Sweat loss monitoring is important for understanding the body’s thermoregulation and hydration status,as well as for comprehensive sweat analysis.Despite recent advances,developing a low-cost,scalable,and universal m...Sweat loss monitoring is important for understanding the body’s thermoregulation and hydration status,as well as for comprehensive sweat analysis.Despite recent advances,developing a low-cost,scalable,and universal method for the fabrication of colorimetric microfluidics designed for sweat loss monitoring remains challenging.In this study,we propose a novel laserengraved surface roughening strategy for various flexible substrates.This process permits the construction of microchannels that show distinct structural reflectance changes before and after sweat filling.By leveraging these unique optical properties,we have developed a fully laser-engraved microfluidic device for the quantification of naked-eye sweat loss.This sweat loss sensor is capable of a volume resolution of 0.5µL and a total volume capacity of 11µL,and can be customized to meet different performance requirements.Moreover,we report the development of a crosstalk-free dual-mode sweat microfluidic system that integrates an Ag/AgCl chloride sensor and a matching wireless measurement flexible printed circuit board.This integrated system enables the real-time monitoring of colorimetric sweat loss signals and potential ion concentration signals without crosstalk.Finally,we demonstrate the potential practical use of this microfluidic sweat loss sensor and its integrated system for sports medicine via on-body studies.展开更多
With the development of the hyperspectral remote sensing technique,extensive chemical weathering profiles have been identified on Mars.These weathering sequences,formed through precipitation-driven leaching processes,...With the development of the hyperspectral remote sensing technique,extensive chemical weathering profiles have been identified on Mars.These weathering sequences,formed through precipitation-driven leaching processes,can reflect the paleoenvironments and paleoclimates during pedogenic processes.The specific composition and stratigraphic profiles mirror the mineralogical and chemical trends observed in weathered basalts on Hainan Island in south China.In this study,we investigated the laboratory reflectance spectra of a 53-m-long drilling core of a thick basaltic weathering profile collected from Hainan Island.We established a quantitative spectral model by combining the genetic algorithm and partial least squares regression(GA-PLSR)to predict the chemical properties(SiO2,Al2O3,Fe2O3)and index of laterization(IOL).The entire sample set was divided into a calibration set of 25 samples and a validation set of 12 samples.Specifically,the GA was used to select the spectral subsets for each composition,which were then input into the PLSR model to derive the chemical concentration.The coefficient of determination(R2)values on the validation set for SiO2,Al2O3,Fe2O3,and the IOL were greater than 0.9.In addition,the effects of various spectral preprocessing techniques on the model accuracy were evaluated.We found that the spectral derivative treatment boosted the prediction accuracy of the GA-PLSR model.The improvement achieved with the second derivative was more pronounced than when using the first derivative.The quantitative model developed in this work has the potential to estimate the contents of similar weathering basalt products,and thus infer the degree of alteration and provide insights into paleoclimatic conditions.Moreover,the informative bands selected by the GA can serve as a guideline for designing spectral channels for the next generation of spectrometers.展开更多
To quantify the pore characteristics of various macerals in Chang 7 lacustrine shales,macerals were effectively identified according to their optical and morphological characteristics,and the nanoscale pore structure ...To quantify the pore characteristics of various macerals in Chang 7 lacustrine shales,macerals were effectively identified according to their optical and morphological characteristics,and the nanoscale pore structure of macerals was observed by scanning electron microscope.Meanwhile,the reflectances of different positions in the same pieces of vitrinite or solid bitumen with heterogeneous pores development were measured.The results showed that the average contents of sapropelinite,liptinite,vitrinite,inertinite and solid bitumen are 42.7%,8.7%,13.6%,13.8% and 21.2%,respectively,which suggests that the source of the organic matter of the Chang 7 shales is a mixed source input.The organic pores of Chang 7 shales are enriched,and the pore shapes are mostly round or elliptical.The pore size of organic pores has a wide distribution,mainly concentrate in the range of 100-400 nm,and the average plane porosity of organic pores is 10.13%.The size order of the organic pores in various macerals is:solid bitumen<bituminite<alginite<vitrinite<fusinite<liptinite.The abundance order of organic matter pores of each maceral is as follows:alginite>fusinite>bituminite>solid bitumen>vitrinite>liptinite.OM pores are mainly contributed by bituminite,solid bitumen and fusinite.The plane porosity of bituminite increases with maturity.In the process of thermal evolution,the plane porosity of fusinite is distributed in the two ranges of 20%-28% and 1%-7%.The former is mainly the primary pores of the fusinite itself,and the latter is the secondary pores formed in the thermal evolution.As for the organic pores of other macerals,no obvious thermal evolution law was found.Meanwhile,the surface imperfections of vitrinite or solid bitumen is enhanced by the enrichment of organic pores(an increase in pore size or pore number),which may result in the underestimation of their reflectances.展开更多
