The low energy collisioninduced dissociation, linked scan techniques and isotopic labeling experiment were used to investigate the unimolecular fragmentation of protonated N-hydroxyphthalimide under electron impact a...The low energy collisioninduced dissociation, linked scan techniques and isotopic labeling experiment were used to investigate the unimolecular fragmentation of protonated N-hydroxyphthalimide under electron impact and chemical ionization conditions. It was found that this compound shows an unusual reactivity towards protonation. Two possible sites of protonation have been proposed to explain the corresponding fragmentation processes, one is that the protonation takes place on the oxygen atom of hydroxyl group, resulting in the loss of water and the other is the formation of an intermediary protonbound complex in the fragmentation process, giving rise to the fragment ions of m/z 133 and m/z 135. The results show both cases are coexistence in the fragmentations of protonated N-hydroxyphthalimide, and the unimolecular fragmentation pathways are available.展开更多
The effect of iridium loading on the properties and catalytic isomerization of n-heptane over Ir-HZSM-5 is studied. Ir-HZSM-5 was prepared by impregnation method and subjected to isomerization process in the presence ...The effect of iridium loading on the properties and catalytic isomerization of n-heptane over Ir-HZSM-5 is studied. Ir-HZSM-5 was prepared by impregnation method and subjected to isomerization process in the presence of flowing hydrogen gas. XRD and BET studies show that the presence of iridium stabilizes the crystalline structure of HZSM-5, leading to more ordered framework structure and larger surface area. TGA and FTIR results substantiate that iridium species interacts with OH group on the surface of HZSM-5. Pyridine FT-IR study verifies the interaction between iridium and surface OH group slightly increased the Bro¨nsted and Lewis acid sites without changing the lattice structure of HZSM-5. The presence of iridium and the increase of strong Lewis acid sites on HZSM-5 were found to bring an increase about 4.1%, 33.2% and 11.8% in conversion, selectivity and yield of n-heptane isomerization, respectively.展开更多
Ni/PtHY with different Ni loadings was prepared by impregnating HY with hexachloroplatinic acid solution and Ni2+/N,N-dimethylformamide solution. An increase in the Ni loading decreased the crystallinity, specific su...Ni/PtHY with different Ni loadings was prepared by impregnating HY with hexachloroplatinic acid solution and Ni2+/N,N-dimethylformamide solution. An increase in the Ni loading decreased the crystallinity, specific surface area and meso-micropores of the catalysts. Ni interacted with hydroxyl groups to produce IR absorption bands at 3740-3500 cm-1, Increasing Ni loadings resulted in a decrease in the intensities of the broad bands at 3730-3500 cm-1 and the sharp band at 3740 cm-1 with simultaneous development of new absorbance band at 3700 cm-1 that was attributed to (-OH)Ni. The acidity of the samples did not significantly change with Ni loadings up to 1.0 wt%, which indicated that Ni mostly interacts with non-acidic silanol groups (terminal- and structural-defect OH groups). The presence of Ni decreased the activity of PtHY toward the isomerization of n-pentane because of a decrease in the number of active protonic-acid sites that formed from molecular hydrogen. IR and ESR studies confirmed that Pt facilitated the formation of protonic-acid sites from molecular hydrogen, whereas Ni, even when combined with Pt, didn't exhibit such ability. The absence of protonic-acid sites from molecular hydrogen significantly decreased the yield of iso-pentane and markedly increased the cracking products.展开更多
The catalytic transformation of methylcyclohexane as an accepted probe reaction to evaluate zeolitic acidity(concentration,strength,and accessibility)is employed to study the acidity and the reactivity of three commer...The catalytic transformation of methylcyclohexane as an accepted probe reaction to evaluate zeolitic acidity(concentration,strength,and accessibility)is employed to study the acidity and the reactivity of three commercial dealuminated Y zeolites(DAY)with different Si/Al ratios and meso/microporosities,with their properties analyzed by N_(2) adsorption/desorption,pyridine-IR,and hydroxyl-IR spectroscopy technologies.The global activity(conversion)is largely dependent on the concentration of the acid sites,and the activity of the protonic sites in terms of turnover frequency(TOF)reflects the accessibility of acid sites.The products of aromatics and isomers,and the yield of cracking products increase with the increase of concentration of strong protonic sites in zeolite micropores.Moreover,the decrease of aromatics with the reduction of the concentration of acid sites and the diffusion length within DAY zeolites are observed due to the decrease of the secondary reaction.For the same reason,it results in the increasing of C_(7)products and alkenes/alkanes ratios in the cracking products.The high i-C_(4)product selectivity is a unique reflection of the high percentage of very strong acid sites,which is characterized by the hydroxyl-IR band at 3600 cm^(-1).展开更多
文摘The low energy collisioninduced dissociation, linked scan techniques and isotopic labeling experiment were used to investigate the unimolecular fragmentation of protonated N-hydroxyphthalimide under electron impact and chemical ionization conditions. It was found that this compound shows an unusual reactivity towards protonation. Two possible sites of protonation have been proposed to explain the corresponding fragmentation processes, one is that the protonation takes place on the oxygen atom of hydroxyl group, resulting in the loss of water and the other is the formation of an intermediary protonbound complex in the fragmentation process, giving rise to the fragment ions of m/z 133 and m/z 135. The results show both cases are coexistence in the fragmentations of protonated N-hydroxyphthalimide, and the unimolecular fragmentation pathways are available.
