[Objective] The aim was to investigate the prevalence of Mycoplasma capricolum subsp. Capripneumoniae in Qinghai Province. [Method] By using indirect hemagglutination test kit for detecting Mycoplasma capricolum subsp...[Objective] The aim was to investigate the prevalence of Mycoplasma capricolum subsp. Capripneumoniae in Qinghai Province. [Method] By using indirect hemagglutination test kit for detecting Mycoplasma capricolum subsp. Capripneumoniae,208 goat serums were detected. [Result] The positive rate of goat sera was 16.3%,and the positive rate of sera from different regions ranged from 6.7% to 24.3%. [Conclusion] The infection rate of Mycoplasma capricolum subsp. Capripneumoniae was high in Qinghai Province,so it is necessary to strengthen the prevention and control of this disease.展开更多
The study introduced protected agriculture development in Qinghai province and concluded its development scale, type and structure, as well as technology supports. Besides, existing problems were proposed such as lowe...The study introduced protected agriculture development in Qinghai province and concluded its development scale, type and structure, as well as technology supports. Besides, existing problems were proposed such as lower production-level, poor equipment, fewer specialized bases, and countermeasures include the following: leading protected agriculture development by macro-control; strengthening market supervision; improving scientific research and innovation to help S & T achievement transformation.展开更多
Under the influence of the natural and human factors, water table of irri- gated area Changes frequently, but it is mainly affected by irrigation water infiltration replenishment during the irrigation. 5 groundwater o...Under the influence of the natural and human factors, water table of irri- gated area Changes frequently, but it is mainly affected by irrigation water infiltration replenishment during the irrigation. 5 groundwater observation wells were constructed in experimental plot of the Daxia irrigated area to carry out the experiment of the effect of irrigation on groundwater dynamic change in this research. The results showed that the groundwater stage dynarnic change rule of spring and seedling irri- gation stage in the typical plot was fit to the hydrological geology condition of grade- I terrace of Huangshui river valley. On the whole, lateral canal water direction formed a line effect. The No. 1 and No. 2 observation well were the closest to the lateral canal, which received more supplies, and the water level was the highest; the No, 3 observation well took the second place; The No. 4 and No. 5 observation well accepted least supplies, and the water level was the lowest. The rangeability of water table of spring irrigation period was significantly higher than that of seedling irrigation period, this is mainly due to the difference value of intake water volume and drainage water volume of spring irrigation phase was significantly higher than the seedling irrigation phase.展开更多
[Objective]The aim was to analyze genetic diversity of SSR markers in Hordeum vulgare L.in Qinghai Province and lay a foundation for screening and protecting some excellent H.vulgare cultivars.[Method]SSR markers were...[Objective]The aim was to analyze genetic diversity of SSR markers in Hordeum vulgare L.in Qinghai Province and lay a foundation for screening and protecting some excellent H.vulgare cultivars.[Method]SSR markers were used to evaluate the genetic diversity of 42 cultivated H.vulgare from Qinghai Province.[Result]42 H.vulgare showed polymorphism in 7 SSR markers locus.A total of 24 alleles were identified,and the number of alleles per locus ranged from 1 to 6,with an average of 3.0.According to SSR markers polymorphism,42 H.vulgare could be divided into 4 groups,namely I,II,III and IV.[Result]The study indicated that cultivated H.vulgare from Qinghai Province is rich in genetic diversity,which will provide reference for selecting parent of H.vulgare breeding.展开更多
[ Objective] To investigate the prevalence of Mycoplasma oviovipneurnoniae in Qinghai Province. [ Method] With positive indirect hemagglutination test kit for detecting antibodies against Mycoplasma oviovipneumoniae, ...[ Objective] To investigate the prevalence of Mycoplasma oviovipneurnoniae in Qinghai Province. [ Method] With positive indirect hemagglutination test kit for detecting antibodies against Mycoplasma oviovipneumoniae, 965 sheep sera and 208 goat sera were collected in Qinghai Province from 2006 to 2008 and detected. [ Result ] The positive rate of sheep sera and goat sera was 30.4% and 19.7%, respectively. The posi- tive rate of sheep sera collected from different regions ranged from 19.7% to 40.2%, and that of goat sere ranged from 6.6% to 22.2%. In addition, the incidence in winter and spring was higher than that in summer and autumn. [ Conclusion ] The infection rate of Mycoplasrna ovipneumoniae should be higher in Qinghai region than in other western regions, so it is necessary to strengthen the prevention and control of this disease.展开更多
Qinghai Province is an important component of the Qinghai-Tibet Plateau in China. Scientific evaluation of the suitability of Qinghai's climate for tourism can contribute to overcoming obstacles posed by climate o...Qinghai Province is an important component of the Qinghai-Tibet Plateau in China. Scientific evaluation of the suitability of Qinghai's climate for tourism can contribute to overcoming obstacles posed by climate on sustainable tourism development in Qinghai Province, including disparities between the low and high seasons, high altitude health concerns, and weather events. A tourism climate suitability evaluation model of the Qinghai-Tibet Plateau is constructed (Tourism Climate Suitability Index, or TCSI), and tourism climate suitability is comprehensively evaluated for Qinghai Province from climate data from 1960 to 2009. Results show that: (I) There is clear distributional characteristics of spatial-temporal variability of TCSI values in Qinghai Province. (II) Tourism climate suitability in Qinghai Province has significant seasonal and regional differences. The year is divided into a very suitable period (July and August), suitable tourism periods (from April and October), less suitable periods (From Nov to Mar). June to August is the most suitable tourism period in Qinghai. Qinghai Province is divided into five levels of tourism climate suitability: most suitable regions, very suitable regions, suitable regions, less suitable regions, and unsuitable region. (III) The key factor which influences regional differences in tourism climatic suitability is atmospheric oxygen. And the key factors which chiefly influence seasonal differences of tourism climate suitability are temperature and humidity, the wind chill factor, and barrier weather.展开更多
