This paper develops a high time-resolution optimal power generation mix model in its time resolution of 10 minutes on 365 days by linear programming technique. The model allows us to analyse the massive deployment of ...This paper develops a high time-resolution optimal power generation mix model in its time resolution of 10 minutes on 365 days by linear programming technique. The model allows us to analyse the massive deployment of photovoltaic system and wind power generation in power system explicitly considering those short-term output variation. PV (photovoltaic) and wind output are estimated, employing meteorological database. Simulation results reveal that variable fluctuation derived from a high penetration level of those renewables is controlled by quick load following operation of natural gas combined cycle power plant, pumped-storage hydro power, stationary NAS (sodium and sulfur) battery and the output suppression control of PV and wind. It additionally turns out that the operational configuration of those technologies for the renewable variability differs significantly depending on those renewable output variations in each season and solving the seasonal electricity imbalance as well as the daily imbalance is important if variable renewables are massively deployed.展开更多
The present paper deals with the development of a modular, flexible and structured block to block approach for the study of regulators by implementing the different blocks on a DSP (digital signal processor). The pr...The present paper deals with the development of a modular, flexible and structured block to block approach for the study of regulators by implementing the different blocks on a DSP (digital signal processor). The proposed low-cost approach has been applied and validated by the implementation of an industrial regulator in a real time hardware-in-the-loop simulation of a mixed islanded power network including precise models of the hydraulic system. The studied network is constituted of three different types of electrical power generation systems and a consumer.展开更多
The access to electricity in rural areas is extremely limited, but it is crucial for all citizens. The population in rural areas of sub-Saharan African (SSA) countries is generally low, making it economically unfeasib...The access to electricity in rural areas is extremely limited, but it is crucial for all citizens. The population in rural areas of sub-Saharan African (SSA) countries is generally low, making it economically unfeasible to implement traditional rural electrification (CRE) projects due to the high cost of establishing the necessary distribution infrastructure. To address this cost issue, one alternative technology for rural electrification (URE) that can be explored is the Capacitor Coupled Substation (CCS) technology. CCS is a cost-effective solution for supplying electricity to rural areas. The research is necessitated by the need to offer a cost-effective technology for supplying electricity to sparsely populated communities. This paper examines the impact on the transmission network when a 400 kV/400V CCS is connected to it. The system response when a CCS is connected to the network was modeled using MATLAB/Si-mulink. The results, based on the fixed load of 80 kW, showed negligible interference on the transmission line voltage. However, there was minor impact on the parameters downstream of the tapping point. These findings were further supported by introducing a fault condition to the CCS, which showed that interferences with the CCS could affect the overall stability of the transmission network downstream of the tapping node, similar to the behavior of an unstable load.展开更多
The exclusive use of renewable energies is today an essential nautical concern. Nowadays, the onboard energy generation comes mainly from diesel oil, which is in user mind the simplest way. Our objective is to develop...The exclusive use of renewable energies is today an essential nautical concern. Nowadays, the onboard energy generation comes mainly from diesel oil, which is in user mind the simplest way. Our objective is to develop a self-adaptive management system of the onboard energy in order to change the user mind. We introduce models for energy production, storage and consumption that fit with the yachting environment, which is mobile and not as predictable as the home automation case. These models are combined within a configurable simulator. This simulator can handle user's boat equipment, reproduce sailing conditions and so help to validate the models and to study different management strategies. This first step is necessary to develop a smart system able to manage sailing energy in order to answer the main issue: assuring safety and optimizing comfort according to user demands.展开更多
The numerical solution of the differential-algebraic equations(DAEs) involved in time domain simulation(TDS) of power systems requires the solution of a sequence of large scale and sparse linear systems.The use of ite...The numerical solution of the differential-algebraic equations(DAEs) involved in time domain simulation(TDS) of power systems requires the solution of a sequence of large scale and sparse linear systems.The use of iterative methods such as the Krylov subspace method is imperative for the solution of these large and sparse linear systems.The motivation of the present work is to develop a new algorithm to efficiently precondition the whole sequence of linear systems involved in TDS.As an improvement of dishonest preconditioner(DP) strategy,updating preconditioner strategy(UP) is introduced to the field of TDS for the first time.The idea of updating preconditioner strategy is based on the fact that the matrices in sequence of the linearized systems are continuous and there is only a slight difference between two consecutive matrices.In order to make the linear system sequence in TDS suitable for UP strategy,a matrix transformation is applied to form a new linear sequence with a good shape for preconditioner updating.The algorithm proposed in this paper has been tested with 4 cases from real-life power systems in China.Results show that the proposed UP algorithm efficiently preconditions the sequence of linear systems and reduces 9%-61% the iteration count of the GMRES when compared with the DP method in all test cases.Numerical experiments also show the effectiveness of UP when combined with simple preconditioner reconstruction strategies.展开更多
