期刊文献+
共找到17篇文章
< 1 >
每页显示 20 50 100
A Novel CMOSDual-Modulus Prescaler Based on New Optimized Structure and Dynamic Circuit Technique 被引量:8
1
作者 池保勇 石秉学 《Journal of Semiconductors》 EI CAS CSCD 北大核心 2002年第4期357-361,共5页
s:A divide- by- 12 8/ 12 9or6 4/ 6 5 dual- modulus prescaler based on new optimized structure and dynam ic circuit technique im plem ented in 0 .2 5 μm CMOS digital technology is described.New optimized structure re... s:A divide- by- 12 8/ 12 9or6 4/ 6 5 dual- modulus prescaler based on new optimized structure and dynam ic circuit technique im plem ented in 0 .2 5 μm CMOS digital technology is described.New optimized structure reduces the propagation delay and has higher operating speed.Based on this structure,an im proved D- flip- flop(DFF) using dynam ic circuit technique is proposed.A prototype is fabricated and the measured results show that this prescaler works well in gigahertz frequency range and consumes only35 m W(including three power- hungry output buffers) when the input frequency is2 .5 GHz and the power supply voltage is2 .5 V.Due to its excellent perform ance,the prescaler could be applied to many RF system s. 展开更多
关键词 dual- modulus prescaler D- flip- flop CMOS
下载PDF
A Novel 4/5 Prescaler with Automatic Power Down
2
作者 曾隆月 朱思奇 阎跃鹏 《Journal of Semiconductors》 EI CAS CSCD 北大核心 2008年第8期1449-1452,共4页
An "automatic power down" method is introduced to design a 4/5 prescaler,with the characteristic of making one of its D-flip-flops power down when it operates in divide-by-4 mode. Implemented with the TSMC 0.25vm mi... An "automatic power down" method is introduced to design a 4/5 prescaler,with the characteristic of making one of its D-flip-flops power down when it operates in divide-by-4 mode. Implemented with the TSMC 0.25vm mixed-sig- nal CMOS process,the 4/5 MOS current mode logic prescaler is designed with this automatic power down technique. The simulation results show that the new 4/5 prescaler is immune to the "wake-up" issue and thereby retains the same maxi- mum operating frequency as the conventional prescaler. An integer-N divider with this proposed prescaler and with the di- vision ratio 66/67 is manufactured,and it is estimated to save more than 20% of the power compared with the conventional 4/5 prescaler. 展开更多
关键词 MCML prescaler automatic power down frequency synthesizer
下载PDF
A High-Speed Dual Modulus Prescaler Using 0.25 μm CMOS Technology
3
作者 杨文荣 曹家麟 +1 位作者 冉峰 王健 《Journal of Shanghai University(English Edition)》 CAS 2004年第3期342-347,共6页
A high-speed dual-modulus divide-by-32/33 prescaler has been developed using 0.25 μm CMOS technology. The source-coupled logic (SCL) structure is used to reduce the switching noise and to ameliorate the power-speed t... A high-speed dual-modulus divide-by-32/33 prescaler has been developed using 0.25 μm CMOS technology. The source-coupled logic (SCL) structure is used to reduce the switching noise and to ameliorate the power-speed tradeoff. The proposed prescaler can operate at high frequency with a low-power consumption. Based on the 2.5 V, 0.25 μm CMOS model, simulation results indicate that the maximum input frequency of the prescaler is up to 3.2 GHz. Running at 2.5 V, the circuit consumes only 4.6 mA at an input frequency 2.5 GHz. 展开更多
关键词 CMOS prescaleR source-coupled logic(SCL) phase-locked loop(PLL).