The Kendekeke polymetallic deposit,located in the middle part of the magmatic arc belt of Qimantag on the southwestern margin of the Qaidam Basin,is a polygenetic compound deposit in the Qimantag metallogenic belt of ...The Kendekeke polymetallic deposit,located in the middle part of the magmatic arc belt of Qimantag on the southwestern margin of the Qaidam Basin,is a polygenetic compound deposit in the Qimantag metallogenic belt of Qinghai Province.Multi-periodic ore-forming processes occurred in this deposit,including early-stage iron mineralization and lead-zinc-gold-polymetallic mineralization which was controlled by later hydrothermal process.The characteristics of the ore-forming fluids and mineralization were discussed by using the fluid inclusion petrography,Laser Raman Spectrum and micro-thermometry methods.Three stages,namely,S1-stage (copper-iron-sulfide stage),S2-stage (lead-zinc-sulfide stage) and C-stage (carbonate stage) were included in the hydrothermal process as indicated by the results of this study.The fluid inclusions are in three types:aqueous inclusion (type I),CO2-aqueous inclusion (type Ⅱ) and pure CO2 inclusion (type Ⅲ).Type Ⅰ inclusions were observed in the S1-stage,having homogenization temperature at 240-320℃,and salinities ranging from 19.8% to 25.0% (wt% NaCl equiv.).All three types of inclusions,existing as immiscible inclusion assemblages,were presented in the S2-stage,with the lowest homogenization temperature ranging from 175 ℃ to 295℃,which represents the metallogenic temperature of the S2-stage.The salinities of these inclusions are in the range of 1.5% to 16%.The fluid inclusions in the C-stage belong to types Ⅰ,Ⅱ and Ⅲ,having homogenization temperatures at 120-210℃,and salinities ranging from 0.9% to 14.5%.These observations indicate that the ore-forming fluids evolved from high-temperature to low-temperature,from high-salinity to low-salinity,from homogenization to immiscible separation.Results of Laser Raman Spectroscopy show that high density of CO2 and CH4 were found as gas compositions in the inclusions.CO2,worked as the pH buffer of ore-forming fluids,together with reduction of organic gases (i.e.CH4,etc),affected the transport and sediment of the minerals.The fluid system alternated between open and close systems,namely,between lithostatic pressure and hydrostatic pressure systems.The calculated metallogenic pressures are in the range of 30 to 87 Mpa corresponding to 3 km mineralization depth.Under the influence of tectonic movements,immiscible separation occurred in the original ore-forming fluids,which were derived from the previous high-salinity,high-temperature magmatic fluids.The separation of CO2 changed the physicochemical properties and composition of the original fluids,and then diluted by mixing with extraneous fluids such as meteoric water and groundwater,and metallogenic materials in the fluids such as lead,zinc and gold were precipitated.展开更多
Hot dry rock(HDR)is a kind of clean energy with significant potential.Since the 1970s,the United States,Japan,France,Australia,and other countries have attempted to conduct several HDR development research projects to...Hot dry rock(HDR)is a kind of clean energy with significant potential.Since the 1970s,the United States,Japan,France,Australia,and other countries have attempted to conduct several HDR development research projects to extract thermal energy by breaking through key technologies.However,up to now,the development of HDR is still in the research,development,and demonstration stage.An HDR exploration borehole(with 236℃ at a depth of 3705 m)was drilled into Triassic granite in the Gonghe Basin in northwest China in 2017.Subsequently,China Geological Survey(CGS)launched the HDR resources exploration and production demonstration project in 2019.After three years of efforts,a sequence of significant technological breakthroughs have been made,including the genetic model of deep heat sources,directional drilling and well completion in high-temperature hard rock,large-scale reservoir stimulation,reservoir characterization,and productivity evaluation,reservoir connectivity and flow circulation,efficient thermoelectric conversion,monitoring,and geological risk assessment,etc.Then the whole-process technological system for HDR exploration and production has been preliminarily established accordingly.The first power generation test was completed in November 2021.The results of this project will provide scientific support for HDR development and utilization in the future.展开更多
Saishitang Cu-polymetallic deposit is located in the southeast section of Late Paleozoic arcfoid in the southeastern margin of Qaidam platform. Accoring to the geological process of the deposit, four mineralization ep...Saishitang Cu-polymetallic deposit is located in the southeast section of Late Paleozoic arcfoid in the southeastern margin of Qaidam platform. Accoring to the geological process of the deposit, four mineralization episodes were identified: melt/fluid coexisting period (O), skarn period (A), first sulfide period (B) and second sulfide period (C), and 10 stages were finally subdivided. Three types of inclusions were classified in seven stages, namely crystal bearing inclusions (type I), aqueous inclusions (type Ⅱ) and pure liquid inclusions (type Ⅲ). Type I and Ⅱ inclusions were observed in stage O1, having homogenization temperature from 252 to 431℃, and salinities ranging from 24.3% to 48.0%. Type I inclusion was present in stage A1, having homogenization temperature from 506 to 548℃, and salinities ranging from 39.4% to 44.6%. In stage B1, type Ⅱ and Ⅲ inclusions were observed, with homogenization temperature concentrating between 300-400℃, and salinities from 0.4% to 4.3%. Type II inclusions were present in stage B2, with homogenization temperature varying from 403 to 550℃. In stage C1, type I and II inclusion commonly coexisted, and constituted a boiling inclusion group, having homogenization temperatures at 187-463℃, and salinities in a range of 29.4%-46.8% and 2.2%-11.0%. Type II and III inclusions were developed in stage C2, having homogenization temperature at 124-350℃, and salinities ranging between 1.6% and 15.4%. In stage C3, type Ⅱ and Ⅲ inclusions were presented, with a homogenization temperature range of 164-360℃, and salinities varying from 4.0% to 11.0%. The results of micro-thermal analysis show that fluids are characterized by high temperature and high salinity in stage O1 and A1, and experienced slight decrease in temperature and dramatic decrease in salinity in stage B1 and B2. In stage C1, the salinity of fluid increased greatly and a further decrease of temperature and salinity occurred in stage C2 and C3. Fluids boiled in stage C1. With calculated pressure of 22 MPa from the trapping temperature of 284- 289℃, a mineralization depth of 2.2 km was inferred. Results of Laser Raman Spectroscopy show high density of H2_O, CH_4 and CO_2 