packages for the control of this weed were proposed and implemented on farmers' fields. A sur...The parasitic weed Striga poses a serious threat to cereal production in sub-Saharan Africa. For many years, technological packages for the control of this weed were proposed and implemented on farmers' fields. A survey was carried out in farmers' fields in 2010/201l cropping season in selected dryland areas of Tanzania to: (a) determine the Striga plant counts, number of capsules/Striga plant and agronomic practices used by farmers to control Striga; and (b) evaluate the relationship between Striga reproduction, soil chemical characteristics and agronomic practices. Soil samples at 0-20 cm depth were collected from 20 different farmers' fields. The soil samples were analyzed for pH, organic carbon, N, P and K. Results showed that there was low adoption of recommended Striga control methods. Regression analysis of agronomic practices and soil chemical characteristics revealed a positive improvement of soil N and organic carbon and reduction of soil P and K content as one shifted from sole planting to intercropping. The results showed that potassium was highly positively related to number of capsules/Striga plant. There was a reduction in the number of capsules/plant as one moved from sole planting to intercropping. Based on these findings, K in the Striga infested in soils positively influenced Striga reproduction and seed bank replenishment, hence high soil K levels may lead to high Striga incidence.展开更多
基金Supported by Science and Technology Demonstration Project of Bohai Granary from Ministry of Science and Technology(2013BAD05B00)Special Fund for Cotton Industry Technological System Construction(CARS-18-21)
文摘[Objective] This study was conducted to investigate the demands for N, P and K by wheat in wheat cotton intercropping system in high-fertility field of Hebei Province. [Method] The experiment adopted randomized block arrangement. Five treatments (0, 75, 150, 225 and 300 kg/hm2) were designed for N, P and K. Wheat tillering, ear number, yield and yield components were investigated. [Result] Wheat yield increased significantly with the application of N fertilizer. The number of ears per unit area, number of grains per ear, 1 000-grain weight and yield were im- proved with N increasing. P fertilizer improved wheat yield at a certain degree, but K had no effect on wheat yield. ]Conclusion] The optimum fertilization for wheat-cot- ton intercropping system was N at 225-300 kg/hm2 and P2Os at 150 kg/hm2; and there is no need to apply K.
基金Supported by Science&Technology Innovation of Sichuan Characteristic AgricultureProvincial Breeding Key Project of the 12th Five Year Plan (No.2011yzgg-13-02-01)+2 种基金Sichuan Academy of Agricultural Sciences (2011LWJJ-008)Seed Industry Innovation and Transformation Project (2011JYGC10-027-02)Modern Agricultural Technology System Project (No.CARS-22)~~
文摘In this paper, the effect of different fertilizer treatments on the main indexes of growth and development and dry matter accumulation of perennial mulberry, which is cut and pruned in summer, were studied with ‘3414’ field experiment design. The results showed that N, P, and K at proper amounts could promote mulberry growth and development, improve its dry matter content, increase its dry matter accumulation. The effects of N, P, K on leaf yield per plant were respectively expressed as follows: N2 N3 N1 N0 , P2 P1 P3 P0 , K2 K1 K3 K0 . It can be concluded that the recommended fertilizer amounts of dry matter accumulations in mulberry leaf were 694.36 kg/hm2 of N, 198.15 kg/hm2 of P, and 274.26 kg/hm2 of K and the dry matter achieved the maximum at 8 045.04 kg/hm2 . The recommended fertilizer amounts of accumulated dry matter in branch were 1 000.05 kg/hm2 of N, 242.04 kg/hm2 of P, and 218.01 kg/hm 2 of K, and the dry matter achieved the maximum at 5 969.05 kg/hm2 . The recommended fertilizer amount in young shoots were 883.76 kg/hm2 of N, 204.48 kg/hm2 of P and 426.59 kg/hm2 of K and dry matter achieved the maximum at 1 410.24 kg/hm2 . This paper could provide reference for the construction of highly-qualified mulberry field in Sichuan hilly area.
文摘The parasitic weed Striga poses a serious threat to cereal production in sub-Saharan Africa. For many years, technological packages for the control of this weed were proposed and implemented on farmers' fields. A survey was carried out in farmers' fields in 2010/201l cropping season in selected dryland areas of Tanzania to: (a) determine the Striga plant counts, number of capsules/Striga plant and agronomic practices used by farmers to control Striga; and (b) evaluate the relationship between Striga reproduction, soil chemical characteristics and agronomic practices. Soil samples at 0-20 cm depth were collected from 20 different farmers' fields. The soil samples were analyzed for pH, organic carbon, N, P and K. Results showed that there was low adoption of recommended Striga control methods. Regression analysis of agronomic practices and soil chemical characteristics revealed a positive improvement of soil N and organic carbon and reduction of soil P and K content as one shifted from sole planting to intercropping. The results showed that potassium was highly positively related to number of capsules/Striga plant. There was a reduction in the number of capsules/plant as one moved from sole planting to intercropping. Based on these findings, K in the Striga infested in soils positively influenced Striga reproduction and seed bank replenishment, hence high soil K levels may lead to high Striga incidence.