期刊文献+
共找到86,165篇文章
< 1 2 250 >
每页显示 20 50 100
Cortico-striatal gamma oscillations are modulated by dopamine D3 receptors in dyskinetic rats
1
作者 Pengfei Wang Yuewei Bi +6 位作者 Min Li Jiazhi Chen Zhuyong Wang Huantao Wen Ming Zhou Minjie Luo Wangming Zhang 《Neural Regeneration Research》 SCIE CAS 2025年第4期1164-1177,共14页
Long-term levodopa administration can lead to the development of levodopa-induced dyskinesia.Gamma oscillations are a widely recognized hallmark of abnormal neural electrical activity in levodopa-induced dyskinesia.Cu... Long-term levodopa administration can lead to the development of levodopa-induced dyskinesia.Gamma oscillations are a widely recognized hallmark of abnormal neural electrical activity in levodopa-induced dyskinesia.Currently,studies have reported increased oscillation power in cases of levodopa-induced dyskinesia.However,little is known about how the other electrophysiological parameters of gamma oscillations are altered in levodopa-induced dyskinesia.Furthermore,the role of the dopamine D3 receptor,which is implicated in levodopa-induced dyskinesia,in movement disorder-related changes in neural oscillations is unclear.We found that the cortico-striatal functional connectivity of beta oscillations was enhanced in a model of Parkinson’s disease.Furthermore,levodopa application enhanced cortical gamma oscillations in cortico-striatal projections and cortical gamma aperiodic components,as well as bidirectional primary motor cortex(M1)↔dorsolateral striatum gamma flow.Administration of PD128907(a selective dopamine D3 receptor agonist)induced dyskinesia and excessive gamma oscillations with a bidirectional M1↔dorsolateral striatum flow.However,administration of PG01037(a selective dopamine D3 receptor antagonist)attenuated dyskinesia,suppressed gamma oscillations and cortical gamma aperiodic components,and decreased gamma causality in the M1→dorsolateral striatum direction.These findings suggest that the dopamine D3 receptor plays a role in dyskinesia-related oscillatory activity,and that it has potential as a therapeutic target for levodopa-induced dyskinesia. 展开更多
关键词 aperiodic components dopamine D3 receptor dorsolateral striatum functional connectivity gamma oscillations levodopa-induced-dyskinesia local field potentials NEUROMODULATION Parkinson’s disease primary motor cortex
下载PDF
Effects of Ovariectomy and 17<i>β</i>-Estradiol Replacement on Dopamine D2 Receptors in Female Rats: Consequences on Sucrose, Alcohol, Water Intakes and Body Weight 被引量:1
2
作者 Abdoulaye Ba Seydou Silué +2 位作者 Brahima Bamba Lociné Bamba Serge-Vastien Gahié 《Journal of Behavioral and Brain Science》 2018年第1期1-25,共25页
Background: Mechanisms underlying overeating-induced obesity in post-menopausal woman include functional lack of 17β-estradiol dysregulating dopamine D2 receptors, thereby inducing food addiction, glucose craving or ... Background: Mechanisms underlying overeating-induced obesity in post-menopausal woman include functional lack of 17β-estradiol dysregulating dopamine D2 receptors, thereby inducing food addiction, glucose craving or alcohol dependence through reward circuitry. This study aimed at further understanding 17β-estradiol and dopamine D2 receptors interferences in the etiology of woman obesity. Method: Seventy-two Wistar female rats weighing 200 - 205 g, individually-housed, were divided into non-ovariectomized control (C = 6 groups) and ovariectomized rats (OVX = 6 groups) which were concurrently subjected to the following treatments: Non-drug-treated (DMSO vehicle), 17β-estradiol (E2, 5 μg/kg, s.c.), sulpiride (SUL, 20 mg/kg, i.p.), bromocriptine (BR, 0.1 mg/kg, i.p.), E2 + SUL or E2 + BR, designating the 6 constitutive groups of either control or ovariectomy. Within each experimental group, consumption of different solutions (10% alcohol, 10% sucrose and water) as well as food intake and body weight were daily measured, for 10 consecutive days. Results: This study indicated that D2S was a specific inducer of alcohol and food intakes, but reduced sugar consumption. In addition, 17β- estradiol regulated the body weight set point, modulating D2S functions towards increased food intake at lower weights and decreased food intake at higher weights. D2S met the slow genomic actions induced by 17β-estradiol. Conversely, D2L inhibited alcohol and food intakes, but induced specifically sugar consumption, thereby regulating blood glucose levels and promoting energy expenditure in reducing body weight. Indeed, 17β-estradiol exerted a tonic inhibition on D2L which was released by OVX, exacerbating sugar intake and increasing body weight. D2L mediated the rapid metabolic effects of 17β-estradiol. Conclusion: Our results supported physiological data reporting that activation of the mostly expressed presynaptically D2S-class autoreceptors decreased dopamine release stimulating food intake, whereas activation of the predominantly postsynaptic isoform D2L receptors increased dopamine activity inhibiting food intake. Our studies indicated that 17β-estradiol acted on the two types of D2 receptors showing opposite functions to equilibrate energy intake vs. expenditure for weight set point regulation. Our data also supported biochemical findings reporting that 17β-estradiol induced D2 genes transcriptional regulation, thereby involving both types of D2 receptors in the etiology of obesity. The combined dysregulated effects of D2L and D2S receptors, as 17β-estradiol was lacking, would be causal factors underlying the etiology of obesity. 展开更多
