Cotton fiber is one of the main raw materials for the textile industry.In recent years,many cotton fiber quality QTL have been identified,but few were applied in breeding.In this study,a genome wide association study(...Cotton fiber is one of the main raw materials for the textile industry.In recent years,many cotton fiber quality QTL have been identified,but few were applied in breeding.In this study,a genome wide association study(GWAS)of fiber-quality traits in 265 upland cotton breeding intermediate lines(GhBreeding),combined with genome-wide selective sweep analysis(GSSA)and genomic selection(GS),revealed 25 QTL.Most of these QTL were ignored by only using GWAS.The CRISPR/Cas9 mutants of GhMYB_D13 had shorter fiber,which indicates the credibility of QTL to a certain extent.Then these QTL were verified in other cotton natural populations,5 stable QTL were found having broad potential for application in breeding.Additionally,among these 5 stable QTL,superior genotypes of 4 showed an enrichment in most improved new varieties widely cultivated currently.These findings provide insights for how to identify more QTL through combined multiple genomic analysis to apply in breeding.展开更多
By crossing bread wheat cultlvar GC8901 with the 1D monosonlc line of Xiaoyan No. 6 and backcrosslng the offsprlng with the Xlaoyan No. 6 1D monosonlc llne for 5 years, high-molecular-welght glutenin subunlts 1Dx5+1D...By crossing bread wheat cultlvar GC8901 with the 1D monosonlc line of Xiaoyan No. 6 and backcrosslng the offsprlng with the Xlaoyan No. 6 1D monosonlc llne for 5 years, high-molecular-welght glutenin subunlts 1Dx5+1Dy10 from GC8901 have been transferred Into wheat cultivar Xiaoyan No. 6. The BC5F1 offspring lines had been detected by using methods of cytology, marker, molecular marker and six elite single plants with high molecular-welght glutenin subunlts: lAx1, 1Bx14+1 By15, 1Dx5+1 Dy10 were Identified. Those lines have high-yleld potential with better agronomic characters and have been used In high quality wheat breeding processes as well.展开更多
Eight single-low or double-low rapeseed cultivars were bred from 1980 to 2000 in Hunan Province. In this paper, characters and breeding method of these cultivars are introduced.
Amylose content is a key determinant of eating quality of rice. With the characteristics offluffy texture, glossy appearance when cooked, remaining soft when cooled and excellentpuffing ability, the low-amylose rice w...Amylose content is a key determinant of eating quality of rice. With the characteristics offluffy texture, glossy appearance when cooked, remaining soft when cooled and excellentpuffing ability, the low-amylose rice with amylose content 5-15% could be served as not onlycooked rice directly, but also good material for convenience, mixed rice and puffing foods.Current status on characterization, inheritance, molecular mechanism and breeding of low-amylose content rice was reviewed in this paper, strategy of related researches in the era ofglymics was mainly discussed furthermore. The future research should focus on screening andenhancing the germplasm, further elucidating the molecular mechanism on mutation of lowamylose content, utilizing the genes independent of Wx on low-amylose content rice breedingprogram, and developing high quality functional rice cultivars for special usage throughpyramiding low amylose gene and other special quality genes.展开更多
Foxtail millet is a minor yet important crop in some areas of the world,particularly northern China.It has strong adaptability to abiotic stresses,especially drought,and poor soil.It also has high nutritional value.Fo...Foxtail millet is a minor yet important crop in some areas of the world,particularly northern China.It has strong adaptability to abiotic stresses,especially drought,and poor soil.It also has high nutritional value.Foxtail millet is rich in essential amino acids,fatty acids and minerals,and is considered to be one of the most digestible and non-allergenic grains available and has significant importance for human health.Given foxtail millet’s ability to adapt to abiotic stresses associated with climate change,it is more important than ever to develop breeding strategies that facilitate the increasing demand for high quality grain that better satisfies consumers.Here we review research on foxtail millet quality evaluation,appearance,cooking and eating quality at the phenotypic level.We review analysis of the main nutrients in foxtail millet,their relationships and the biochemical and genetic factors affecting their accumulation.In addition,we review past progress in breeding this regionally important crop,outline current status of breeding of foxtail millet,and make suggestions to improve grain quality.展开更多
基金supported by National Key Research and Development Program of China(2022YFF1001400)the National Natural Science Foundation of China(31830062 and 32172071)+1 种基金Innovation and Application of Superior Crop Germplasm Resources of Shihezi(2021NY01)Breeding of New Cotton Varieties and Application of Transgenic Breeding Technology(2022NY01)。
文摘Cotton fiber is one of the main raw materials for the textile industry.In recent years,many cotton fiber quality QTL have been identified,but few were applied in breeding.In this study,a genome wide association study(GWAS)of fiber-quality traits in 265 upland cotton breeding intermediate lines(GhBreeding),combined with genome-wide selective sweep analysis(GSSA)and genomic selection(GS),revealed 25 QTL.Most of these QTL were ignored by only using GWAS.The CRISPR/Cas9 mutants of GhMYB_D13 had shorter fiber,which indicates the credibility of QTL to a certain extent.Then these QTL were verified in other cotton natural populations,5 stable QTL were found having broad potential for application in breeding.Additionally,among these 5 stable QTL,superior genotypes of 4 showed an enrichment in most improved new varieties widely cultivated currently.These findings provide insights for how to identify more QTL through combined multiple genomic analysis to apply in breeding.
