It is reported for the first time that the Pt/C catalyst can be prepared with a new and simple organic sol method using SnCl2 as the reductant. It was found that the average size of the Pt particles in the Pt/C cataly...It is reported for the first time that the Pt/C catalyst can be prepared with a new and simple organic sol method using SnCl2 as the reductant. It was found that the average size of the Pt particles in the Pt/C catalysts could be controlled with controlling the preparation conditions. The effect of the average sizes of the Pt particles in the Pt/C catalysts obtained with this method on the electrocatalytical activity of the oxidation of methanol was investigated.展开更多
A series of Pt/C catalysts for proton exchange membrane fuel cells(PEMFCs) with various metal loadings is synthesized by a microwave-assisted polyol process via mixing an extremely stable platinum colloid(> 3 month...A series of Pt/C catalysts for proton exchange membrane fuel cells(PEMFCs) with various metal loadings is synthesized by a microwave-assisted polyol process via mixing an extremely stable platinum colloid(> 3 months’ shelf life) from single batch preparation with activated carbon ethylene glycol suspension.21 wt%, 42 wt% and 61 wt% Pt loadings are employed to showcase the advantages of the improved polyol process. The ultraviolet(UV)–visible spectra and ζ-potential measurements are conducted to monitor the wet chemistry process during catalyst preparation. The powder X-ray diffraction(XRD), transmission electron microscopy(TEM) and thermogravimetric analysis(TGA) characterizations are carried out on catalysts. The catalyst activities are investigated using electrochemical and single cell tests. The stability of Pt nanoparticle colloid is explored by ORR, cyclic voltammetry(CV) and ζ-potential measurements. The TEM results show the Pt particle sizes of the colloid, and the sizes of the 21 wt%, 42 wt% and 61 wt%Pt/C samples are 2.1–3.9 nm. Because of the high Pt dispersion, the Pt/C catalysts exhibit superior electroactivity toward ORR. In addition, four 61 wt% Pt/C catalysts made from the Pt colloid with 0–3 months’ shelf life show almost the same performance, which exhibits superior stability of the Pt colloid system without surfactant protection.展开更多
High-purity of hydrogen is vital to the guarantee of end usage in proton exchange membrane fuel cell(PEMFC)electric vehicles(EVs)with superior durability and low expense.However,the currently employed hydrogen,primari...High-purity of hydrogen is vital to the guarantee of end usage in proton exchange membrane fuel cell(PEMFC)electric vehicles(EVs)with superior durability and low expense.However,the currently employed hydrogen,primarily from fossil fuel,still contains some poisoning impurities that significantly affect the durability of PEMFCs.Here,we investigate the poisoning effect of several typical hydrogen impurities(S^(2-),Cl^(-),HCOO^(-)and CO_(3)^(2-))on the hydrogen oxidation reaction(HOR)of the state-of-the-art carbon-supported platinum(Pt/C)catalyst used in the PEMFC anode.Electrochemical results indicate that the electrochemically active surface area of Pt/C is hampered by these hydrogen impurities with reduced effective Pt reactive sites due to the competitive adsorption against hydrogen at Pt sites showing the extent of the poisoning on Pt sites in the order:S^(2-)>Cl^(-)>HCOO^(-)>CO_(3)^(2-).Density functional theory calculations reveal that the adsorption energy of S2-on Pt(111)is greater than that of Cl^(-),HCOO^(-)and CO_(2),and the electronic structure of Pt is found to be changed due to the adsorption of impurities showing the downshift of the d-band centre of Pt that weakens the adsorption of hydrogen on the Pt sites.This work provides valuable guidance for future optimization of hydrogen quality and also emphasizes the importance of anti-poisoning anode catalyst development,especially towards H_(2)S impurities that seriously affect the durability of PEMFCs.展开更多