下载PDF
A wideband low power low phase noise dual-modulus prescaler 被引量:2
4
作者 雷雪梅 王志功 王科平 《Journal of Semiconductors》 EI CAS CSCD 北大核心 2011年第2期130-136,共7页
This paper describes a novel divide-by-32/33 dual-modulus prescaler (DMP). Here, a new combination of DFF has been introduced in the DMP. By means of the cooperation and coordination among three types, DFF, SCL, TPS... This paper describes a novel divide-by-32/33 dual-modulus prescaler (DMP). Here, a new combination of DFF has been introduced in the DMP. By means of the cooperation and coordination among three types, DFF, SCL, TPSC, and CMOS static flip-flop, the DMP demonstrates high speed, wideband, and low power consumption with low phase noise. The chip has been fabricated in a 0.18μm CMOS process of SMIC. The measured results show that the DMP's operating frequency is from 0.9 to 3.4 GHz with a maximum power consumption of 2.51 mW under a 1.8 V power supply and the phase noise is -134.78 dBc/Hz at 1 MHz offset from the 3.4 GHz carrier. The core area of the die without PAD is 57 x 30 #m2. Due to its excellent performance, the DMP could be applied to a PLL-based frequency synthesizer for many RF systems, especially for multi-standard radio applications. 展开更多
关键词 dual-modulus prescaler WIDEBAND low power low phase noise frequency synthesizer multi-standard radio
原文传递
A 5 GHz CMOS frequency synthesizer with novel phase-switching prescaler and high-Q LC-VCO 被引量:1
5
作者 曹圣国 杨玉庆 +2 位作者 谈熙 闫娜 闵昊 《Journal of Semiconductors》 EI CAS CSCD 北大核心 2011年第8期98-103,共6页
A phase-locked loop(PLL) frequency synthesizer with a novel phase-switching prescaler and a high-Q LC voltage controlled oscillator(VCO) is presented.The phase-switching prescaler with a novel modulus control mech... A phase-locked loop(PLL) frequency synthesizer with a novel phase-switching prescaler and a high-Q LC voltage controlled oscillator(VCO) is presented.The phase-switching prescaler with a novel modulus control mechanism is much more robust on process variations.The Q factor of the inductor,I-MOS capacitors and varactors in the VCO are optimized.The proposed frequency synthesizer was fabricated by SMIC 0.13μm 1P8M MMRF CMOS technology with a chip area of 1150×2500μm^2.When locking at 5 GHz,the current consumption is 15 mA from a supply voltage of 1.2 V and the measured phase noise at a 1 MHz offset is -122.45 dBc/Hz. 展开更多
关键词 PLL frequency synthesizer differential voltage controlled oscillator phase-switching prescaler CMOS
原文传递
Design of Down Scalers in Mixed-Signal GHz Frequency Synthesizer 被引量:1
6
作者 徐勇 王志功 +3 位作者 仇应华 李智群 胡庆生 闵锐 《Journal of Semiconductors》 EI CAS CSCD 北大核心 2005年第9期1711-1715,共5页
An optimized method is presented to design the down scalers in a GHz frequency synthesizer. The down scalers are comprised of dual modulus prescaler (DMP) and programmable & pulse swallow divider,different methods ... An optimized method is presented to design the down scalers in a GHz frequency synthesizer. The down scalers are comprised of dual modulus prescaler (DMP) and programmable & pulse swallow divider,different methods of high frequency analog circuit and digital logical synthesis are adopted respectively. Using a DMP high speed, lower jitter and lower power dissipation are obtained,and output frequency of 133.0MHz of the DMP working at divide-by-8 shows an RMS jitter less than 2ps. The flexibility and reusability of the progrs, mmable divider is high;its use could be extended to many complicated frequency synthesizers. By comparison,it is a better design on performance of high-frequency circuit and good design flexibility. 展开更多
关键词 PLL frequency synthesizer dual-modulus prescaler PROGRAMMABLE pulse swallow divider
下载PDF
A Programmable 2.4GHz CMOS Multi-Modulus Frequency Divider 被引量:1
7
作者 李志强 陈立强 +1 位作者 张健 张海英 《Journal of Semiconductors》 EI CAS CSCD 北大核心 2008年第2期224-228,共5页