With wider applications of power electronic devices in modern power systems,simulation using traditional electro-mechanical and electromagnetic simulation tools suffer from low speed and imprecision.Multi-rate technol...With wider applications of power electronic devices in modern power systems,simulation using traditional electro-mechanical and electromagnetic simulation tools suffer from low speed and imprecision.Multi-rate technologies can greatly improve simulation efficiency by avoiding simulating the entire system using a small time-step.However,the drawbacks of the current synchronization mechanisms is that they introduce numerical errors and numerical instabilities in multi-rate parallel simulations.An improved multi-rate parallel technology,node splitting interface(NSI),is proposed to reduce errors and enhance simulation stability.A new synchronization mechanism is used to avoid prediction and signal delays.Theoretical analyses are carried out to prove the convergence and absolute stability of the proposed NSI algorithm.This algorithm is particularly suitable for simultaneously investigating long term dynamics of DC grids and fast transients of power electronic converters.展开更多
The energy conservation plays an important role for low carbon development.In order to evaluate the energy conservation in the full life-cycle,a scheme to estimate the energy consumption,or alternatively the energy pa...The energy conservation plays an important role for low carbon development.In order to evaluate the energy conservation in the full life-cycle,a scheme to estimate the energy consumption,or alternatively the energy pay,in constructing an overhead transmission line is proposed in this paper.The analysis of a typical projection is given for demonstration.With new additional overhead transmission lines,the energy consumption,known as the power loss in power network,is expected to be decline,which is defined in this paper as the energy payback.In order to estimate this kind of contribution,the scheme that consisted of load forecast,production simulation for generating systems,load flow simulation and power loss calculation has been proposed.Case studies,based on the IEEE 24-bus test system,are given to demonstrate the efficacy of the schemes.Moreover,several presumptive scenarios are deployed and analysed with the presented schemes for comparison.展开更多
文摘This paper develops a high time-resolution optimal power generation mix model in its time resolution of 10 minutes on 365 days by linear programming technique. The model allows us to analyse the massive deployment of photovoltaic system and wind power generation in power system explicitly considering those short-term output variation. PV (photovoltaic) and wind output are estimated, employing meteorological database. Simulation results reveal that variable fluctuation derived from a high penetration level of those renewables is controlled by quick load following operation of natural gas combined cycle power plant, pumped-storage hydro power, stationary NAS (sodium and sulfur) battery and the output suppression control of PV and wind. It additionally turns out that the operational configuration of those technologies for the renewable variability differs significantly depending on those renewable output variations in each season and solving the seasonal electricity imbalance as well as the daily imbalance is important if variable renewables are massively deployed.
文摘The present paper deals with the development of a modular, flexible and structured block to block approach for the study of regulators by implementing the different blocks on a DSP (digital signal processor). The proposed low-cost approach has been applied and validated by the implementation of an industrial regulator in a real time hardware-in-the-loop simulation of a mixed islanded power network including precise models of the hydraulic system. The studied network is constituted of three different types of electrical power generation systems and a consumer.
文摘The access to electricity in rural areas is extremely limited, but it is crucial for all citizens. The population in rural areas of sub-Saharan African (SSA) countries is generally low, making it economically unfeasible to implement traditional rural electrification (CRE) projects due to the high cost of establishing the necessary distribution infrastructure. To address this cost issue, one alternative technology for rural electrification (URE) that can be explored is the Capacitor Coupled Substation (CCS) technology. CCS is a cost-effective solution for supplying electricity to rural areas. The research is necessitated by the need to offer a cost-effective technology for supplying electricity to sparsely populated communities. This paper examines the impact on the transmission network when a 400 kV/400V CCS is connected to it. The system response when a CCS is connected to the network was modeled using MATLAB/Si-mulink. The results, based on the fixed load of 80 kW, showed negligible interference on the transmission line voltage. However, there was minor impact on the parameters downstream of the tapping point. These findings were further supported by introducing a fault condition to the CCS, which showed that interferences with the CCS could affect the overall stability of the transmission network downstream of the tapping node, similar to the behavior of an unstable load.