Platinum nanoparticles supported on carbons(Pt/C,60%,mass fraction) electrocatalysts for direct methanol fuel cell(DMFC) were prepared by citrate-stabilized method with different reductants and carbon supports.The...Platinum nanoparticles supported on carbons(Pt/C,60%,mass fraction) electrocatalysts for direct methanol fuel cell(DMFC) were prepared by citrate-stabilized method with different reductants and carbon supports.The catalysts were characterized by X-ray diffraction(XRD),transmission electron microscopy(TEM) and cyclic voltammetry(CV).It is found that the size of Pt nanoparticles on carbon is controllable by citrate addition and reductant optimization,and the form of carbon support has a great influence on electrocatalytic activity of catalysts.The citrate-stabilized Pt nanoparticles supported on BP2000 carbon,which was reduced by formaldehyde,exhibit the best performance with about 2 nm in diameter and 66.46 m2/g(Pt) in electrocatalytic active surface(EAS) area.Test on single DMFC with 60%(mass fraction) Pt/BP2000 as cathode electrocatalyst showed maximum power density at 78.8 mW/cm2.展开更多
In this paper, MPt/C (M= La, Nd) catalysts of PEMFC were synthesized by microwave radiation process. The crystallinity and structure of catalysts were respectively analyzed by XRD and nitrogen adsorption tests. The ac...In this paper, MPt/C (M= La, Nd) catalysts of PEMFC were synthesized by microwave radiation process. The crystallinity and structure of catalysts were respectively analyzed by XRD and nitrogen adsorption tests. The activity of catalysts was investigated by electrochemistry experiment. The results showed that: 1) compared with Pt/C catalyst prepared by typical impregnation-reduction process, the size of MPt/C catalyst particle decreased and the available crystal for O2 reduction increased; 2) the MPt/C catalysts had relatively high BET surface areas; and 3)these crystal transformations of the MPt/C catalyst brought high the electrocatalytic activity, and as a result, improved the power of PEMFC.展开更多
Carbon nanotube-supported-platinum (Pt/CNTs) and carbon-supported-platinum (Pt/C) catalysts were prepared by in situ chemical reduction method and analyzed by TEM and XRD. Then the experiments were carried out to test...Carbon nanotube-supported-platinum (Pt/CNTs) and carbon-supported-platinum (Pt/C) catalysts were prepared by in situ chemical reduction method and analyzed by TEM and XRD. Then the experiments were carried out to test the performance of PEMFCs with the Pt electrodes. The results showed that in both catalyst, Pt was of small particle size (about 4 nm) and Pt/CNTs exhibited higher catalytic activity than Pt/C.展开更多
Carbon supported Pt(Pt/C) electrocatalysts were prepared with glucose as protection agent and NaBH 4 as reductant.The Pt nanoparticles deposited on carbon support presented reduced size and well dispersity attribute...Carbon supported Pt(Pt/C) electrocatalysts were prepared with glucose as protection agent and NaBH 4 as reductant.The Pt nanoparticles deposited on carbon support presented reduced size and well dispersity attributed to the protection effect of glucose.Glucose absorbed on the particle surface was readily removed by water washing without leading to agglomeration of the Pt nanoparticles.The as-prepared Pt/C electrocatalysts showed improved mass activity for methanol electrooxidation compared to the catalyst prepared without glucose protection.The improved performance is attributed to the larger electrochemical active surface area thus increased active sites on the Pt/C elctrocatalysts prepared under the protection of glucose.展开更多
In order to improve the catalytic performance of the nitrobenzene hydrogenation rearrangement to prepare p-aminophenol,a bimetallic Pt-Ni/C(PNC)catalyst was synthesized.Taking advantage of the synergistic effect of Ni...In order to improve the catalytic performance of the nitrobenzene hydrogenation rearrangement to prepare p-aminophenol,a bimetallic Pt-Ni/C(PNC)catalyst was synthesized.Taking advantage of the synergistic effect of Ni and Pt to enhance product selectivity and catalytic performance stability,the electrons in Ni are moved to Pt by the electron effect,which affects the catalyst’s ability to activate H_(2)as well as the amount of hydrogen activated.Furthermore,due to the strong Pt(5d)-Ni(3d)coupling effect,Ni can effectively maintain Pt stability in the acidic system and reduce Pt dissolution.The stability of the PNC can be found to be greatly enhanced compared to the Pt/C(PC)catalyst,and p-aminophenol selectivity is greatly enhanced,showing excellent catalytic performance.展开更多