were found as gas composition. H-O isotope study indicates the ore- forming fluids were the mixture of magmatic water and meteoric water. Physicochemical parameters of fluids show oxygen and sulfur fugacity experienced a decrease, and redox state is weakly reducing. Along with fluid evolution, oxidation has increased slightly. Comprehensive analysis shows that melt exsolution occurred during the formation of quartz diorite and that metal elements existed and migrated in the form of chlorine complex. Immiscible fluid separation and boiling widely occurred after addition of new fluids, bringing about dissociation of chlorine-complex, resulting in a great deal of copper precipitation. In conclusion, Saishitang deposit, controlled by regional tectonics, is formed by metasomatism between highly fractionated mineralization rock body and wall rock, and belongs to banded skarn Cu-polymetallic deposit.Abstract: Saishitang Cu-polymetallic deposit is located in the southeast section of Late Paleozoic arcfoid in the southeastern margin of Qaidam platform. Accoring to the geological process of the deposit, four mineralization episodes were identified: melt/fluid coexisting period (O), skarn period (A), first sulfide period (B) and second sulfide period (C), and 10 stages were finally subdivided. Three types of inclusions were classified in seven stages, namely crystal bearing inclusions (type I), aqueous inclusions (type Ⅱ) and pure liquid inclusions (type Ⅲ). Type I and II inclusions were observed in stage O1, having homogenization temperature from 252 to 431℃, and salinities ranging from 24.3% to 48.0%. Type I inclusion was present in stage A1, having homogenization temperature from 506 to 548℃, and salinities ranging from 39.4% to 44.6%. In stage B1, type II and III inclusions were observed, with homogenization temperature concentrating between 300-400℃, and salinities from 0.4% to 4.3%. Type II inclusions were present in stage B2, with homogenization temperature varying from 403 to 550℃. In stage C1, type I and II inclusion commonly coexisted, and constituted a boiling inclusion group, having homogenization temperatures at 187-463℃, and salinities in a range of 29.4%-46.8% and 2.2%-11.0%. Type II and III inclusions were developed in stage C2, having homogenization temperature at 124-350℃, and salinities ranging between 1.6% and 15.4%. In stage C3, type II and Ⅲ inclusions were presented, with a homogenization temperature range of 164-360℃, and salinities varying from 4.0% to 11.0%. The results of micro-thermal analysis show that fluids are characterized by high temperature and high salinity in stage O1 and A1, and experienced slight decrease in temperature and dramatic decrease in salinity in stage B1 and B2. In stage C1, the salinity of fluid increased greatly and a further decrease of temperature and salinity occurred in stage C2 and C3. Fluids boiled in stage C1. With calculated pressure of 22 MPa from the trapping temperature of 284- 289℃, a mineralization depth of 2.2 km was inferred. Results of Laser Raman Spectroscopy show high density of H_2O, CH_4 and CO_2 were found as gas composition. H-O isotope study indicates the ore- forming fluids were the mixture of magmatic water and meteoric water. Physicochemical parameters of fluids show oxygen and sulfur fugacity experienced a decrease, and redox state is weakly reducing. Along with fluid evolution, oxidation has increased slightly. Comprehensive analysis shows that melt exsolution occurred during the formation of quartz diorite and that metal elements existed and migrated in the form of chlorine complex. Immiscible fluid separation and boiling widely occurred after addition of new fluids, bringing about dissociation of chlorine-complex, resulting in a great deal of copper precipitation. In conclusion, Saishitang deposit, controlled by regional tectonics, is formed by metasomatism between highly fractionated mineralization rock body and wall rock, and belongs to banded skarn Cu-polymetallic deposit.展开更多
Objective The Juhugeng mining area in Qinghai Province of northwest China has attracted wide attention among geologists for it hosts typical coal measure gases.The shale gas reservoirs were reformed by intensive struc...Objective The Juhugeng mining area in Qinghai Province of northwest China has attracted wide attention among geologists for it hosts typical coal measure gases.The shale gas reservoirs were reformed by intensive structural movements during geological periods,展开更多
Through a long-term summary of highway construction in the permafrost regions of Qinghai Province, the formation conditions and distribution characteristics of permafrost and their impact on transportation constructio...Through a long-term summary of highway construction in the permafrost regions of Qinghai Province, the formation conditions and distribution characteristics of permafrost and their impact on transportation construction are analyzed. Research achievements on the stability of highways and urgent technical problems in the transportation construction in permafrost regions are discussed, and new development directions of highway construction in permafrost regions of Qinghai Province are introduced to provide cold regions engineering researchers with valuable references.展开更多
The discovery of Gonghe County Haergeng tungsten polymetallic deposit is one of the most important tungsten deposits discovered in Qinghai Province in recent years.It has important theoretical and practicalsignificanc...The discovery of Gonghe County Haergeng tungsten polymetallic deposit is one of the most important tungsten deposits discovered in Qinghai Province in recent years.It has important theoretical and practicalsignificance.1 Regional geological background The research area lies in the northwest edge of展开更多
Object The Eastern Kunlun Orogen(EKO), An important part of the Tethyan orogenic belt in the northern margin of the Qinghai–Tibet Plateau(Li et al., 2014; Ren Haidong et al., 2016), is a key area for geological resea...Object The Eastern Kunlun Orogen(EKO), An important part of the Tethyan orogenic belt in the northern margin of the Qinghai–Tibet Plateau(Li et al., 2014; Ren Haidong et al., 2016), is a key area for geological research and mineral exploration(Li Bile et al., 2015). The Qimantag Mountain is located in middle segment of the EKO, which has experienced the Early Paleozoic and Late Paleozoic–Early展开更多