基金supported by the Ministry of Science,Technology and Innovation,Malaysia through E-Science Fund Research Project(No.03-01-06-SF0564 and 03-01-06-SF0289)the Hitachi Scholarship Foundation for the Gas Chromatograph Instrument Grant
文摘The effect of iridium loading on the properties and catalytic isomerization of n-heptane over Ir-HZSM-5 is studied. Ir-HZSM-5 was prepared by impregnation method and subjected to isomerization process in the presence of flowing hydrogen gas. XRD and BET studies show that the presence of iridium stabilizes the crystalline structure of HZSM-5, leading to more ordered framework structure and larger surface area. TGA and FTIR results substantiate that iridium species interacts with OH group on the surface of HZSM-5. Pyridine FT-IR study verifies the interaction between iridium and surface OH group slightly increased the Bro¨nsted and Lewis acid sites without changing the lattice structure of HZSM-5. The presence of iridium and the increase of strong Lewis acid sites on HZSM-5 were found to bring an increase about 4.1%, 33.2% and 11.8% in conversion, selectivity and yield of n-heptane isomerization, respectively.
基金supported by the Ministry of Higher Education, Malaysia through Fundamental Research (Grant Scheme No. 78670)the UTM Short Term Research (Grant No. 77330)
文摘Ni/PtHY with different Ni loadings was prepared by impregnating HY with hexachloroplatinic acid solution and Ni2+/N,N-dimethylformamide solution. An increase in the Ni loading decreased the crystallinity, specific surface area and meso-micropores of the catalysts. Ni interacted with hydroxyl groups to produce IR absorption bands at 3740-3500 cm-1, Increasing Ni loadings resulted in a decrease in the intensities of the broad bands at 3730-3500 cm-1 and the sharp band at 3740 cm-1 with simultaneous development of new absorbance band at 3700 cm-1 that was attributed to (-OH)Ni. The acidity of the samples did not significantly change with Ni loadings up to 1.0 wt%, which indicated that Ni mostly interacts with non-acidic silanol groups (terminal- and structural-defect OH groups). The presence of Ni decreased the activity of PtHY toward the isomerization of n-pentane because of a decrease in the number of active protonic-acid sites that formed from molecular hydrogen. IR and ESR studies confirmed that Pt facilitated the formation of protonic-acid sites from molecular hydrogen, whereas Ni, even when combined with Pt, didn't exhibit such ability. The absence of protonic-acid sites from molecular hydrogen significantly decreased the yield of iso-pentane and markedly increased the cracking products.
基金This work was financially supported by the National Natural Science Foundation of China(Grant No.21978192)the SINOPEC Technology Project(No.117009-1)the Shanxi Province Key Innovative Research Team in Science and Technology(No.2014131006).
文摘The catalytic transformation of methylcyclohexane as an accepted probe reaction to evaluate zeolitic acidity(concentration,strength,and accessibility)is employed to study the acidity and the reactivity of three commercial dealuminated Y zeolites(DAY)with different Si/Al ratios and meso/microporosities,with their properties analyzed by N_(2) adsorption/desorption,pyridine-IR,and hydroxyl-IR spectroscopy technologies.The global activity(conversion)is largely dependent on the concentration of the acid sites,and the activity of the protonic sites in terms of turnover frequency(TOF)reflects the accessibility of acid sites.The products of aromatics and isomers,and the yield of cracking products increase with the increase of concentration of strong protonic sites in zeolite micropores.Moreover,the decrease of aromatics with the reduction of the concentration of acid sites and the diffusion length within DAY zeolites are observed due to the decrease of the secondary reaction.For the same reason,it results in the increasing of C_(7)products and alkenes/alkanes ratios in the cracking products.The high i-C_(4)product selectivity is a unique reflection of the high percentage of very strong acid sites,which is characterized by the hydroxyl-IR band at 3600 cm^(-1).