关键词 17β-Estradiol dopamine D2 receptors BROMOCRIPTINE SULPIRIDE Water SUCROSE ALCOHOL Intakes Obesity
下载PDF
Olfactory receptors in neural regeneration in the central nervous system
3
作者 Rafael Franco Claudia Garrigós +3 位作者 Toni Capó Joan Serrano-Marín Rafael Rivas-Santisteban Jaume Lillo 《Neural Regeneration Research》 SCIE CAS 2025年第9期2480-2494,共15页
Olfactory receptors are crucial for detecting odors and play a vital role in our sense of smell,influencing behaviors from food choices to emotional memories.These receptors also contribute to our perception of flavor... Olfactory receptors are crucial for detecting odors and play a vital role in our sense of smell,influencing behaviors from food choices to emotional memories.These receptors also contribute to our perception of flavor and have potential applications in medical diagnostics and environmental monitoring.The ability of the olfactory system to regenerate its sensory neurons provides a unique model to study neural regeneration,a phenomenon largely absent in the central nervous system.Insights gained from how olfactory neurons continuously replace themselves and reestablish functional connections can provide strategies to promote similar regenerative processes in the central nervous system,where damage often results in permanent deficits.Understanding the molecular and cellular mechanisms underpinning olfactory neuron regeneration could pave the way for developing therapeutic approaches to treat spinal co rd injuries and neurodegenerative diseases like Alzheimer's disease.Olfa ctory receptors are found in almost any cell of eve ry orga n/tissue of the mammalian body.This ectopic expression provides insights into the chemical structures that can activate olfactory receptors.In addition to odors,olfactory receptors in ectopic expression may respond to endogenous compounds and molecules produced by mucosal colonizing microbiota.The analysis of the function of olfactory receptors in ectopic expression provides valuable information on the signaling pathway engaged upon receptor activation and the receptor's role in proliferation and cell differentiation mechanisms.This review explo res the ectopic expression of olfa ctory receptors and the role they may play in neural regeneration within the central nervous system,with particular attention to compounds that can activate these receptors to initiate regenerative processes.Evidence suggests that olfactory receptors could serve as potential therapeutic targets for enhancing neural repair and recovery following central nervous system injuries. 展开更多
关键词 adenosine receptors adrenergic receptors ectopic expression G proteincoupled receptors GLIA NEURONS
下载PDF
Effects of 17<i>β</i>-Estradiol on Dopamine D2 Receptors in Thiamine-Deficient Female Rats: Consequences on Sucrose, Alcohol, Water Intakes and Body Weight
4
作者 Seydou Silué Abdoulaye Bâ 《Journal of Biosciences and Medicines》 2019年第11期36-55,共20页
Our previous studies showed that 17β-estradiol (E2) modulated dopamine D2 receptor in regulating body weight set-point. The aim of this study was to understand whether thiamine deficiency influenced the E2 modulation... Our previous studies showed that 17β-estradiol (E2) modulated dopamine D2 receptor in regulating body weight set-point. The aim of this study was to understand whether thiamine deficiency influenced the E2 modulation on dopamine D2 receptors, using bromocriptine mesylate (BR) and sulpiride (SUL) as selective central dopamine-D2 receptors agonist and antagonist respectively. We studied the E2-dopamine D2 receptors interferences in a 10-day thiamine-deficient female rats for which consumptions of water, sugar, alcohol and food were daily-recorded and their consequences on body weights assessed. Our results showed that the volume of water daily ingested doubled in thiamine-deficient female rats (OXT), while sugar and alcohol consumptions collapsed with decreased weight and food consumption. On the one hand, thiamine potentiated D2/BR activity (bromocriptine-activated D2 receptors) to induce sugar intake and inhibited the same D2/BR receptors to induce water intake. On the other hand, thiamine promoted D2/SUL receptors (sulpiride-inhibited D2 receptors) for enhanced alcohol intake, increased food consumption and weight gain. Taking together, thiamine modulated the actions of 17β-estradiol on both D2/BR and D2/SUL receptors activities. 展开更多
