Tetracyclic coumarins are a class of important compounds with diverse and superior pharmacolog‐ical activities.However,a direct stereoselective method from simple and readily‐made coumarins derivatives remains chall...Tetracyclic coumarins are a class of important compounds with diverse and superior pharmacolog‐ical activities.However,a direct stereoselective method from simple and readily‐made coumarins derivatives remains challenging due to the inertness of coumarins as dienophiles.Herein,we de‐velop a decarboxylative asymmetric[4+2]cycloaddition of 3‐cyanocoumarins with vinyl benzoxa‐zinones,affording the coumarin‐derived condensed rings bearing three continuous stereocenters in high yields with excellent diastereoselectivities(>20/1 d.r.)and enantioselectivities(up to 99%ee).This direct enantioselective reaction was achieved by a Pd(0)/Cu(I)bimetallic catalytic system.The mechanism studies indicated that the synergistic activation effect,in which chiral Cu(I)as an availa‐ble Lewis acid catalyst activates 3‐cyanocoumarin and chiral Pd(0)complex activates benzoxazi‐none by the formation ofπ‐allyl‐palladium intermediate,plays an important role on the stereoselec‐tive control.The current work provides a new activation modes of Cu catalyst in the Pd/Cu bimetal‐lic catalytic system.展开更多
MgH2 is a promising and popular hydrogen storage material.In this work,the hydrogen desorption reactions of a single Pd atom adsorbed MgH2(110)surface are investigated by using first-principles density functional theo...MgH2 is a promising and popular hydrogen storage material.In this work,the hydrogen desorption reactions of a single Pd atom adsorbed MgH2(110)surface are investigated by using first-principles density functional theory calculations.We find that a single Pd atom adsorbed on the MgH2(110)surface can significantly lower the energy barrier of the hydrogen desorption reactions from 1.802 eV for pure MgH2(110)surface to 1.154 eV for Pd adsorbed MgH2(110)surface,indicating a strong Pd single-atom catalytic effect on the hydrogen desorption reactions.Furthermore,the Pd single-atom catalysis significantly reduces the hydrogen desorption temperature from 573K to 367K,which makes the hydrogen desorption reactions occur more easily and quickly on the MgH2(110)surface.We also discuss the microscopic process of the hydrogen desorption reactions through the reverse process of hydrogen spillover mechanism on the MgH2(110)surface.This study shows that Pd/MgH2 thin films can be used as good hydrogen storage materials in future experiments.展开更多
Asymmetric hydrogenation of (6-methoxyl-2-naphthyl)-2-acrylic acid catalyzed by cinchona modified Pd(0)-a-FeOOH was reported and ee抯 of (S)-(+)-2-(6′-methoxyl-2-naphthyl) propionic acid ((S)-(+)-naproxen) up to 98% ...Asymmetric hydrogenation of (6-methoxyl-2-naphthyl)-2-acrylic acid catalyzed by cinchona modified Pd(0)-a-FeOOH was reported and ee抯 of (S)-(+)-2-(6′-methoxyl-2-naphthyl) propionic acid ((S)-(+)-naproxen) up to 98% was achieved firstly.展开更多
An activated carbon (AC) supported Pd catalyst was used to develop a highly efficient in situ adsorption-catalysis system for the removal of low concentrations of o-xylene. In this study, three kinds of Pd/AC cataly...An activated carbon (AC) supported Pd catalyst was used to develop a highly efficient in situ adsorption-catalysis system for the removal of low concentrations of o-xylene. In this study, three kinds of Pd/AC catalysts were prepared and tested to investigate the synergistic efficiency between adsorption and catalysis for o-xylene removal. The Pd/AC catalyst was first used as an adsorbent to concentrate dilute o-xylene at low temperature. After saturated adsorption, the adsorbed o-xylene was oxidized to CO2 and H20 by raising the temperature of the catalyst bed. The results showed that more than 99% of the adsorbed o-xylene was completely oxidized to CO2 over a 5% Pd/AC catalyst at 140℃. Brunauer-Emmett-Teller (BET) analysis, scanning electron microscopy (SEM), temperatureprogrammed desorption (TPD), and temperature-programmed oxidation (TPO) were applied to investigate the physical properties of o-xylene adsorption-desorption and the in situ adsorption-catalysis activity of the AC support and Pd/AC catalyst. A synergistic relationship between the AC support and the active Pd species for the removal of low concentrations of o-xylene was established.展开更多