Alloying degree, particle size and the level of dispersion are the key structural parameters of Pt-Ru/C catalyst in fuel cells. Solvent(s) used in the preparation process can affect the particle size and alloying de...Alloying degree, particle size and the level of dispersion are the key structural parameters of Pt-Ru/C catalyst in fuel cells. Solvent(s) used in the preparation process can affect the particle size and alloying degree of the object substance, which lead to a great positive impact on its properties. In this work, three types of solvents and their mixtures were used in preparation of the Pt-Ru/C catalysts by chemical reduction of metal precursors with sodium borohydride at room temperature. The structure of the catalysts was characterized by X-ray diffraction (XRD) and Transmission electron microscopy (TEM). The catalytic activity and stability for methanol electro-oxidation were studied by Cyclic Voltammetry (CV) and Chronoamperometry (CA). Pt-Ru/C catalyst prepared in H2O or binary solvents of H2O and isopropanol had large particle size and low alloying degree leading to low catalytic activity and less stability in methanol electro-oxidation. When tetrahydrofuran was added to the above solvent systems, Pt-Ru/C catalyst prepared had smaller particle size and higher alloying degree which resulted in better catalytic activity, lower onset and peak potentials, compared with the above catalysts. Moreover, the catalyst prepared in ternary solvents of isopropanol, water and tetrahydrofuran had the smallest particle size, and the high alloying degree and the dispersion kept unchanged. Therefore, this kind of catalyst showed the highest catalytic activity and good stability for methanol electro-oxidation.展开更多
The main objective of this paper was to characterize the voltammetric profiles of the Pt/C,Pt/C-ATO,Pd/C and Pd/CATO electrocatalysts and study their catalytic activities for methane oxidation in an acidic electrolyte...The main objective of this paper was to characterize the voltammetric profiles of the Pt/C,Pt/C-ATO,Pd/C and Pd/CATO electrocatalysts and study their catalytic activities for methane oxidation in an acidic electrolyte at 25 ℃ and in a direct methane proton exchange membrane fuel cell at 80 ℃. The electrocatalysts prepared also were characterized by X-ray diffraction( XRD) and transmission electron microscopy( TEM). The diffractograms of the Pt/C and Pt/C-ATO electrocatalysts show four peaks associated with Pt face-centered cubic( fcc) structure,and the diffractograms of Pd/C and Pd/C-ATO show four peaks associated with Pd face-centered cubic( fcc) structure. For Pt/C-ATO and Pd/C-ATO,characteristic peaks of cassiterite( SnO_2) phase are observed,which are associated with Sb-doped SnO_2( ATO) used as supports for electrocatalysts. Cyclic voltammograms( CV) of all electrocatalysts after adsorption of methane show that there is a current increase during the anodic scan. However,this effect is more pronounced for Pt/C-ATO and Pd/C-ATO. This process is related to the oxidation of the adsorbed species through the bifunctional mechanism,where ATO provides oxygenated species for the oxidation of CO or HCO intermediates adsorbed in Pt or Pd sites. From in situ ATR-FTIR( Attenuated Total Reflectance-Fourier Transform Infrared) experiments for all electrocatalysts prepared the formation of HCO or CO intermediates are observed,which indicates the production of carbon dioxide. Polarization curves at 80 ℃in a direct methane fuel cell( DMEFC) show that Pd/C and Pt/C electroacatalysts have superior performance to Pd/C-ATO and Pt/C-ATO in methane oxidation.展开更多
The adsorption of acetonitrile and its co-adsorption with CO on fresh Mo_2C/Al_2O_3 catalyst have been studied by insitu FT-IR spectroscopy.Linearly adsorbed CH_3CN and CH_3CH_2NH_2 were formed after CH_3CN adsorption...The adsorption of acetonitrile and its co-adsorption with CO on fresh Mo_2C/Al_2O_3 catalyst have been studied by insitu FT-IR spectroscopy.Linearly adsorbed CH_3CN and CH_3CH_2NH_2 were formed after CH_3CN adsorption on the Mo_2C/ Al_2O_3 catalyst.The appearance of a strong band at 1578 cm^(-1) indicates that CH_3CN was reactive with hydrogen on the Mo_2C/Al_2O_3 catalyst.展开更多
文摘It is reported for the first time that the Pt/C catalyst can be prepared with a new and simple organic sol method using SnCl2 as the reductant. It was found that the average size of the Pt particles in the Pt/C catalysts could be controlled with controlling the preparation conditions. The effect of the average sizes of the Pt particles in the Pt/C catalysts obtained with this method on the electrocatalytical activity of the oxidation of methanol was investigated.