关键词 THIAMINE Deficiency 17β-Estradiol D2 receptors SUCROSE ALCOHOL Intakes Body Weight
下载PDF
Effects of Ovariectomy and 17β-Estradiol Replacement on the Activity of Dopamine D2 Receptors in the Selection of Macronutrients Carbohydrates, Lipids and Proteins in Females Rats
5
作者 Brahima Bamba Seydou Silué +1 位作者 Tiémélé Eugène Atayi Antoine Némé Tako 《Journal of Biosciences and Medicines》 CAS 2023年第5期76-110,共35页
17β-estradiol modulates the activity of D2 receptors in the regulation of food intake and body weight. The functional lack of 17β-estradiol in postmenopausal women could create a dietary imbalance and cause body wei... 17β-estradiol modulates the activity of D2 receptors in the regulation of food intake and body weight. The functional lack of 17β-estradiol in postmenopausal women could create a dietary imbalance and cause body weight gain. This study aimed to better understand the interferences that could exist between 17β-estradiol, D2 receptors and the selection of carbohydrate, fat and protein consumption, as well as their consequences on body weight gain by using an animal model of the menopause. Ovariectomy exacerbates the consumption of foods rich in lipids. Thus confirming an inhibitory action of 17β-estradiol (E2) on the consumption of these types of foods. This consumption stimulates body weight gain, which is promoted by the high caloric content of these foods and not by the amount consumed. Our results showed a direct involvement of D2 receptors in food choice. This choice would be made according to the two (2) isoforms of the D2 receptors. The D2/BR isoform directs towards a high carbohydrate consumption, without causing a gain in body weight. While D2/SUL, promotes high fat food consumption, causing an increase in body weight. In women, 17β-estradiol modulates the activity ratio between these two D2 receptor isoforms to ensure energy and homeostatic balance, stabilizing food intake and body weight. 展开更多
关键词 17Β-ESTRADIOL D2 receptors BROMOCRIPTINE SULPIRIDE Carbohydrates LIPIDS PROTEINS Body Weight Menopause Obesity
下载PDF
Metabotropic glutamate receptors and nitric oxide in dopaminergic neurotoxicity
6
作者 Valentina Bashkatova 《World Journal of Psychiatry》 SCIE 2021年第10期830-840,共11页
Dopaminergic neurotoxicity is characterized by damage and death of dopaminergic neurons.Parkinson's disease(PD)is a neurodegenerative disorder that primarily involves the loss of dopaminergic neurons in the substa... Dopaminergic neurotoxicity is characterized by damage and death of dopaminergic neurons.Parkinson's disease(PD)is a neurodegenerative disorder that primarily involves the loss of dopaminergic neurons in the substantia nigra.Therefore,the study of the mechanisms,as well as the search for new targets for the prevention and treatment of neurodegenerative diseases,is an important focus of modern neuroscience.PD is primarily caused by dysfunction of dopaminergic neurons;however,other neurotransmitter systems are also involved.Research reports have indicated that the glutamatergic system is involved in different pathological conditions,including dopaminergic neurotoxicity.Over the last two decades,the important functional interplay between dopaminergic and glutamatergic systems has stimulated interest in the possible role of metabotropic glutamate receptors(mGluRs)in the development of extrapyramidal disorders.However,the specific mechanisms driving these processes are presently unclear.The participation of the universal neuronal messenger nitric oxide(NO)in the mechanisms of dopaminergic neurotoxicity has attracted increased attention.The current paper aims to review the involvement of mGluRs and the contribution of NO to dopaminergic neurotoxicity.More precisely,we focused on studies conducted on the rotenone-induced PD model.This review is also an outline of our own results obtained using the method of electron paramagnetic resonance,which allows quantitation of NO radicals in brain structures. 展开更多
关键词 dopaminergic neurotoxicity Metabotropic glutamate receptors Nitric oxide ROTENONE Parkinson's disease
下载PDF
Effect of PDⅠAdministration on Dopamine Receptors mRNAs Expression in the Lesioned Striatum of PD Rat Model
7
作者 杨梅 孙圣刚 曹学兵 《Journal of Huazhong University of Science and Technology(Medical Sciences)》 SCIE CAS 2005年第6期645-647,共3页