文摘Tetracyclic coumarins are a class of important compounds with diverse and superior pharmacolog‐ical activities.However,a direct stereoselective method from simple and readily‐made coumarins derivatives remains challenging due to the inertness of coumarins as dienophiles.Herein,we de‐velop a decarboxylative asymmetric[4+2]cycloaddition of 3‐cyanocoumarins with vinyl benzoxa‐zinones,affording the coumarin‐derived condensed rings bearing three continuous stereocenters in high yields with excellent diastereoselectivities(>20/1 d.r.)and enantioselectivities(up to 99%ee).This direct enantioselective reaction was achieved by a Pd(0)/Cu(I)bimetallic catalytic system.The mechanism studies indicated that the synergistic activation effect,in which chiral Cu(I)as an availa‐ble Lewis acid catalyst activates 3‐cyanocoumarin and chiral Pd(0)complex activates benzoxazi‐none by the formation ofπ‐allyl‐palladium intermediate,plays an important role on the stereoselec‐tive control.The current work provides a new activation modes of Cu catalyst in the Pd/Cu bimetal‐lic catalytic system.
基金supported by the National Key Basic Research Program(No.2011CB921404)National Natural Science Foundation of China(No.21421063,No.91021004,No.21233007,No.21803066)+2 种基金Strategic Priority Research Program of Chinese Academy of Sciences(No.XDC01000000)Research Start-Up Grants(No.KY2340000094)from University of Science and Technology of Chinathe Chinese Academy of Sciences Pioneer Hundred Talents Program
文摘MgH2 is a promising and popular hydrogen storage material.In this work,the hydrogen desorption reactions of a single Pd atom adsorbed MgH2(110)surface are investigated by using first-principles density functional theory calculations.We find that a single Pd atom adsorbed on the MgH2(110)surface can significantly lower the energy barrier of the hydrogen desorption reactions from 1.802 eV for pure MgH2(110)surface to 1.154 eV for Pd adsorbed MgH2(110)surface,indicating a strong Pd single-atom catalytic effect on the hydrogen desorption reactions.Furthermore,the Pd single-atom catalysis significantly reduces the hydrogen desorption temperature from 573K to 367K,which makes the hydrogen desorption reactions occur more easily and quickly on the MgH2(110)surface.We also discuss the microscopic process of the hydrogen desorption reactions through the reverse process of hydrogen spillover mechanism on the MgH2(110)surface.This study shows that Pd/MgH2 thin films can be used as good hydrogen storage materials in future experiments.
文摘Asymmetric hydrogenation of (6-methoxyl-2-naphthyl)-2-acrylic acid catalyzed by cinchona modified Pd(0)-a-FeOOH was reported and ee抯 of (S)-(+)-2-(6′-methoxyl-2-naphthyl) propionic acid ((S)-(+)-naproxen) up to 98% was achieved firstly.
基金supported by the National Natural Science Foundation of China (No. 20607029)the Ministry of Science and Technology of China (No. 2007AA061402)
文摘An activated carbon (AC) supported Pd catalyst was used to develop a highly efficient in situ adsorption-catalysis system for the removal of low concentrations of o-xylene. In this study, three kinds of Pd/AC catalysts were prepared and tested to investigate the synergistic efficiency between adsorption and catalysis for o-xylene removal. The Pd/AC catalyst was first used as an adsorbent to concentrate dilute o-xylene at low temperature. After saturated adsorption, the adsorbed o-xylene was oxidized to CO2 and H20 by raising the temperature of the catalyst bed. The results showed that more than 99% of the adsorbed o-xylene was completely oxidized to CO2 over a 5% Pd/AC catalyst at 140℃. Brunauer-Emmett-Teller (BET) analysis, scanning electron microscopy (SEM), temperatureprogrammed desorption (TPD), and temperature-programmed oxidation (TPO) were applied to investigate the physical properties of o-xylene adsorption-desorption and the in situ adsorption-catalysis activity of the AC support and Pd/AC catalyst. A synergistic relationship between the AC support and the active Pd species for the removal of low concentrations of o-xylene was established.