文摘The exclusive use of renewable energies is today an essential nautical concern. Nowadays, the onboard energy generation comes mainly from diesel oil, which is in user mind the simplest way. Our objective is to develop a self-adaptive management system of the onboard energy in order to change the user mind. We introduce models for energy production, storage and consumption that fit with the yachting environment, which is mobile and not as predictable as the home automation case. These models are combined within a configurable simulator. This simulator can handle user's boat equipment, reproduce sailing conditions and so help to validate the models and to study different management strategies. This first step is necessary to develop a smart system able to manage sailing energy in order to answer the main issue: assuring safety and optimizing comfort according to user demands.
基金supported by the National Natural Science Foundation of China (Grant Nos. 60703055 and 60803019)the National High-Tech Research & Development Program of China ("863" Program) (Grant No. 2009AA01A129)+1 种基金State Key Development Program of Basic Research of China (Grant No. 2010CB951903)Tsinghua National Laboratory for Information Science and Technology (THList) Cross-discipline Foundation
文摘The numerical solution of the differential-algebraic equations(DAEs) involved in time domain simulation(TDS) of power systems requires the solution of a sequence of large scale and sparse linear systems.The use of iterative methods such as the Krylov subspace method is imperative for the solution of these large and sparse linear systems.The motivation of the present work is to develop a new algorithm to efficiently precondition the whole sequence of linear systems involved in TDS.As an improvement of dishonest preconditioner(DP) strategy,updating preconditioner strategy(UP) is introduced to the field of TDS for the first time.The idea of updating preconditioner strategy is based on the fact that the matrices in sequence of the linearized systems are continuous and there is only a slight difference between two consecutive matrices.In order to make the linear system sequence in TDS suitable for UP strategy,a matrix transformation is applied to form a new linear sequence with a good shape for preconditioner updating.The algorithm proposed in this paper has been tested with 4 cases from real-life power systems in China.Results show that the proposed UP algorithm efficiently preconditions the sequence of linear systems and reduces 9%-61% the iteration count of the GMRES when compared with the DP method in all test cases.Numerical experiments also show the effectiveness of UP when combined with simple preconditioner reconstruction strategies.
基金This work was supported in part by the People Programme(Marie Curie Actions)of the European Union’s Seventh Framework Programme FP7/2007-2013/under REA grant agreement(No.317221)project title MEDOW,in part supported by the Project of National Science Foundation for Distinguished Young Scholars of China(No.51407164).
文摘With wider applications of power electronic devices in modern power systems,simulation using traditional electro-mechanical and electromagnetic simulation tools suffer from low speed and imprecision.Multi-rate technologies can greatly improve simulation efficiency by avoiding simulating the entire system using a small time-step.However,the drawbacks of the current synchronization mechanisms is that they introduce numerical errors and numerical instabilities in multi-rate parallel simulations.An improved multi-rate parallel technology,node splitting interface(NSI),is proposed to reduce errors and enhance simulation stability.A new synchronization mechanism is used to avoid prediction and signal delays.Theoretical analyses are carried out to prove the convergence and absolute stability of the proposed NSI algorithm.This algorithm is particularly suitable for simultaneously investigating long term dynamics of DC grids and fast transients of power electronic converters.
基金This work was supported by the National Science Fund for Distinguished Young Scholars(No.51325702)the China Postdoctoral Science Foundation(No.2014M560968).
文摘The energy conservation plays an important role for low carbon development.In order to evaluate the energy conservation in the full life-cycle,a scheme to estimate the energy consumption,or alternatively the energy pay,in constructing an overhead transmission line is proposed in this paper.The analysis of a typical projection is given for demonstration.With new additional overhead transmission lines,the energy consumption,known as the power loss in power network,is expected to be decline,which is defined in this paper as the energy payback.In order to estimate this kind of contribution,the scheme that consisted of load forecast,production simulation for generating systems,load flow simulation and power loss calculation has been proposed.Case studies,based on the IEEE 24-bus test system,are given to demonstrate the efficacy of the schemes.Moreover,several presumptive scenarios are deployed and analysed with the presented schemes for comparison.