According to the chemical composition of thermal water from Geothermal Well DR2010 located in the Weiyuan Geothermal Field of Huzhu County in Qinghai Province, the groundwater recharge, age and geothermal resource pot...According to the chemical composition of thermal water from Geothermal Well DR2010 located in the Weiyuan Geothermal Field of Huzhu County in Qinghai Province, the groundwater recharge, age and geothermal resource potential of the thermal water are discussed by using the methods of Langelier-Ludwig Diagram, isotopic hydrology and geochemical thermometric scale. The analysis results indicate that the Weiyuan Geothermal Field is located in the northern fringe of Xining Basin, where the geothermal water, compared with that located in the central area of Xining Basin, is characterized by greater water yield, shallower buried depth of thermal reservoir and easier exploitation. Due to its active exchange with the modern cold water, the thermal water here shows relatively younger age. These findings provide a hydro-geochemical evidence for the exploitation of Weiyuan Geothermal Field.展开更多
[Objectives]This study was conducted to explore the feasibility of planting pepino(Solanum muricatum Ait.)in Qinghai Province,and to understand the cultivation quality and yield in various areas of Qinghai.[Methods]Wi...[Objectives]This study was conducted to explore the feasibility of planting pepino(Solanum muricatum Ait.)in Qinghai Province,and to understand the cultivation quality and yield in various areas of Qinghai.[Methods]With small fruit type of pepino as the material,four areas in eastern Qinghai were selected to determine the agronomic traits,yield and quality indexes of pepino.[Results]Under the same cultivation conditions,there were some differences in the cultivation status of pepino,but overall,pepino fruit had higher quality.Various physiological indexes were correlated with quality and yield.[Conclusions]This study clarified the specific cultivation situation of pepino in Qinghai Province,and evaluated the quality and yield of pepino,providing strong data support for the promotion and planting of pepino in various regions in the future.展开更多
The new type of urbanization has always been regarded as an important force to promote economic and social development and an important means to realize agricultural modernization.In order to analyze the problems exis...The new type of urbanization has always been regarded as an important force to promote economic and social development and an important means to realize agricultural modernization.In order to analyze the problems existing in the process of urbanization in Qinghai Province,5 second-level indexes and 17 third-level indexes were constructed to establish a comprehensive evaluation index system of urbanization development level,and the entropy method was used to analyze the urbanization level of Qinghai Province from 1999 to 2018.The results show that the urbanization of Qinghai Province can be divided into three stages:in the first stage(from 1999 to 2005),the urbanization of Qinghai Province was basically in a stage of slow development;in the second stage(from 2006 to 2011),the urbanization of Qinghai Province was in the stage of slow growth;in the third stage(from 2012 to 2018),urbanization in Qinghai Province was in the stage of rapid and high-quality development.展开更多
[Objectives]To investigate and find the characteristics and distribution of woody plant resources in Ping'an District of Qinghai Province.[Methods]The investigation was carried out by interview method,literature m...[Objectives]To investigate and find the characteristics and distribution of woody plant resources in Ping'an District of Qinghai Province.[Methods]The investigation was carried out by interview method,literature method and route method.[Results]There were 22 families,40 genera and 84 species of woody plants in Ping'an District of Qinghai Province,and their life forms were mainly shrubs.Cultivated woody plants in the study area were dominated by trees;the distribution of families and genera were mainly concentrated in single families,few families,single genera and few genera,the families and genera were narrow;economic value was mainly manifested in ornamental value.[Conclusions]The investigation results are expected to provide a certain reference for the economic development of cultivated woody plants in the study area.展开更多
Qinghai Province is the place where the Yangtze, Yellow River and Lancang River all have their sources. It has six prefectures, a region, a prefectural city and 48 counties with a population of 4.74 million, comprisin...Qinghai Province is the place where the Yangtze, Yellow River and Lancang River all have their sources. It has six prefectures, a region, a prefectural city and 48 counties with a population of 4.74 million, comprising 58% Han nationality and 42% Tibetan, Hui, Tu, Sala, Mongolian and other national minorities. It is situated on the Qinghai-Ti-展开更多
Based on the framework of the United Nations Millennium Ecosystem Assessment(MA),this paper evaluated the ecosystem cultural service value in Qilian Mountain National Park,Qinghai Province.The study mainly adopted Con...Based on the framework of the United Nations Millennium Ecosystem Assessment(MA),this paper evaluated the ecosystem cultural service value in Qilian Mountain National Park,Qinghai Province.The study mainly adopted Condition Value Method(CVM)and questionnaire survey to survey the local residents and tourists in September 2016,and obtained 1,468 valid questionnaires,as well as used the method of payment card to get the consumers’willingness to pay,and then estimated the ecosystem cultural services value in Qilian Mountain National Park,Qinghai Province through the mean of total willingness to pay of ecological tourism and recreation and aesthetic value.Through quantitative analysis,the study concluded that the ecosystem cultural service value of Qilian Mountain National Park in Qinghai Province was 1.045 billion yuan in 2016 and 1.3 billion yuan in 2018.In 2016 and 2018,the average annual values of ecotourism and recreation are 203 million yuan and 332 million yuan respectively,and the average annual values of aesthetics are 842 million yuan and 968 million yuan respectively.In addition,the study also suggests that Qilian Mountain National Park in Qinghai Province should pay attention to reflect the characteristics of the park,focus on enhancing the aesthetic value of it in the management,and build it into a replaceable and referential national park demonstration area and ecological culture demonstration point.展开更多
基金Supported by Special Program of National Science and Technology Basic Work (2008FY210200)Special Program of Gansu Agricultural Biotechnology (GNSW-2005-16)~~
文摘[Objective] The aim was to investigate the prevalence of Mycoplasma capricolum subsp. Capripneumoniae in Qinghai Province. [Method] By using indirect hemagglutination test kit for detecting Mycoplasma capricolum subsp. Capripneumoniae,208 goat serums were detected. [Result] The positive rate of goat sera was 16.3%,and the positive rate of sera from different regions ranged from 6.7% to 24.3%. [Conclusion] The infection rate of Mycoplasma capricolum subsp. Capripneumoniae was high in Qinghai Province,so it is necessary to strengthen the prevention and control of this disease.