A programmable multi-modulus frequency divider is designed and implemented in a 0. 35μm CMOS process. The multi-modulus frequency divider is a single chip with two dividers in series,which are divided by 4 or 5 presc... A programmable multi-modulus frequency divider is designed and implemented in a 0. 35μm CMOS process. The multi-modulus frequency divider is a single chip with two dividers in series,which are divided by 4 or 5 prescaler and by 128-255 multi-modulus frequency divider. In the circuit design, power and speed trade-offs are analyzed for the prescaler, and power optimization techniques are used according to the input frequency of each divider cell for the 128-255 multimodulus frequency divider. The chip is designed with ESD protected I/O PAD. The dividers chain can work as high as 2.4GHz with a single ended input signal and beyond 2.6GHz with differential input signals. The dual-modulus prescaler consumes 11mA of current while the 128-255 multi-modulus frequency divider consumes 17mA of current with a 3.3V power supply. The core area of the die without PAD is 0.65mm × 0.3mm. This programmable multi-modulus frequency divider can be used for 2.4GHz ISM band PLL-based frequency synthesizers. To our knowledge, this is the first reported multi-modulus frequency divider with this structure in China. 展开更多
关键词 prescaleR frequency divider PROGRAMMABLE multi-modulus frequency synthesizer
下载PDF
A 900MHz CMOS PLL/Frequency Synthesizer Initialization Circuit 被引量:1
8
作者 赵晖 任俊彦 章倩苓 《Journal of Semiconductors》 EI CAS CSCD 北大核心 2003年第12期1244-1249,共6页
A 900MHz CMOS PLL/frequency synthesizer using current-adjustable charge-pump circuit and on-chip loop filter with initialization circuit is presented.The charge-pump current is insensitive to the changes of temperatur... A 900MHz CMOS PLL/frequency synthesizer using current-adjustable charge-pump circuit and on-chip loop filter with initialization circuit is presented.The charge-pump current is insensitive to the changes of temperature and power supply.The value of the charge-pump current can be changed by switches,which are controlled by external signals.Thus the performance of the PLL,such as loop bandwidth,can be changed with the change of the charge-pump current.The loop filter initialization circuit can speed up the PLL when the power is on.A multi-modulus prescaler is used to fulfill the frequency synthesis.The circuit is designed using 0.18μm,1.8V,1P6M standard digital CMOS process. 展开更多
关键词 PLL charge-pump loop filter multi-modulus prescaler
下载PDF
Key technologies of frequency-hopping frequency synthesizer for Bluetooth RF front-end
9
作者 徐勇 王志功 +3 位作者 李智群 章丽 闵锐 徐光辉 《Journal of Southeast University(English Edition)》 EI CAS 2005年第3期260-262,共3页
A scheme of a frequency-hopping frequency-synthesizer applied to a Bluetooth ratio frequency (RF) front-end is presented,and design of a voltage controlled oscillator (VCO) and dual-modulus prescaler are focused o... A scheme of a frequency-hopping frequency-synthesizer applied to a Bluetooth ratio frequency (RF) front-end is presented,and design of a voltage controlled oscillator (VCO) and dual-modulus prescaler are focused on.It is fabricated in a 0.18 μm mixed-signal CMOS (complementary metal-oxide-semiconductor transistor) process.The power dissipation of VCO is low and a stable performance is gained.The measured phase noise of VCO at 2.4 GHz is less than -114.32 dBc/Hz.The structure of the DMP is optimized and a novel D-latch integrated with "OR" logic gate is used.The measured results show that the chip can work well under a 1.8 V power supply.The power dissipation of the core part in a dual modulus prescaler is only 5.76 mW.An RMS jitter of 2 ps is measured on the output signal at 118.3 MHz.It is less than 0.02% of the clock period. 展开更多
关键词 BLUETOOTH frequency hopping frequency synthesizer voltage controlled oscillator (VCO) dualmodulus prescaler programmable divider
下载PDF
一种2.4G的低功耗BiCMOS预置数分频器 被引量:3
10
作者 汪猛 丁瑞雪 杨银堂 《微电子学与计算机》 CSCD 北大核心 2006年第3期169-171,共3页
文章主要介绍了一个利用TSMC0.25μmRFBiCMOS工艺实现的预置数分频器(Prescaler)。其中,采用了特殊的D触发器和组合逻辑门结构,改进了预置数分频器结构,能够使分频器工作在低功耗、高速度之间有比较好的折衷。
关键词 预置数分频器(prescaler) CML电路 RF BICMOS工艺
下载PDF
A low-jitter RF PLL frequency synthesizer with high-speed mixed-signal down-scaling circuits 被引量:1
11
作者 唐路 王志功 +3 位作者 薛红 何小虎 徐勇 孙玲 《Journal of Semiconductors》 EI CAS CSCD 北大核心 2010年第5期106-113,共8页