基金financial supports from National Key R&D Plan of China (2017YFB0102803)the National Natural Science Foundation of China (21676135)+8 种基金Scientific Instrument Develop Major Project of National Natural Science Foundation of China (51627810)Joint Funds of the National Natural Science Foundation and Liaoning of China (U1508202)Key R&D programs in Jiangsu (BE2018051)“333” project of Jiangsu Province (BRA2018007)Natural Science Foundation of Jiangsu Province (BK20161273, BK20181199)the Graduate Innovation Foundation of Nanjing university (2017ZDL05)support of PAPD of Jiangsu Higher Education Institutions“Six Talent Peaks Program” of Jiangsu ProvinceFundamental Research Funds for the Central Universities, China。
文摘A series of Pt/C catalysts for proton exchange membrane fuel cells(PEMFCs) with various metal loadings is synthesized by a microwave-assisted polyol process via mixing an extremely stable platinum colloid(> 3 months’ shelf life) from single batch preparation with activated carbon ethylene glycol suspension.21 wt%, 42 wt% and 61 wt% Pt loadings are employed to showcase the advantages of the improved polyol process. The ultraviolet(UV)–visible spectra and ζ-potential measurements are conducted to monitor the wet chemistry process during catalyst preparation. The powder X-ray diffraction(XRD), transmission electron microscopy(TEM) and thermogravimetric analysis(TGA) characterizations are carried out on catalysts. The catalyst activities are investigated using electrochemical and single cell tests. The stability of Pt nanoparticle colloid is explored by ORR, cyclic voltammetry(CV) and ζ-potential measurements. The TEM results show the Pt particle sizes of the colloid, and the sizes of the 21 wt%, 42 wt% and 61 wt%Pt/C samples are 2.1–3.9 nm. Because of the high Pt dispersion, the Pt/C catalysts exhibit superior electroactivity toward ORR. In addition, four 61 wt% Pt/C catalysts made from the Pt colloid with 0–3 months’ shelf life show almost the same performance, which exhibits superior stability of the Pt colloid system without surfactant protection.
基金supported by the National Key R&D Program of China (No.2019YFB1505004).
文摘High-purity of hydrogen is vital to the guarantee of end usage in proton exchange membrane fuel cell(PEMFC)electric vehicles(EVs)with superior durability and low expense.However,the currently employed hydrogen,primarily from fossil fuel,still contains some poisoning impurities that significantly affect the durability of PEMFCs.Here,we investigate the poisoning effect of several typical hydrogen impurities(S^(2-),Cl^(-),HCOO^(-)and CO_(3)^(2-))on the hydrogen oxidation reaction(HOR)of the state-of-the-art carbon-supported platinum(Pt/C)catalyst used in the PEMFC anode.Electrochemical results indicate that the electrochemically active surface area of Pt/C is hampered by these hydrogen impurities with reduced effective Pt reactive sites due to the competitive adsorption against hydrogen at Pt sites showing the extent of the poisoning on Pt sites in the order:S^(2-)>Cl^(-)>HCOO^(-)>CO_(3)^(2-).Density functional theory calculations reveal that the adsorption energy of S2-on Pt(111)is greater than that of Cl^(-),HCOO^(-)and CO_(2),and the electronic structure of Pt is found to be changed due to the adsorption of impurities showing the downshift of the d-band centre of Pt that weakens the adsorption of hydrogen on the Pt sites.This work provides valuable guidance for future optimization of hydrogen quality and also emphasizes the importance of anti-poisoning anode catalyst development,especially towards H_(2)S impurities that seriously affect the durability of PEMFCs.