文摘The study introduced protected agriculture development in Qinghai province and concluded its development scale, type and structure, as well as technology supports. Besides, existing problems were proposed such as lower production-level, poor equipment, fewer specialized bases, and countermeasures include the following: leading protected agriculture development by macro-control; strengthening market supervision; improving scientific research and innovation to help S & T achievement transformation.
基金Supported by Water Consumption Coefficient Research in Irrigated Area in the Yellow River Areas in Qinghai Province(QX2012-019)
文摘Under the influence of the natural and human factors, water table of irri- gated area Changes frequently, but it is mainly affected by irrigation water infiltration replenishment during the irrigation. 5 groundwater observation wells were constructed in experimental plot of the Daxia irrigated area to carry out the experiment of the effect of irrigation on groundwater dynamic change in this research. The results showed that the groundwater stage dynarnic change rule of spring and seedling irri- gation stage in the typical plot was fit to the hydrological geology condition of grade- I terrace of Huangshui river valley. On the whole, lateral canal water direction formed a line effect. The No. 1 and No. 2 observation well were the closest to the lateral canal, which received more supplies, and the water level was the highest; the No, 3 observation well took the second place; The No. 4 and No. 5 observation well accepted least supplies, and the water level was the lowest. The rangeability of water table of spring irrigation period was significantly higher than that of seedling irrigation period, this is mainly due to the difference value of intake water volume and drainage water volume of spring irrigation phase was significantly higher than the seedling irrigation phase.
基金Supported by National Science and Technology Support Projects(2007BAD64B01)~~
文摘[Objective]The aim was to analyze genetic diversity of SSR markers in Hordeum vulgare L.in Qinghai Province and lay a foundation for screening and protecting some excellent H.vulgare cultivars.[Method]SSR markers were used to evaluate the genetic diversity of 42 cultivated H.vulgare from Qinghai Province.[Result]42 H.vulgare showed polymorphism in 7 SSR markers locus.A total of 24 alleles were identified,and the number of alleles per locus ranged from 1 to 6,with an average of 3.0.According to SSR markers polymorphism,42 H.vulgare could be divided into 4 groups,namely I,II,III and IV.[Result]The study indicated that cultivated H.vulgare from Qinghai Province is rich in genetic diversity,which will provide reference for selecting parent of H.vulgare breeding.
基金Supported by Special fund for Agricultural Biotechnology of Gansu Province ( GNSW-2005-16)Major Sci-tech Fund of Gansu Province (0702NKDA040)~~
文摘[ Objective] To investigate the prevalence of Mycoplasma oviovipneurnoniae in Qinghai Province. [ Method] With positive indirect hemagglutination test kit for detecting antibodies against Mycoplasma oviovipneumoniae, 965 sheep sera and 208 goat sera were collected in Qinghai Province from 2006 to 2008 and detected. [ Result ] The positive rate of sheep sera and goat sera was 30.4% and 19.7%, respectively. The posi- tive rate of sheep sera collected from different regions ranged from 19.7% to 40.2%, and that of goat sere ranged from 6.6% to 22.2%. In addition, the incidence in winter and spring was higher than that in summer and autumn. [ Conclusion ] The infection rate of Mycoplasrna ovipneumoniae should be higher in Qinghai region than in other western regions, so it is necessary to strengthen the prevention and control of this disease.