A low-jitter RF phase locked loop(PLL) frequency synthesizer with high-speed mixed-signal down-scaling circuits is proposed.Several techniques are proposed to reduce the design complexity and improve the performance... A low-jitter RF phase locked loop(PLL) frequency synthesizer with high-speed mixed-signal down-scaling circuits is proposed.Several techniques are proposed to reduce the design complexity and improve the performance of the mixed-signal down-scaling circuit in the PLL.An improved D-latch is proposed to increase the speed and the driving capability of the DMP in the down-scaling circuit.Through integrating the D-latch with 'OR' logic for dual-modulus operation,the delays associated with both the 'OR' and D-flip-flop(DFF) operations are reduced,and the complexity of the circuit is also decreased.The programmable frequency divider of the down-scaling circuit is realized in a new method based on deep submicron CMOS technology standard cells and a more accurate wire-load model.The charge pump in the PLL is also realized with a novel architecture to improve the current matching characteristic so as to reduce the jitter of the system.The proposed RF PLL frequency synthesizer is realized with a TSMC 0.18-μm CMOS process. The measured phase noise of the PLL frequency synthesizer output at 100 kHz offset from the center frequency is only -101.52 dBc/Hz.The circuit exhibits a low RMS jitter of 3.3 ps.The power consumption of the PLL frequency synthesizer is also as low as 36 mW at a 1.8 V power supply. 展开更多
关键词 PLL down-scaling circuits prescaleRS charge pump JITTER
原文传递
A low-power CMOS frequency synthesizer for GPS receivers 被引量:2
12
作者 于云丰 乐建连 +3 位作者 肖时茂 庄海孝 马成炎 叶甜春 《Journal of Semiconductors》 EI CAS CSCD 北大核心 2010年第6期137-141,共5页
A low-power frequency synthesizer for GPS/Galileo L1/E1 band receivers implemented in a 0.18μm CMOS process is introduced.By adding clock-controlled transistors at latch outputs to reduce the time constant at sensing... A low-power frequency synthesizer for GPS/Galileo L1/E1 band receivers implemented in a 0.18μm CMOS process is introduced.By adding clock-controlled transistors at latch outputs to reduce the time constant at sensing time,the working frequency of the high-speed source-coupled logic prescaler supplying quadrature local oscillator signals has been increased,compared with traditional prescalers.Measurement results show that this synthesizer achieves an in-band phase noise of-87 dBc/Hz at 15 kHz offset,with spurs less than-65 dBc.The whole synthesizer consumes 6 mA in the case of a 1.8 V supply,and its core area is 0.6 mm;. 展开更多
关键词 frequency synthesizer GPS CMOS PLL source-coupled logic prescaler
原文传递
A 5-GHz programmable frequency divider in 0.18-μm CMOS technology
13
作者 舒海涌 李智群 《Journal of Semiconductors》 EI CAS CSCD 北大核心 2010年第5期85-89,共5页
A 5-GHz CMOS programmable frequency divider whose modulus can be varied from 2403 to 2480 for 2.4-GHz ZigBee applications is presented.The divider based on a dual-modulus prescaler(DMP) and pulse-swallow counter is ... A 5-GHz CMOS programmable frequency divider whose modulus can be varied from 2403 to 2480 for 2.4-GHz ZigBee applications is presented.The divider based on a dual-modulus prescaler(DMP) and pulse-swallow counter is designed to reduce power consumption and chip area.Implemented in the 0.18-μm mixed-signal CMOS process,the divider operates over a wide range of 1-7.4 GHz with an input signal of 7.5 dBm;the programmable divider output phase noise is -125.3 dBc/Hz at an offset of 100 kHz.The core circuit without test buffer consumes 4.3 mA current from a 1.8 V power supply and occupies a chip area of approximately 0.015 mm^2.The experimental results indicate that the programmable divider works well for its application in frequency synthesizers. 展开更多
关键词 frequency divider dual-modulus prescaler pulse-swallow frequency synthesizer
原文传递
A 4 GHz quadrature output fractional-N frequency synthesizer for an IR-UWB transceiver
14
作者 郭诗塔 黄鲁 +2 位作者 袁海泉 冯立松 刘志明 《Journal of Semiconductors》 EI CAS CSCD 北大核心 2010年第3期74-79,共6页
This paper describes a 4 GHz fractional-N frequency synthesizer for a 3.1 to 5 GHz IR-UWB transceiver. Designed in a 0.18μm mixed-signal & RF 1P6M CMOS process, the operating range of the synthesizer is 3.74 to 4.44... This paper describes a 4 GHz fractional-N frequency synthesizer for a 3.1 to 5 GHz IR-UWB transceiver. Designed in a 0.18μm mixed-signal & RF 1P6M CMOS process, the operating range of the synthesizer is 3.74 to 4.44 GHz. By using an 18-bit third-order ∑-△ modulator, the synthesizer achieves a frequency resolution of 15 Hz when the reference frequency is 20 MHz. The measured amplitude mismatch and phase error between I and Q signals are less than 0.1 dB and 0.8° respectively. The measured phase noise is -116 dBc/Hz at 3 MHz offset for a 4 GHz output. Measured spurious tones are lower than -60 dBc. The settling time is within 80°s. The core circuit conupSigmaes only 38.2 mW from a 1.8 V power supply. 展开更多