基金Project(50573041)supported by the National Natural Science Foundation of China
文摘Platinum nanoparticles supported on carbons(Pt/C,60%,mass fraction) electrocatalysts for direct methanol fuel cell(DMFC) were prepared by citrate-stabilized method with different reductants and carbon supports.The catalysts were characterized by X-ray diffraction(XRD),transmission electron microscopy(TEM) and cyclic voltammetry(CV).It is found that the size of Pt nanoparticles on carbon is controllable by citrate addition and reductant optimization,and the form of carbon support has a great influence on electrocatalytic activity of catalysts.The citrate-stabilized Pt nanoparticles supported on BP2000 carbon,which was reduced by formaldehyde,exhibit the best performance with about 2 nm in diameter and 66.46 m2/g(Pt) in electrocatalytic active surface(EAS) area.Test on single DMFC with 60%(mass fraction) Pt/BP2000 as cathode electrocatalyst showed maximum power density at 78.8 mW/cm2.
基金The Department of Science and Technology of Henan Province (No. 0324210007)
文摘In this paper, MPt/C (M= La, Nd) catalysts of PEMFC were synthesized by microwave radiation process. The crystallinity and structure of catalysts were respectively analyzed by XRD and nitrogen adsorption tests. The activity of catalysts was investigated by electrochemistry experiment. The results showed that: 1) compared with Pt/C catalyst prepared by typical impregnation-reduction process, the size of MPt/C catalyst particle decreased and the available crystal for O2 reduction increased; 2) the MPt/C catalysts had relatively high BET surface areas; and 3)these crystal transformations of the MPt/C catalyst brought high the electrocatalytic activity, and as a result, improved the power of PEMFC.
文摘Carbon nanotube-supported-platinum (Pt/CNTs) and carbon-supported-platinum (Pt/C) catalysts were prepared by in situ chemical reduction method and analyzed by TEM and XRD. Then the experiments were carried out to test the performance of PEMFCs with the Pt electrodes. The results showed that in both catalyst, Pt was of small particle size (about 4 nm) and Pt/CNTs exhibited higher catalytic activity than Pt/C.
基金Supported by the National Innovative Research Program for Undergraduates,China(No.2010A33039)the Science and Technology Development Program of Jilin Province,China(No.20100420)
文摘Carbon supported Pt(Pt/C) electrocatalysts were prepared with glucose as protection agent and NaBH 4 as reductant.The Pt nanoparticles deposited on carbon support presented reduced size and well dispersity attributed to the protection effect of glucose.Glucose absorbed on the particle surface was readily removed by water washing without leading to agglomeration of the Pt nanoparticles.The as-prepared Pt/C electrocatalysts showed improved mass activity for methanol electrooxidation compared to the catalyst prepared without glucose protection.The improved performance is attributed to the larger electrochemical active surface area thus increased active sites on the Pt/C elctrocatalysts prepared under the protection of glucose.
基金funded by the National Natural Science Foundation of China(U20A20119,22078292 and 22008212)。
文摘In order to improve the catalytic performance of the nitrobenzene hydrogenation rearrangement to prepare p-aminophenol,a bimetallic Pt-Ni/C(PNC)catalyst was synthesized.Taking advantage of the synergistic effect of Ni and Pt to enhance product selectivity and catalytic performance stability,the electrons in Ni are moved to Pt by the electron effect,which affects the catalyst’s ability to activate H_(2)as well as the amount of hydrogen activated.Furthermore,due to the strong Pt(5d)-Ni(3d)coupling effect,Ni can effectively maintain Pt stability in the acidic system and reduce Pt dissolution.The stability of the PNC can be found to be greatly enhanced compared to the Pt/C(PC)catalyst,and p-aminophenol selectivity is greatly enhanced,showing excellent catalytic performance.