基金funded by National Science and Technology Support Plan of China (No. 2009BAH50B01-03)National Natural Science Foundation of China (No.41171435)the Major Projects of the National Social Science Foundation of China (No.10zd&051) and Research on Ecotourism Development Planning of Three Rivers Sources Region in Qinghai Province
文摘Qinghai Province is an important component of the Qinghai-Tibet Plateau in China. Scientific evaluation of the suitability of Qinghai's climate for tourism can contribute to overcoming obstacles posed by climate on sustainable tourism development in Qinghai Province, including disparities between the low and high seasons, high altitude health concerns, and weather events. A tourism climate suitability evaluation model of the Qinghai-Tibet Plateau is constructed (Tourism Climate Suitability Index, or TCSI), and tourism climate suitability is comprehensively evaluated for Qinghai Province from climate data from 1960 to 2009. Results show that: (I) There is clear distributional characteristics of spatial-temporal variability of TCSI values in Qinghai Province. (II) Tourism climate suitability in Qinghai Province has significant seasonal and regional differences. The year is divided into a very suitable period (July and August), suitable tourism periods (from April and October), less suitable periods (From Nov to Mar). June to August is the most suitable tourism period in Qinghai. Qinghai Province is divided into five levels of tourism climate suitability: most suitable regions, very suitable regions, suitable regions, less suitable regions, and unsuitable region. (III) The key factor which influences regional differences in tourism climatic suitability is atmospheric oxygen. And the key factors which chiefly influence seasonal differences of tourism climate suitability are temperature and humidity, the wind chill factor, and barrier weather.
基金supported by the China Geological Survey Investigation Programs (No. 2008-21-03 and No. 20110301-64)
文摘The Kendekeke polymetallic deposit,located in the middle part of the magmatic arc belt of Qimantag on the southwestern margin of the Qaidam Basin,is a polygenetic compound deposit in the Qimantag metallogenic belt of Qinghai Province.Multi-periodic ore-forming processes occurred in this deposit,including early-stage iron mineralization and lead-zinc-gold-polymetallic mineralization which was controlled by later hydrothermal process.The characteristics of the ore-forming fluids and mineralization were discussed by using the fluid inclusion petrography,Laser Raman Spectrum and micro-thermometry methods.Three stages,namely,S1-stage (copper-iron-sulfide stage),S2-stage (lead-zinc-sulfide stage) and C-stage (carbonate stage) were included in the hydrothermal process as indicated by the results of this study.The fluid inclusions are in three types:aqueous inclusion (type I),CO2-aqueous inclusion (type Ⅱ) and pure CO2 inclusion (type Ⅲ).Type Ⅰ inclusions were observed in the S1-stage,having homogenization temperature at 240-320℃,and salinities ranging from 19.8% to 25.0% (wt% NaCl equiv.).All three types of inclusions,existing as immiscible inclusion assemblages,were presented in the S2-stage,with the lowest homogenization temperature ranging from 175 ℃ to 295℃,which represents the metallogenic temperature of the S2-stage.The salinities of these inclusions are in the range of 1.5% to 16%.The fluid inclusions in the C-stage belong to types Ⅰ,Ⅱ and Ⅲ,having homogenization temperatures at 120-210℃,and salinities ranging from 0.9% to 14.5%.These observations indicate that the ore-forming fluids evolved from high-temperature to low-temperature,from high-salinity to low-salinity,from homogenization to immiscible separation.Results of Laser Raman Spectroscopy show that high density of CO2 and CH4 were found as gas compositions in the inclusions.CO2,worked as the pH buffer of ore-forming fluids,together with reduction of organic gases (i.e.CH4,etc),affected the transport and sediment of the minerals.The fluid system alternated between open and close systems,namely,between lithostatic pressure and hydrostatic pressure systems.The calculated metallogenic pressures are in the range of 30 to 87 Mpa corresponding to 3 km mineralization depth.Under the influence of tectonic movements,immiscible separation occurred in the original ore-forming fluids,which were derived from the previous high-salinity,high-temperature magmatic fluids.The separation of CO2 changed the physicochemical properties and composition of the original fluids,and then diluted by mixing with extraneous fluids such as meteoric water and groundwater,and metallogenic materials in the fluids such as lead,zinc and gold were precipitated.
基金funded by the“Hot Dry Rock Resources Exploration and Production Demonstration Project”of the China Geological Survey(DD20190131,DD20190135,DD20211336).
文摘Hot dry rock(HDR)is a kind of clean energy with significant potential.Since the 1970s,the United States,Japan,France,Australia,and other countries have attempted to conduct several HDR development research projects to extract thermal energy by breaking through key technologies.However,up to now,the development of HDR is still in the research,development,and demonstration stage.An HDR exploration borehole(with 236℃ at a depth of 3705 m)was drilled into Triassic granite in the Gonghe Basin in northwest China in 2017.Subsequently,China Geological Survey(CGS)launched the HDR resources exploration and production demonstration project in 2019.After three years of efforts,a sequence of significant technological breakthroughs have been made,including the genetic model of deep heat sources,directional drilling and well completion in high-temperature hard rock,large-scale reservoir stimulation,reservoir characterization,and productivity evaluation,reservoir connectivity and flow circulation,efficient thermoelectric conversion,monitoring,and geological risk assessment,etc.Then the whole-process technological system for HDR exploration and production has been preliminarily established accordingly.The first power generation test was completed in November 2021.The results of this project will provide scientific support for HDR development and utilization in the future.