To study the effect of PD Ⅰ administration on dopamine receptors (DR, , DRz ) mRNAs expression in the lesioned striatum of the PD rat model and confirm if PDⅠ has the effect of dopamine receptor agonist. The PD ra... To study the effect of PD Ⅰ administration on dopamine receptors (DR, , DRz ) mRNAs expression in the lesioned striatum of the PD rat model and confirm if PDⅠ has the effect of dopamine receptor agonist. The PD rats with unilateral 6-hydroxydopamine lesioned were administrated with PD Ⅰ , L-dopa methyl/benserazide, L-dopa methyl/benserazide/ PD Ⅰ , normal saline respectively for 4 weeks and their behavioral changes were observed. Then the rats were sacrificed and RT-PCR technique was used to detect changes of dopamine receptors (DR1, DR2) mRNAs expression in the ipsilateral striatum 1 day after the last treatment. The results showed that treatment with PD Ⅰ plus L-dopa resulted in a stable contralateral rotation behavior; treatment with L-dopa resulted in a progressively increased contralateral rotation behavior. Rotation behavior induced by anhydromorphine decreased with PD Ⅰ or PD Ⅰ plus L-dopa treatment. Treatment With L-dopa or PD Ⅰ plus L-dopa, up-regulation of DR, mRNA and down-regulation of DR2 mRNA were observed in the ipsilateral striatum which were more obvious than that treated with PD Ⅰ or vehicle (P〈0. 05). It was concluded that long-term treatment with PD Ⅰ could alleviate the behavior of PD rats. PD Ⅰ had no apparent effect on the dopamine receptors (DRI , DRz ) mRNAs expression in the ipsilateral striatum and the PD Ⅰ has no agonist effect on dopamine receptors. 展开更多
关键词 Parkinson's disease 6-HYDROXYdopamine dopamine receptor
下载PDF
M_(4) muscarinic receptors regulates dopamine/DARPP-32 signaling and glutamate transmis⁃sion to balance dopaminergic D1 function in mouse dorsal striatum
8
作者 ZHOU Hu ZHANG Jing-xin +5 位作者 LI Xing SHI Hua-xiang SUI Xin WANG Yong-an LI Jin WANG Li-yun 《中国药理学与毒理学杂志》 CAS 北大核心 2021年第9期689-689,共1页
OBJECTIVE Abnormal striatal dopaminergic and glutamatergic neurotransmis⁃sion is central to the pathophysiology of schizo⁃phrenia.In this study,we investigated the roles of M4 receptor interplay with D1 signaling in s... OBJECTIVE Abnormal striatal dopaminergic and glutamatergic neurotransmis⁃sion is central to the pathophysiology of schizo⁃phrenia.In this study,we investigated the roles of M4 receptor interplay with D1 signaling in stria⁃tal neurotransmission that affect glutamatergic transmission to control the etiology of neuropsy⁃chiatric disorders.METHODS To study dorsal striatum(DS)region-specific neuronal and behav⁃ioral responses modulated by M4 receptors,we used clustered regularly interspaced short palin⁃dromic repeats-associated protein 9 technology to generate mice lacking M4 in the dorsal stria⁃tum(DS-M4-KD).The M4 positive allosteric modu⁃lator,VU0467154,were used to study the phar⁃macologically profiles with M4 receptor stimula⁃tion in WT mice.Oxotremorine M(Oxo-M),a no subtype-selective muscarinic agonist,was used to show that mAchRs activation,in order to dissect the particular function of M4,in DS-M4-KD mice.Open filed test and forced swim test were used to assess the change of psychiatric-like behav⁃iors.Western blotting and immunohistochemistry were used to detect protein levels of phosphory⁃lation site of dopamine-and cAMP-regulated phosphoprotein of 32 ku(DARPP-32).Whole-cell patch-clamp recording was used to assess M4-mediated cholinergic inhibition of glutamater⁃gic synaptic input transmission.RESULTS West⁃ern blotting and immunohistochemistry assay showed VU0467154(5 mg·kg-1,ip)promoted phosphorylation of DARPP-32 at Thr75,and atten⁃uated D1-dependent phosphorylation of DARPP-32 at Thr34 within the mouse DS.Consistently,the Oxo-M(4μg,icv)also increased DARPP-32 phosphorylation at site Thr75 to reversed phos⁃phorylation at site Thr34 in WT mice,but not in DS-M4-KD mice.In parallel with altered DARPP-32 responses,VU0467154 or Oxo-M evoked a psychological stress response and reversed D1-induced hyperlocomotion in mice in open field test and force swim tests.However,Oxo-M sup⁃pression of D1-depengdeng behavioral respons⁃es was impaired in DS-M4-KD mice.Whole-cell patch recording showed that VU0467154 or Oxo-M mediated endogenous cholinergic inhibition of miniature excitatory postsynaptic currents through M4 receptors,which in turn suppressed D1-depen⁃dent glutamatergic synaptic transmission in the DS.CONCLUSION This study provides evidence for the role of M4 receptors in regulation of dopa⁃mine/DARPP-32 signaling and glutamate respons⁃es in the DS,and therefore modulation of psychi⁃atric behaviors associated with D1 signaling.This results indicate the mechanisms of treatments targeting M4 in psychiatric disorders. 展开更多
关键词 dorsal striatum dopamine receptor 1 muscarinic acetylcholine M4 receptor dopamine-and cAMP-regulated phosphoprotein of 32 ku
下载PDF
Colocalization of dopamine receptors in BDNF-expressing peptidergic neurons in the rat paraventricular nucleus
9
作者 Wang Zhiyong Zhou Li +2 位作者 Zhang Yang Lian Hui Li Yong 《解剖学杂志》 CAS 2021年第S01期76-76,共1页