The process of wound healing is routinely evaluated by histological evaluation in the clinic,which may cause scarring and secondary injury.Reflectance confocal microscopy(RCM)represents a noninvasive,real-time imaging...The process of wound healing is routinely evaluated by histological evaluation in the clinic,which may cause scarring and secondary injury.Reflectance confocal microscopy(RCM)represents a noninvasive,real-time imaging technique that allows in vivo evaluation of the skin.Traditional RCM was wide-probe-based,which limited its application on uneven and covered skin.In this study,we report the development of a portable reflectance confocal microscope(PRCM)in which all components were assembled in a handheld shell.Although the size and weight of the PRCM were reduced based on the use of a microelectromechanical system,the resolution was kept at 0.91μm,and the field of view of the system was 343μm×532μm.When used in vivo,the PRCM was able to visualize cellular and nuclear morphology for both mouse and human skin.PRCM evaluations were then performed on wounds after topically applied mesenchymal stem cells(MSCs)or saline treatment.The PRCM allowed visualization of the formation of collagen bundles,re-epithelization from the wound edge to the wound bed,and hair follicle regeneration,which were consistent with histological evaluations.Therefore,we offer new insights into monitoring the effects of topically applied MSCs on the process of wound healing by using PRCM.This study illustrates that the newly developed PRCM represents a promising device for real-time,noninvasive monitoring of the dynamic process of wound healing,which demonstrates its potential to diagnose,monitor,or predict disease in clinical wound therapy.展开更多
Rice yellow mottle is considered the most destructive disease threatening rice production in Africa. Early detection of this infection in rice is essential to limit its expansion and proliferation. However, there is n...Rice yellow mottle is considered the most destructive disease threatening rice production in Africa. Early detection of this infection in rice is essential to limit its expansion and proliferation. However, there is no research devoted to the spectral detection of rice yellow mottle virus (RYMV) infection, especially in the asymptomatic or early stages. This work proposes the use of hyperspectral fluorescence and reflectance data at leaf level for the detection of this disease in asymptomatic stages. A greenhouse experiment was therefore conducted to collect hyperspectral fluorescence and reflectance data at different stages of infection. These data allowed to calculate nine vegetation indices: one from fluorescence spectra and eight from reflectance spectra. A t-test made it possible to identify, from the second day after infection, four relevant reflectance vegetation indices to discriminate healthy leaves from those infected: these are Photochemical Reflectance Index (PRI), Transformed Chlorophyll Absorption in Reflectance Index (TCARI), Structure Intensive Pigment Index (SIPI) and Simple Ratio Pigment Index (SRPI). The fluorescence index was less sensitive in detecting infection. The four significant vegetation indices for the detection of RYMV were then used to build and evaluate models for discriminating plants according to their health status by the supervised classification of support vector machine (SVM) at different stages of infection. The maximum overall accuracy is 92.5% six days after inoculation (6 DAI). The sixth day after inoculation would be the adequate day to detect RYMV. This plants discrimination was validated by the mean reflectance spectra and by the histograms showing the differences between the average reflectance vegetation indices values of the two types of plants. Our results demonstrate the feasibility of differentiating RYMV-infected samples. They suggest that support vector machine learning models could be developed to diagnose RYMV-infected plants based on vegetation indices derived from spectral profiles at early stages of disease development.展开更多
To develop near-infrared (NIR) reflectance spectroscopic methods for the quantitative analysis of cefoperazone sodium/ sulbactam sodium from different manufacturers for injection powder medicaments. Various powders ...To develop near-infrared (NIR) reflectance spectroscopic methods for the quantitative analysis of cefoperazone sodium/ sulbactam sodium from different manufacturers for injection powder medicaments. Various powders of cefoperazone sodium/ sulbactam sodium were directly analyzed by non-destructive NIR reflectance spectroscopy using the spectrometer EQUINOX55. Two quantitative methods via integrating sphere (IS) and fiberoptic probe (FOP) models were explored from 6 batches of commercial samples and 42 batches of laboratory samples at a content ranging from 30% to 70% for cefoperazone and 60% to 20% for sulbactam. The root mean square errors of cross validation (RMSECV) and the root mean square errors of prediction (RMSEP) of IS were 1.79% and 2.85%, respectively, for cefoperazone sodium, and were 1.86% and 3.08%, respectively, for sulbactam sodium; and those of FOP were 2.93% and 2.92%, respectively, for cefoperazone sodium, and were 2.23% and 3.01%, respectively, for sulbactam sodium. Based on the ICH guidelines and Ref. 12, the quantitative models were then evaluated in terms of specificity, linearity, accuracy, precision, robustness and model transferability. The non-destructive quantitative NIR methods used in this study are applicable for rapid analysis of injectable powdered drugs from different manufacturers.展开更多
