BACKGROUND Most complex renal stones are managed primarily with percutaneous nephrolithotomy(PCNL).However,PCNL is still a great challenge for surgeons because of poor comprehension on complex adjacent structures.Nove...BACKGROUND Most complex renal stones are managed primarily with percutaneous nephrolithotomy(PCNL).However,PCNL is still a great challenge for surgeons because of poor comprehension on complex adjacent structures.Novel techniques are required to assist in planning and navigation.AIM To apply and evaluate the Hisense computer-assisted surgery(CAS)system in PCNL.METHODS A total of 60 patients with complex renal stones were included.Thirty patients in the CAS group had three-dimensional(3 D)virtual models constructed with the CAS system.The model assisted in planning and navigating in the CAS system.Thirty patients in the control group planned and navigated as standard PCNL,without the application of the CAS system.Success rate of one attempt,operation time,initial stone-free rate,decrease in hemoglobin,and complications were collected and analyzed.RESULTS There were no statistically significant differences in the baseline characteristics or planning characteristics.The success rate of one puncturing attempt(90%vs 67%,P=0.028)and the initial stone-free rate(87%vs 63%,P=0.037)were significantly higher in the CAS group.However,there were no statistically significant differences in the operation time(89.20±29.60 min vs 92.33±33.08 min,P=0.859)or in the decrease in hemoglobin(11.07±8.32 g/L vs 9.03±11.72 g/L,P=0.300)between the CAS group and the control group.No statistically significant differences in the incidence of complications(Clavien-Dindo grade≥2)were found.CONCLUSION Compared with standard PCNL,CAS-assisted PCNL had advantages in terms of the puncturing success rate and stone-free rate.The Hisense CAS System was recommended to assist in preoperative planning and intraoperative navigation for an intuitive,precise and convenient PCNL.展开更多
The purpose of this study was to investigate the prediction of mechanical error using DICOM-RT plan parameters for volumetric modulated arc therapy (VMAT). We created plans for gantry rotation arcs of 360° and 18...The purpose of this study was to investigate the prediction of mechanical error using DICOM-RT plan parameters for volumetric modulated arc therapy (VMAT). We created plans for gantry rotation arcs of 360° and 180° (full-arc and half-arc VMAT) for six maxillary sinus cancer cases using a Monaco treatment planning system, and delivered the doses with a linear accelerator. We calculated DICOM-RT plan parameters, including gantry, multileaf collimator (MLC) positions and Monitor Units (MU). We compared plans with regard to gantry angle per MU (degrees/MU) and MLC travel per MU (mm/MU) for each segment. Calculated gantry angle/MLC position speeds and errors were evaluated by comparison with the log file. On average, the half-arc VMAT plan resulted in 47% and 35% fewer degrees/MU and mm/MU than the full-arc VMAT plan, respectively. The root mean square (r.m.s.) gantry and MLC speeds showed a linear relationship with calculated degrees/MU and mm/MU, with coefficients of determination (R2) of 0.86 and 0.72, respectively. The r.m.s. gantry angle and MLC position errors showed a linear relationship with calculated degrees/MU and mm/MU with R2 of 0.63 and 0.76, respectively. Deviations from plan parameters were related to mechanical error for VMAT, and provided quantitative information without the need for VMAT delivery. These parameters can be used in the selection of treatment planning.展开更多
基金Supported by the Science and Technology Program in Chinese Medicine of Shandong Province,No.2020M074。
文摘BACKGROUND Most complex renal stones are managed primarily with percutaneous nephrolithotomy(PCNL).However,PCNL is still a great challenge for surgeons because of poor comprehension on complex adjacent structures.Novel techniques are required to assist in planning and navigation.AIM To apply and evaluate the Hisense computer-assisted surgery(CAS)system in PCNL.METHODS A total of 60 patients with complex renal stones were included.Thirty patients in the CAS group had three-dimensional(3 D)virtual models constructed with the CAS system.The model assisted in planning and navigating in the CAS system.Thirty patients in the control group planned and navigated as standard PCNL,without the application of the CAS system.Success rate of one attempt,operation time,initial stone-free rate,decrease in hemoglobin,and complications were collected and analyzed.RESULTS There were no statistically significant differences in the baseline characteristics or planning characteristics.The success rate of one puncturing attempt(90%vs 67%,P=0.028)and the initial stone-free rate(87%vs 63%,P=0.037)were significantly higher in the CAS group.However,there were no statistically significant differences in the operation time(89.20±29.60 min vs 92.33±33.08 min,P=0.859)or in the decrease in hemoglobin(11.07±8.32 g/L vs 9.03±11.72 g/L,P=0.300)between the CAS group and the control group.No statistically significant differences in the incidence of complications(Clavien-Dindo grade≥2)were found.CONCLUSION Compared with standard PCNL,CAS-assisted PCNL had advantages in terms of the puncturing success rate and stone-free rate.The Hisense CAS System was recommended to assist in preoperative planning and intraoperative navigation for an intuitive,precise and convenient PCNL.
文摘The purpose of this study was to investigate the prediction of mechanical error using DICOM-RT plan parameters for volumetric modulated arc therapy (VMAT). We created plans for gantry rotation arcs of 360° and 180° (full-arc and half-arc VMAT) for six maxillary sinus cancer cases using a Monaco treatment planning system, and delivered the doses with a linear accelerator. We calculated DICOM-RT plan parameters, including gantry, multileaf collimator (MLC) positions and Monitor Units (MU). We compared plans with regard to gantry angle per MU (degrees/MU) and MLC travel per MU (mm/MU) for each segment. Calculated gantry angle/MLC position speeds and errors were evaluated by comparison with the log file. On average, the half-arc VMAT plan resulted in 47% and 35% fewer degrees/MU and mm/MU than the full-arc VMAT plan, respectively. The root mean square (r.m.s.) gantry and MLC speeds showed a linear relationship with calculated degrees/MU and mm/MU, with coefficients of determination (R2) of 0.86 and 0.72, respectively. The r.m.s. gantry angle and MLC position errors showed a linear relationship with calculated degrees/MU and mm/MU with R2 of 0.63 and 0.76, respectively. Deviations from plan parameters were related to mechanical error for VMAT, and provided quantitative information without the need for VMAT delivery. These parameters can be used in the selection of treatment planning.