Brain derived neurotrophic factor(BDNF)in the paraventricular nucleus of the hypothalamus(PVN)can regulate food intake and energy expenditure.However,the regulatory mediator of BDNF positive neurons in the PVN remains... Brain derived neurotrophic factor(BDNF)in the paraventricular nucleus of the hypothalamus(PVN)can regulate food intake and energy expenditure.However,the regulatory mediator of BDNF positive neurons in the PVN remains unclear.Recently,widespread expression of the dopamine D1 receptor(DRD1)and D2 receptor(DRD2)has been observed in PVN neurons.We hypothesized that dopamine receptors(DRs)are also expressed in BDNF-positive neurons and mediate the function of BDNF in the PVN.Using multiple immunofluorescence assays combined with confocal microscopy,we found that BDNF immunoreactive(IR)neurons were widely distributed throughout the PVN in both the magnocellular and parvocellular regions.The BDNF protein was mainly expressed in the somas of neurons.The distribution of DR-IR neurons exhibited a pattern similar to that of BDNF.Nearly all DRD1 and DRD2 expression occurred within BDNF-IR neurons. 展开更多
关键词 dopamine INTAKE HYPOTHALAMUS
下载PDF
Recent progress in the applications of presynaptic dopaminergic positron emission tomography imaging in parkinsonism
10
作者 Yujie Yang Xinyi Li +7 位作者 Jiaying Lu Jingjie Ge Mingjia Chen Ruixin Yao Mei Tian Jian Wang Fengtao Liu Chuantao Zuo 《Neural Regeneration Research》 SCIE CAS 2025年第1期93-106,共14页
Nowadays,presynaptic dopaminergic positron emission tomography,which assesses deficiencies in dopamine synthesis,storage,and transport,is widely utilized for early diagnosis and differential diagnosis of parkinsonism.... Nowadays,presynaptic dopaminergic positron emission tomography,which assesses deficiencies in dopamine synthesis,storage,and transport,is widely utilized for early diagnosis and differential diagnosis of parkinsonism.This review provides a comprehensive summary of the latest developments in the application of presynaptic dopaminergic positron emission tomography imaging in disorders that manifest parkinsonism.We conducted a thorough literature search using reputable databases such as PubMed and Web of Science.Selection criteria involved identifying peer-reviewed articles published within the last 5 years,with emphasis on their relevance to clinical applications.The findings from these studies highlight that presynaptic dopaminergic positron emission tomography has demonstrated potential not only in diagnosing and differentiating various Parkinsonian conditions but also in assessing disease severity and predicting prognosis.Moreover,when employed in conjunction with other imaging modalities and advanced analytical methods,presynaptic dopaminergic positron emission tomography has been validated as a reliable in vivo biomarker.This validation extends to screening and exploring potential neuropathological mechanisms associated with dopaminergic depletion.In summary,the insights gained from interpreting these studies are crucial for enhancing the effectiveness of preclinical investigations and clinical trials,ultimately advancing toward the goals of neuroregeneration in parkinsonian disorders. 展开更多
关键词 aromatic amino acid decarboxylase brain imaging dopamine transporter Parkinson’s disease PARKINSONISM positron emission tomography presynaptic dopaminergic function vesicle monoamine transporter type 2
下载PDF
The dopaminergic system and Alzheimer's disease
11
作者 Yuhan Zhang Yuan Liang Yixue Gu 《Neural Regeneration Research》 SCIE CAS 2025年第9期2495-2512,共18页
Alzheimer's disease is a common neurodegenerative disorder in older adults.Despite its prevalence,its pathogenesis remains unclea r.In addition to the most widely accepted causes,which in clude excessive amyloid-b... Alzheimer's disease is a common neurodegenerative disorder in older adults.Despite its prevalence,its pathogenesis remains unclea r.In addition to the most widely accepted causes,which in clude excessive amyloid-beta aggregation,tau hyperphosphorylation,and deficiency of the neurotransmitter acetylcholine,numerous studies have shown that the dopaminergic system is also closely associated with the occurrence and development of this condition.Dopamine is a crucial catecholaminergic neurotransmitter in the human body.Dopamine-associated treatments,such as drugs that target dopamine receptor D and dopamine analogs,can improve cognitive function and alleviate psychiatric symptoms as well as ameliorate other clinical manifestations.Howeve r,therapeutics targeting the dopaminergic system are associated with various adverse reactions,such as addiction and exacerbation of cognitive impairment.This review summarizes the role of the dopaminergic system in the pathology of Alzheimer's disease,focusing on currently available dopamine-based therapies for this disorder and the common side effects associated with dopamine-related drugs.The aim of this review is to provide insights into the potential connections between the dopaminergic system and Alzheimer's disease,thus helping to clarify the mechanisms underlying the condition and exploring more effective therapeutic options. 展开更多
关键词 adverse drug reaction Alzheimer's disease CATECHOLAMINE dopamine receptor dopamine receptor heterodimers dopaminergic system neurodegenerative disease NEUROTRANSMITTER signaling pathways traditional Chinese medicine TREATMENT