基金Supported by the State Key basic Research and Development Plan of China (2003CB114301), the Hi-Tech Research and Development (863) Program of China (2002AA2Z4011), the National Natural Science Foundation of China (30270821) and the Knowledge Innovation Program of the Chinese Academy of Sciences (KSCXZ-SW-327 and KSCXZ-SW-304).
文摘By crossing bread wheat cultlvar GC8901 with the 1D monosonlc line of Xiaoyan No. 6 and backcrosslng the offsprlng with the Xlaoyan No. 6 1D monosonlc llne for 5 years, high-molecular-welght glutenin subunlts 1Dx5+1Dy10 from GC8901 have been transferred Into wheat cultivar Xiaoyan No. 6. The BC5F1 offspring lines had been detected by using methods of cytology, marker, molecular marker and six elite single plants with high molecular-welght glutenin subunlts: lAx1, 1Bx14+1 By15, 1Dx5+1 Dy10 were Identified. Those lines have high-yleld potential with better agronomic characters and have been used In high quality wheat breeding processes as well.
文摘Eight single-low or double-low rapeseed cultivars were bred from 1980 to 2000 in Hunan Province. In this paper, characters and breeding method of these cultivars are introduced.
基金supported by the National Natural Science Foundation of China(30270811).
文摘Amylose content is a key determinant of eating quality of rice. With the characteristics offluffy texture, glossy appearance when cooked, remaining soft when cooled and excellentpuffing ability, the low-amylose rice with amylose content 5-15% could be served as not onlycooked rice directly, but also good material for convenience, mixed rice and puffing foods.Current status on characterization, inheritance, molecular mechanism and breeding of low-amylose content rice was reviewed in this paper, strategy of related researches in the era ofglymics was mainly discussed furthermore. The future research should focus on screening andenhancing the germplasm, further elucidating the molecular mechanism on mutation of lowamylose content, utilizing the genes independent of Wx on low-amylose content rice breedingprogram, and developing high quality functional rice cultivars for special usage throughpyramiding low amylose gene and other special quality genes.
基金the National Natural Science Foundation of China(31371693,31471502,31471556)Shanxi Key Project(20120311005-3)+2 种基金Shanxi Science and Technology Platform fund(2012091004-0103)Research Project Supported by Shanxi Scholarship Council of China for Oversea Returnees(2010041,2010050)the Joint Specialized Research Fund for the Doctoral Program of Higher Education,Ministry of Education(20131403110001).
文摘Foxtail millet is a minor yet important crop in some areas of the world,particularly northern China.It has strong adaptability to abiotic stresses,especially drought,and poor soil.It also has high nutritional value.Foxtail millet is rich in essential amino acids,fatty acids and minerals,and is considered to be one of the most digestible and non-allergenic grains available and has significant importance for human health.Given foxtail millet’s ability to adapt to abiotic stresses associated with climate change,it is more important than ever to develop breeding strategies that facilitate the increasing demand for high quality grain that better satisfies consumers.Here we review research on foxtail millet quality evaluation,appearance,cooking and eating quality at the phenotypic level.We review analysis of the main nutrients in foxtail millet,their relationships and the biochemical and genetic factors affecting their accumulation.In addition,we review past progress in breeding this regionally important crop,outline current status of breeding of foxtail millet,and make suggestions to improve grain quality.