关键词 frequency synthesizer dual-modulus prescaler ∑-△ modulator QVCO
原文传递
A 900 MHz fractional-N synthesizer for UHF transceiver in 0.18μm CMOS technology
15
作者 毛旭瑞 黄北举 陈弘达 《Journal of Semiconductors》 EI CAS CSCD 2014年第12期94-100,共7页
A 900 MHz fractional-N synthesizer is designed for the UHF transceiver. The VCO with a 4 bits capacitor bank covers 823–1061 MHz that implements 16(2^4)sub-bands. A 7/8 dual-modulus prescaler is implemented with a ... A 900 MHz fractional-N synthesizer is designed for the UHF transceiver. The VCO with a 4 bits capacitor bank covers 823–1061 MHz that implements 16(2^4)sub-bands. A 7/8 dual-modulus prescaler is implemented with a phase-switching circuit and high-speed flip–flops, which are composed of source coupled logic. The proposed synthesizer phase-locked loop is demonstrated with a 50 k Hz band width by a low 12.95 MHz reference clock, and offers a better phase noise and band width tradeoff. To reduce the out-band phase noise, a 4-levels 3-order single-loop sigma–delta modulator is applied. When its relative frequency resolution is settled to 10^-6, the testing results show that the phase noises are –120.6 dBc/Hz at 1 MHz and –95.0 dBc/Hz at 100 k Hz. The chip is2.1 mm^2 in UMC 0.18μm CMOS. The power is 36 m W at a 1.8 V supply. 展开更多
关键词 UHF RFID reader frequency synthesizer VCO 7/8 dual-modulus prescaler △Σ modulator
原文传递
A 220–1100 MHz low phase-noise frequency synthesizer with wide-band VCO and selectable I/Q divider
16
作者 陈华 龚任杰 +4 位作者 程序 张玉琳 高众 郭桂良 阎跃鹏 《Journal of Semiconductors》 EI CAS CSCD 2014年第12期83-93,共11页
This paper presents a low phase-noise fractional-N frequency synthesizer which provides an inphase/quadrature-phase(I/Q) signal over a frequency range of 220–1100 MHz for wireless networks of industrial automation... This paper presents a low phase-noise fractional-N frequency synthesizer which provides an inphase/quadrature-phase(I/Q) signal over a frequency range of 220–1100 MHz for wireless networks of industrial automation(WIA) applications. Two techniques are proposed to achieve the wide range. First, a 1.4–2.2 GHz ultralow gain voltage-controlled oscillator(VCO) is adopted by using 128 tuning curves. Second, a selectable I/Q divider is employed to divide the VCO frequency by 2 or 3 or 4 or 6. Besides, a phase-switching prescaler is proposed to lower PLL phase noise, a self-calibrated charge pump is used to suppress spur, and a detect-boosting phase frequency detector is adopted to shorten settling time. With a 200 k Hz loop bandwidth, lowest measured phase noise is 106 dBc/Hz at a 10 k Hz offset and 131 dBc/Hz at a 1 MHz offset. Fabricated in the TSMC 0.18 μm CMOS process, the synthesizer occupies a chip area of 1.2 mm^2, consumes only 15 m W from the 1.8 V power supply,and settles within 13.2 s. The synthesizer is optimized for the WIA applications, but can also be used for other short-range wireless communications, such as 433, 868, 916 MHz ISM band applications. 展开更多
关键词 LC voltage-controlled oscillator(VCO) I/Q divider phase-switching prescaler charge pump phase-locked loop(PLL) low phase noise wide band frequency synthesizer
原文传递
Pulse swallowing frequency divider with low power and compact structure
17
作者 高海军 孙玲玲 +1 位作者 蔡超波 詹海挺 《Journal of Semiconductors》 EI CAS CSCD 2012年第11期79-82,共4页
A pulse swallowing frequency divider with low power and compact structure is presented.One of the DFFs in the divided by 2/3 prescaier is controlled by the modulus control signal,and automatically powered off when it ... A pulse swallowing frequency divider with low power and compact structure is presented.One of the DFFs in the divided by 2/3 prescaier is controlled by the modulus control signal,and automatically powered off when it has no contribution to the operation of the prescaier.The DFFs in the program counter and the swallow counter are shared to compose a compact structure,which reduces the power consumption further.The proposed multi-modulus frequency divider was implemented in a standard 65 nm CMOS process with an area of 28×22μm;.The power consumption of the divider is 0.6 mW under 1.2 V supply voltage when operating at 988 MHz. 展开更多
关键词 frequency divider low power prescaler multi-modulus CMOS
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部