下载PDF
How dopamine tunes parvalbumin interneurons in the hippocampus:new experimental observations in Alzheimer's disease
12
作者 Livia La Barbera Paraskevi Krashia Annalisa Nobili 《Neural Regeneration Research》 SCIE CAS 2025年第5期1405-1406,共2页
Despite decades of dedicated resea rch,Alzheimer's disease (AD) is an age-related and progressive neurodegenerative disorder for which the mechanisms of onset are sti unc ear.AD is cha racterized by featured histo... Despite decades of dedicated resea rch,Alzheimer's disease (AD) is an age-related and progressive neurodegenerative disorder for which the mechanisms of onset are sti unc ear.AD is cha racterized by featured histological alterations including amyloid-beta (AB) plaque deposition,accumulation of neurofibrillary to ngles of hyperphosphorylated-tau,and neuronal loss,accompanied by progressive cognitive decline and behavioral changes. 展开更多
关键词 ALZHEIMER alterations dopamine
下载PDF
Context-dependency in medicine:how neuronal excitability influences the impact of dopamine on cognition
13
作者 Mahboubeh Ahmadi Nahid Rouhi +1 位作者 Javad Mirnajafi-Zadeh Bechara J.Saab 《Neural Regeneration Research》 SCIE CAS 2025年第11期3225-3226,共2页
Dopamine,often termed the"feel-good"neurotransmitter,plays a crucial role in myriad physiological and psychological brain processes.While dopamine is primarily associated with pleasure,reward,and motivation,... Dopamine,often termed the"feel-good"neurotransmitter,plays a crucial role in myriad physiological and psychological brain processes.While dopamine is primarily associated with pleasure,reward,and motivation,its effects can be quite complex;and this complexity is further compounded when examining how dopamine functions in typical versus disease-affected neural circuits.In pa rticula r,epilepsy,characte rized by heightened brain excitability,is linked to cognitive dysfunction,and dopamine is implicated in elements of both its pathology and treatment.Neuroscience has been successful in describing the synaptic abnormalities believed to contribute to memory issues in epilepsy,aiding in the search for effective therapies for what persists as a major medical issue. 展开更多
关键词 dopamine EPILEPSY primarily
下载PDF
Dopamine D<sub>1</sub>- and D<sub>2</sub>-Receptors in Immunostimulation under Activation of Mu-Opioid Receptors in Mice with Different Psychoemotional States
14
作者 Margarita Cheido Galina Idova Elizaveta Alperina 《Pharmacology & Pharmacy》 2014年第1期43-48,共6页
The purpose of the present study was to analyze the effect of activation of mu-opioid receptors (mu-OR) on the immune response under blockade of postsynaptic D1-and D2-receptors in mice of the C57BL/6J strain displayi... The purpose of the present study was to analyze the effect of activation of mu-opioid receptors (mu-OR) on the immune response under blockade of postsynaptic D1-and D2-receptors in mice of the C57BL/6J strain displaying either aggressive or depressive-like behaviors in the social conflict model. It is shown that activation of activation of mu-OR with a highly selective agonist DAGO (100 μg/kg) increased significantly IgM-immune response not only in C57BL/6J mice with an unchanged psychoemotional state but also in mice displaying aggressive or depressive-like behaviors in the social stress model (10 days of agonistic confrontations). Selective blockade of DA receptors of the D1-type with SCH-23390 (1.0 mg/kg with DAGO administration) caused a more pronounced elevation of IgM-immune response than DAGO alone while DAGO effect was completely blocked by prior administration of D2-receptor antagonist haloperidol (1.0 mg/kg). At the same time, both SCH-23390 and haloperidol prevented the immune response increase induced by DAGO injection in mice engaged in aggressive or depressive-like behaviors. Thus, in animals not subjected to social stress DAGO-induced immunostimulation is provided only by D2-receptors, whereas in animals with altered psychoemotional state mu-opioid immunostimulation is mediated by both types of DA receptors—D1 and D2. These data provide evidence for different impacts of the main subtypes of DA receptors in the mediation of immunomodulating effects of mu-opioid system under normal and stressful conditions. 展开更多
关键词 Mu-Opioid and dopamine receptors Social Stress AGGRESSION Depressive-Like Behavior Immunomodulation
下载PDF
Immunomodulation of Proton-activated G Protein-coupled Receptors in Inflammation
15
作者 Min-shan LI Xiang-hong WANG Heng WANG 《Current Medical Science》 SCIE CAS 2024年第3期475-484,共10页