基金supported by the China Geological Survey Investigation Programs (No.2006BAA01B06 and No.20089942)
文摘Saishitang Cu-polymetallic deposit is located in the southeast section of Late Paleozoic arcfoid in the southeastern margin of Qaidam platform. Accoring to the geological process of the deposit, four mineralization episodes were identified: melt/fluid coexisting period (O), skarn period (A), first sulfide period (B) and second sulfide period (C), and 10 stages were finally subdivided. Three types of inclusions were classified in seven stages, namely crystal bearing inclusions (type I), aqueous inclusions (type Ⅱ) and pure liquid inclusions (type Ⅲ). Type I and Ⅱ inclusions were observed in stage O1, having homogenization temperature from 252 to 431℃, and salinities ranging from 24.3% to 48.0%. Type I inclusion was present in stage A1, having homogenization temperature from 506 to 548℃, and salinities ranging from 39.4% to 44.6%. In stage B1, type Ⅱ and Ⅲ inclusions were observed, with homogenization temperature concentrating between 300-400℃, and salinities from 0.4% to 4.3%. Type II inclusions were present in stage B2, with homogenization temperature varying from 403 to 550℃. In stage C1, type I and II inclusion commonly coexisted, and constituted a boiling inclusion group, having homogenization temperatures at 187-463℃, and salinities in a range of 29.4%-46.8% and 2.2%-11.0%. Type II and III inclusions were developed in stage C2, having homogenization temperature at 124-350℃, and salinities ranging between 1.6% and 15.4%. In stage C3, type Ⅱ and Ⅲ inclusions were presented, with a homogenization temperature range of 164-360℃, and salinities varying from 4.0% to 11.0%. The results of micro-thermal analysis show that fluids are characterized by high temperature and high salinity in stage O1 and A1, and experienced slight decrease in temperature and dramatic decrease in salinity in stage B1 and B2. In stage C1, the salinity of fluid increased greatly and a further decrease of temperature and salinity occurred in stage C2 and C3. Fluids boiled in stage C1. With calculated pressure of 22 MPa from the trapping temperature of 284- 289℃, a mineralization depth of 2.2 km was inferred. Results of Laser Raman Spectroscopy show high density of H2_O, CH_4 and CO_2 were found as gas composition. H-O isotope study indicates the ore- forming fluids were the mixture of magmatic water and meteoric water. Physicochemical parameters of fluids show oxygen and sulfur fugacity experienced a decrease, and redox state is weakly reducing. Along with fluid evolution, oxidation has increased slightly. Comprehensive analysis shows that melt exsolution occurred during the formation of quartz diorite and that metal elements existed and migrated in the form of chlorine complex. Immiscible fluid separation and boiling widely occurred after addition of new fluids, bringing about dissociation of chlorine-complex, resulting in a great deal of copper precipitation. In conclusion, Saishitang deposit, controlled by regional tectonics, is formed by metasomatism between highly fractionated mineralization rock body and wall rock, and belongs to banded skarn Cu-polymetallic deposit.Abstract: Saishitang Cu-polymetallic deposit is located in the southeast section of Late Paleozoic arcfoid in the southeastern margin of Qaidam platform. Accoring to the geological process of the deposit, four mineralization episodes were identified: melt/fluid coexisting period (O), skarn period (A), first sulfide period (B) and second sulfide period (C), and 10 stages were finally subdivided. Three types of inclusions were classified in seven stages, namely crystal bearing inclusions (type I), aqueous inclusions (type Ⅱ) and pure liquid inclusions (type Ⅲ). Type I and II inclusions were observed in stage O1, having homogenization temperature from 252 to 431℃, and salinities ranging from 24.3% to 48.0%. Type I inclusion was present in stage A1, having homogenization temperature from 506 to 548℃, and salinities ranging from 39.4% to 44.6%. In stage B1, type II and III inclusions were observed, with homogenization temperature concentrating between 300-400℃, and salinities from 0.4% to 4.3%. Type II inclusions were present in stage B2, with homogenization temperature varying from 403 to 550℃. In stage C1, type I and II inclusion commonly coexisted, and constituted a boiling inclusion group, having homogenization temperatures at 187-463℃, and salinities in a range of 29.4%-46.8% and 2.2%-11.0%. Type II and III inclusions were developed in stage C2, having homogenization temperature at 124-350℃, and salinities ranging between 1.6% and 15.4%. In stage C3, type II and Ⅲ inclusions were presented, with a homogenization temperature range of 164-360℃, and salinities varying from 4.0% to 11.0%. The results of micro-thermal analysis show that fluids are characterized by high temperature and high salinity in stage O1 and A1, and experienced slight decrease in temperature and dramatic decrease in salinity in stage B1 and B2. In stage C1, the salinity of fluid increased greatly and a further decrease of temperature and salinity occurred in stage C2 and C3. Fluids boiled in stage C1. With calculated pressure of 22 MPa from the trapping temperature of 284- 289℃, a mineralization depth of 2.2 km was inferred. Results of Laser Raman Spectroscopy show high density of H_2O, CH_4 and CO_2 were found as gas composition. H-O isotope study indicates the ore- forming fluids were the mixture of magmatic water and meteoric water. Physicochemical parameters of fluids show oxygen and sulfur fugacity experienced a decrease, and redox state is weakly reducing. Along with fluid evolution, oxidation has increased slightly. Comprehensive analysis shows that melt exsolution occurred during the formation of quartz diorite and that metal elements existed and migrated in the form of chlorine complex. Immiscible fluid separation and boiling widely occurred after addition of new fluids, bringing about dissociation of chlorine-complex, resulting in a great deal of copper precipitation. In conclusion, Saishitang deposit, controlled by regional tectonics, is formed by metasomatism between highly fractionated mineralization rock body and wall rock, and belongs to banded skarn Cu-polymetallic deposit.
基金supported by the National Natural Science Foundation of China(grant No.41572141)
文摘Objective The Juhugeng mining area in Qinghai Province of northwest China has attracted wide attention among geologists for it hosts typical coal measure gases.The shale gas reservoirs were reformed by intensive structural movements during geological periods,
基金funded by the Transportation Construction Projects from the Ministry of Transport of the People’s Republic of China (Nos.2011318363580,2011318363700, and 2011318000660)
文摘Through a long-term summary of highway construction in the permafrost regions of Qinghai Province, the formation conditions and distribution characteristics of permafrost and their impact on transportation construction are analyzed. Research achievements on the stability of highways and urgent technical problems in the transportation construction in permafrost regions are discussed, and new development directions of highway construction in permafrost regions of Qinghai Province are introduced to provide cold regions engineering researchers with valuable references.