基金supported by 863 Project(No.2006AA05Z102)the Cultivation Fund of the Key Scientific and Technical Innovation Project,Ministry of Education of China (No.707050)+1 种基金Specialized Research Fund for the Doctoral Program of Higher Education (No.20060610023)Chengdu Natural Science Foundation (Nos.06GGYB449GX-030,and 07GGZD139GX)
文摘Alloying degree, particle size and the level of dispersion are the key structural parameters of Pt-Ru/C catalyst in fuel cells. Solvent(s) used in the preparation process can affect the particle size and alloying degree of the object substance, which lead to a great positive impact on its properties. In this work, three types of solvents and their mixtures were used in preparation of the Pt-Ru/C catalysts by chemical reduction of metal precursors with sodium borohydride at room temperature. The structure of the catalysts was characterized by X-ray diffraction (XRD) and Transmission electron microscopy (TEM). The catalytic activity and stability for methanol electro-oxidation were studied by Cyclic Voltammetry (CV) and Chronoamperometry (CA). Pt-Ru/C catalyst prepared in H2O or binary solvents of H2O and isopropanol had large particle size and low alloying degree leading to low catalytic activity and less stability in methanol electro-oxidation. When tetrahydrofuran was added to the above solvent systems, Pt-Ru/C catalyst prepared had smaller particle size and higher alloying degree which resulted in better catalytic activity, lower onset and peak potentials, compared with the above catalysts. Moreover, the catalyst prepared in ternary solvents of isopropanol, water and tetrahydrofuran had the smallest particle size, and the high alloying degree and the dispersion kept unchanged. Therefore, this kind of catalyst showed the highest catalytic activity and good stability for methanol electro-oxidation.
基金The project was supported by the FAPESP(2014/09087-4,2014/50279-4).
文摘The main objective of this paper was to characterize the voltammetric profiles of the Pt/C,Pt/C-ATO,Pd/C and Pd/CATO electrocatalysts and study their catalytic activities for methane oxidation in an acidic electrolyte at 25 ℃ and in a direct methane proton exchange membrane fuel cell at 80 ℃. The electrocatalysts prepared also were characterized by X-ray diffraction( XRD) and transmission electron microscopy( TEM). The diffractograms of the Pt/C and Pt/C-ATO electrocatalysts show four peaks associated with Pt face-centered cubic( fcc) structure,and the diffractograms of Pd/C and Pd/C-ATO show four peaks associated with Pd face-centered cubic( fcc) structure. For Pt/C-ATO and Pd/C-ATO,characteristic peaks of cassiterite( SnO_2) phase are observed,which are associated with Sb-doped SnO_2( ATO) used as supports for electrocatalysts. Cyclic voltammograms( CV) of all electrocatalysts after adsorption of methane show that there is a current increase during the anodic scan. However,this effect is more pronounced for Pt/C-ATO and Pd/C-ATO. This process is related to the oxidation of the adsorbed species through the bifunctional mechanism,where ATO provides oxygenated species for the oxidation of CO or HCO intermediates adsorbed in Pt or Pd sites. From in situ ATR-FTIR( Attenuated Total Reflectance-Fourier Transform Infrared) experiments for all electrocatalysts prepared the formation of HCO or CO intermediates are observed,which indicates the production of carbon dioxide. Polarization curves at 80 ℃in a direct methane fuel cell( DMEFC) show that Pd/C and Pt/C electroacatalysts have superior performance to Pd/C-ATO and Pt/C-ATO in methane oxidation.
文摘The adsorption of acetonitrile and its co-adsorption with CO on fresh Mo_2C/Al_2O_3 catalyst have been studied by insitu FT-IR spectroscopy.Linearly adsorbed CH_3CN and CH_3CH_2NH_2 were formed after CH_3CN adsorption on the Mo_2C/ Al_2O_3 catalyst.The appearance of a strong band at 1578 cm^(-1) indicates that CH_3CN was reactive with hydrogen on the Mo_2C/Al_2O_3 catalyst.