Proton-activated G protein-coupled receptors(GPCRs),initially discovered by Ludwig in 2003,are widely distributed in various tissues.These receptors have been found to modulate the immune system in several inflammator... Proton-activated G protein-coupled receptors(GPCRs),initially discovered by Ludwig in 2003,are widely distributed in various tissues.These receptors have been found to modulate the immune system in several inflammatory diseases,including inflammatory bowel disease,atopic dermatitis,and asthma.Proton-activated GPCRs belong to the G protein-coupled receptor family and can detect alternations in extracellular pH.This detection triggers downstream signaling pathways within the cells,ultimately influencing the function of immune cells.In this review,we specifically focused on investigating the immune response of proton-activated GPCRs under inflammatory conditions. 展开更多
关键词 proton-activated G protein-coupled receptors INFLAMMATION IMMUNOMODULATION DISEASE
下载PDF
Metabotropic glutamate receptors(mGluRs)in epileptogenesis:an update on abnormal mGluRs signaling and its therapeutic implications
16
作者 Leyi Huang Wenjie Xiao +7 位作者 Yan Wang Juan Li Jiaoe Gong Ewen Tu Lili Long Bo Xiao Xiaoxin Yan Lily Wan 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第2期360-368,共9页
Epilepsy is a neurological disorder characterized by high morbidity,high recurrence,and drug resistance.Enhanced signaling through the excitatory neurotransmitter glutamate is intricately associated with epilepsy.Meta... Epilepsy is a neurological disorder characterized by high morbidity,high recurrence,and drug resistance.Enhanced signaling through the excitatory neurotransmitter glutamate is intricately associated with epilepsy.Metabotropic glutamate receptors(mGluRs)are G protein-coupled receptors activated by glutamate and are key regulators of neuronal and synaptic plasticity.Dysregulated mGluR signaling has been associated with various neurological disorders,and numerous studies have shown a close relationship between mGluRs expression/activity and the development of epilepsy.In this review,we first introduce the three groups of mGluRs and their associated signaling pathways.Then,we detail how these receptors influence epilepsy by describing the signaling cascades triggered by their activation and their neuroprotective or detrimental roles in epileptogenesis.In addition,strategies for pharmacological manipulation of these receptors during the treatment of epilepsy in experimental studies is also summarized.We hope that this review will provide a foundation for future studies on the development of mGluR-targeted antiepileptic drugs. 展开更多
关键词 antiepileptic drugs EPILEPTOGENESIS metabotropic glutamate receptors(mGluRs) signal pathways therapeutic potentials
下载PDF
Characterization of Domeless receptors and the role of Bd Domeless3 in anti-symbiont-like virus defense in Bactrocera dorsalis
17
作者 Wei Zhang Shaoyang Li +2 位作者 Rong Li Jinzhi Niu Jinjun Wang 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第4期1274-1284,共11页
The Janus kinase/signal transducers and activators of transcription(JAK/STAT)signaling pathway play a pivotal role in innate immunity.Among invertebrates,Domeless receptors serve as the key upstream regulators of this... The Janus kinase/signal transducers and activators of transcription(JAK/STAT)signaling pathway play a pivotal role in innate immunity.Among invertebrates,Domeless receptors serve as the key upstream regulators of this pathway.In our study on Bactrocera dorsalis,we identified three cytokine receptors:BdDomeless1,BdDomeless2,and BdDomeless3.Each receptor encompasses five fibronectin-type-III-like(FN III)extracellular domains and a transmembrane domain.Furthermore,these receptors exhibit the increased responsiveness to diverse pathogenic challenges.Notably,only BdDomeless3 is upregulated during symbiont-like viral infections.Moreover,silencing BdDomeless3 enhanced the infectivity of Bactrocera dorsalis cripavirus(BdCV)and B.dorsalis picorna-like virus(BdPLV),underscoring BdDomeless3’s crucial role in antiviral defense of B.dorsalis.Following the suppression of Domeless3 expression,six antimicrobial peptide genes displayed decreased expression,potentially correlating with the rise in viral infectivity.To our knowledge,this is the first study identifying cytokine receptors associated with the JAK/STAT pathway in tephritid flies,shedding light on the immune mechanisms of B.dorsalis. 展开更多
关键词 Bactrocera dorsalis JAK/STAT pathway Domeless receptors antiviral immunity symbiont-like virus
下载PDF
The Role of Toll-Like Receptors and Nuclear Factor κB p65 Protein in the Pathogenesis of Otitis Media
18
作者 Qingchen He Yongbo Zhu Bi Qiang 《Journal of Biosciences and Medicines》 2024年第10期246-257,共12页