文摘The discovery of Gonghe County Haergeng tungsten polymetallic deposit is one of the most important tungsten deposits discovered in Qinghai Province in recent years.It has important theoretical and practicalsignificance.1 Regional geological background The research area lies in the northwest edge of
基金financially supported by the Yunnan Copper (Group) Co., LTD (grant No.20150104)
文摘Object The Eastern Kunlun Orogen(EKO), An important part of the Tethyan orogenic belt in the northern margin of the Qinghai–Tibet Plateau(Li et al., 2014; Ren Haidong et al., 2016), is a key area for geological research and mineral exploration(Li Bile et al., 2015). The Qimantag Mountain is located in middle segment of the EKO, which has experienced the Early Paleozoic and Late Paleozoic–Early
基金funded by Science and Technology Project Subsidized by Central Budget (2009-840)
文摘According to the chemical composition of thermal water from Geothermal Well DR2010 located in the Weiyuan Geothermal Field of Huzhu County in Qinghai Province, the groundwater recharge, age and geothermal resource potential of the thermal water are discussed by using the methods of Langelier-Ludwig Diagram, isotopic hydrology and geochemical thermometric scale. The analysis results indicate that the Weiyuan Geothermal Field is located in the northern fringe of Xining Basin, where the geothermal water, compared with that located in the central area of Xining Basin, is characterized by greater water yield, shallower buried depth of thermal reservoir and easier exploitation. Due to its active exchange with the modern cold water, the thermal water here shows relatively younger age. These findings provide a hydro-geochemical evidence for the exploitation of Weiyuan Geothermal Field.
基金Supported by Science and Technology Demonstration of Rural Revitalization in Jianzha County(2023-NK-X01)。
文摘[Objectives]This study was conducted to explore the feasibility of planting pepino(Solanum muricatum Ait.)in Qinghai Province,and to understand the cultivation quality and yield in various areas of Qinghai.[Methods]With small fruit type of pepino as the material,four areas in eastern Qinghai were selected to determine the agronomic traits,yield and quality indexes of pepino.[Results]Under the same cultivation conditions,there were some differences in the cultivation status of pepino,but overall,pepino fruit had higher quality.Various physiological indexes were correlated with quality and yield.[Conclusions]This study clarified the specific cultivation situation of pepino in Qinghai Province,and evaluated the quality and yield of pepino,providing strong data support for the promotion and planting of pepino in various regions in the future.
文摘The new type of urbanization has always been regarded as an important force to promote economic and social development and an important means to realize agricultural modernization.In order to analyze the problems existing in the process of urbanization in Qinghai Province,5 second-level indexes and 17 third-level indexes were constructed to establish a comprehensive evaluation index system of urbanization development level,and the entropy method was used to analyze the urbanization level of Qinghai Province from 1999 to 2018.The results show that the urbanization of Qinghai Province can be divided into three stages:in the first stage(from 1999 to 2005),the urbanization of Qinghai Province was basically in a stage of slow development;in the second stage(from 2006 to 2011),the urbanization of Qinghai Province was in the stage of slow growth;in the third stage(from 2012 to 2018),urbanization in Qinghai Province was in the stage of rapid and high-quality development.
基金Supported by Natural Science Foundation of Qinghai Province(2019-ZJ-913).
文摘[Objectives]To investigate and find the characteristics and distribution of woody plant resources in Ping'an District of Qinghai Province.[Methods]The investigation was carried out by interview method,literature method and route method.[Results]There were 22 families,40 genera and 84 species of woody plants in Ping'an District of Qinghai Province,and their life forms were mainly shrubs.Cultivated woody plants in the study area were dominated by trees;the distribution of families and genera were mainly concentrated in single families,few families,single genera and few genera,the families and genera were narrow;economic value was mainly manifested in ornamental value.[Conclusions]The investigation results are expected to provide a certain reference for the economic development of cultivated woody plants in the study area.
文摘Qinghai Province is the place where the Yangtze, Yellow River and Lancang River all have their sources. It has six prefectures, a region, a prefectural city and 48 counties with a population of 4.74 million, comprising 58% Han nationality and 42% Tibetan, Hui, Tu, Sala, Mongolian and other national minorities. It is situated on the Qinghai-Ti-
基金supported by the major research projects(2017LD03)provided by the National Bureau of Statistics of China and the National Key Research and Development Program(2016YFC0500905)the authors would like to express heartfelt thanks to them.
文摘Based on the framework of the United Nations Millennium Ecosystem Assessment(MA),this paper evaluated the ecosystem cultural service value in Qilian Mountain National Park,Qinghai Province.The study mainly adopted Condition Value Method(CVM)and questionnaire survey to survey the local residents and tourists in September 2016,and obtained 1,468 valid questionnaires,as well as used the method of payment card to get the consumers’willingness to pay,and then estimated the ecosystem cultural services value in Qilian Mountain National Park,Qinghai Province through the mean of total willingness to pay of ecological tourism and recreation and aesthetic value.Through quantitative analysis,the study concluded that the ecosystem cultural service value of Qilian Mountain National Park in Qinghai Province was 1.045 billion yuan in 2016 and 1.3 billion yuan in 2018.In 2016 and 2018,the average annual values of ecotourism and recreation are 203 million yuan and 332 million yuan respectively,and the average annual values of aesthetics are 842 million yuan and 968 million yuan respectively.In addition,the study also suggests that Qilian Mountain National Park in Qinghai Province should pay attention to reflect the characteristics of the park,focus on enhancing the aesthetic value of it in the management,and build it into a replaceable and referential national park demonstration area and ecological culture demonstration point.