The role of Toll-like receptor 4 (TLR4) and nuclear factor κB p65 (NF-κB p65) proteins in the pathogenesis of otitis media is explored. In recent years, the incidence of otitis media has been rising globally, becomi... The role of Toll-like receptor 4 (TLR4) and nuclear factor κB p65 (NF-κB p65) proteins in the pathogenesis of otitis media is explored. In recent years, the incidence of otitis media has been rising globally, becoming a significant threat to human health. More and more studies have found that Toll-like receptor 4 (TLR4), as a member of the Toll-like receptor family, can promote the generation of inflammatory factors and is closely related to the body’s immune response and inflammatory response. Nuclear factor-κB p65 (NF-κB p65) is a nuclear transcription factor that can interact with various cytokines, growth factors, and apoptotic factors, participating in processes such as oxidative stress, apoptosis, and inflammation in the body [1]. This article elaborates on the structure, function, and signaling pathways of TLR4 and NF-κB p65 proteins in the pathogenesis of otitis media, aiming to provide more precise targets and better therapeutic efficacy for the diagnosis and treatment of otitis media. The role of inflammation in disease. 展开更多
关键词 Otitis Media Toll-Like receptors Nuclear Factor κB p65 Signaling Pathway
下载PDF
Toll-like receptors 2 polymorphism is associated with psoriasis: A case-control study in the northern Chinese population
19
作者 Siyu Hao Yu Zhang +4 位作者 Anqi Yin Ying Lyu Nannan Tong Jiangtian Tian Yuzhen Li 《Frigid Zone Medicine》 2024年第2期96-101,共6页
Background:Psoriasis is a disease caused by genetics and immune system dysfunction,affecting the skin and joints.Toll-like receptors(TLRs)play an important role in triggering the innate immune response and controlling... Background:Psoriasis is a disease caused by genetics and immune system dysfunction,affecting the skin and joints.Toll-like receptors(TLRs)play an important role in triggering the innate immune response and controlling adaptive immunity.The role of TLR2 in the progression of psoriasis is not well understood.Methods:A case-control study was conducted on a northern Chinese Han population,consisting of psoriasis patients and healthy control subjects.Genotyping was performed using the tetra-primer amplification refractory mutation system-polymerase chain reaction(ARMS-PCR),and allele and genotype frequencies of four SNPs in TLR2 were analyzed in 270 psoriasis patients and 246 healthy controls.Results:Four TLR2 SNPs(rs11938228,rs4696480,rs3804099,rs5743699)were genotyped and found to be in linkage disequilibrium.The genotype distributions of rs11938228 and rs4696480 in two groups were in Hardy-Weinberg equilibrium and statistically significant except for the overdominance model.The haplotypes ATTC and ATCC were found to be protective against psoriasis.Conclusion:Our study found a correlation between TLR2 genetic variations and the likelihood of psoriasis in northern China. 展开更多
关键词 Toll-like receptors 2 PSORIASIS POLYMORPHISM SUSCEPTIBILITY
下载PDF
Nuclear receptors and pathogenesis of pancreatic cancer 被引量:12
20
作者 Simone Polvani Mirko Tarocchi +1 位作者 Sara Tempesti Andrea Galli 《World Journal of Gastroenterology》 SCIE CAS 2014年第34期12062-12081,共20页
Pancreatic ductal adenocarcinoma (PDAC) is a devastating disease with a median overall survival time of 5 mo and the five years survival less than 5%, a rate essentially unchanged over the course of the years. A well ... Pancreatic ductal adenocarcinoma (PDAC) is a devastating disease with a median overall survival time of 5 mo and the five years survival less than 5%, a rate essentially unchanged over the course of the years. A well defined progression model of accumulation of genetic alterations ranging from single point mutations to gross chromosomal abnormalities has been introduced to describe the origin of this disease. However, due to the its subtle nature and concurring events PDAC cure remains elusive. Nuclear receptors (NR) are members of a large superfamily of evolutionarily conserved ligand-regulated DNA-binding transcription factors functionally involved in important cellular functions ranging from regulation of metabolism, to growth and development. Given the nature of their ligands, NR are very tempting drug targets and their pharmacological modulation has been widely exploited for the treatment of metabolic and inflammatory diseases. There are now clear evidences that both classical ligand-activated and orphan NR are involved in the pathogenesis of PDAC from its very early stages; nonetheless many aspects of their role are not fully understood. The purpose of this review is to highlight the striking connections that link peroxisome proliferator activated receptors, retinoic acid receptors, retinoid X receptor, androgen receptor, estrogen receptors and the orphan NR Nur, chicken ovalbumin upstream promoter transcription factor II and the liver receptor homologue-1 receptor to PDAC development, connections that could lead to the identification of novel therapies for this disease. 展开更多
关键词 Peroxisome proliferator activated receptor Pancreatic intraepithelial neoplasia COUP-TFⅡ Nuclear receptors Orphan nuclear receptor Nuclear receptors 4A2 Nuclear receptors 2F2 Pancreatic cancer Retinoid X receptor Testicular receptor 3
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部