Monitoring rice growth by spectral remote sensing technology can provide scientific basis for the high yield and efficient production of rice. Field experiments with different nitrogen application amounts using Tianyo...Monitoring rice growth by spectral remote sensing technology can provide scientific basis for the high yield and efficient production of rice. Field experiments with different nitrogen application amounts using Tianyouhuazhan rice as test sam- ples were set up to study the relationship between rice leaf area index (LAI) and canopy reflectance spectral. The results showed that: the LAI increased with the amount of applied nitrogen; the canopy reflectance spectral showed significant re- sponse characteristics to groups with different nitrogen application levels; the corre- lation coefficient of LAI and canopy spectral reflectance reached the maximum at 720 nm red edge region. The mathematical model was constructed to predict the LAI according to the canopy reflectance spectra of rice.展开更多
The law of mathematical statistics, which the coal vitrinite reflectance index obeys, the existing vitrinite representing deviations, and the advantages of judging coalification and the shortage of judging coal type w...The law of mathematical statistics, which the coal vitrinite reflectance index obeys, the existing vitrinite representing deviations, and the advantages of judging coalification and the shortage of judging coal type were analyzed. The advantages and disadvantages of various determination methods and the expression index and different methods of identifying vitrinite on the determination results were compared. The vitality of coal vitrinite reflectance depends on its full play the unique function of reflectance histogram and the systematic errors between different determination methods do not affect the application based on reflectance histogram are considered.展开更多
Large-scale farming of agriculture crops requires real-time detection of disease for field pest management. Hyperspectral remote sensing data generally have high spectral resolution, which could be very useful for det...Large-scale farming of agriculture crops requires real-time detection of disease for field pest management. Hyperspectral remote sensing data generally have high spectral resolution, which could be very useful for detecting disease stress in green vegetation at the leaf and canopy levels. In this study, hyperspectral reflectances of rice in the laboratory and field were measured to characterize the spectral regions and wavebands, which were the most sensitive to rice brown spot infected by Bipolaris oryzae (Helminthosporium oryzae Breda. de Hann). Leaf reflectance increased at the ranges of 450 to 500 nm and 630 to 680 nm with the increasing percentage of infected leaf surface, and decreased at the ranges of 520 to 580 nm, 760 to 790 nm, 1550 to 1750 nm, and 2080 to 2350 nm with the increasing percentage of infected leaf surface respectively. The sensitivity analysis and derivative technique were used to select the sensitive wavebands for the detection of rice brown spot infected by B. oryzae. Ratios of rice leaf reflectance were evaluated as indicators of brown spot. R669/R746 (the reflectance at 669 nm divided by the reflectance at 746 nm, the following ratios may be deduced by analogy), R702/R718, R692/R530, R692/R732, R535/R746, R521/R718, and R569/R718 increased significantly as the incidence of rice brown spot increased regardless of whether it's at the leaf or canopy level. R702/R718, R692/R530, R692/R732 were the best three ratios for estimating the disease severity of rice brown spot at the leaf and canopy levels. This result not only confirms the capability of hyperspectral remote sensing data in characterizing crop disease for precision pest management in the real world, but also testifies that the ratios of crop reflectance is a useful method to estimate crop disease severity.展开更多
A spectral reflectance sensor(SRS)fixed on the near-surface ground was developed to support the continuous monitoring of vegetation indices such as the normalized difference vegetation index(NDVI)and photochemical ref...A spectral reflectance sensor(SRS)fixed on the near-surface ground was developed to support the continuous monitoring of vegetation indices such as the normalized difference vegetation index(NDVI)and photochemical reflectance index(PRI).NDVI is useful for indicating crop growth/phenology,whereas PRI was developed for observing physiological conditions.Thus,the seasonal change patterns of NDVI and PRI are two valuable pieces of information in a crop-monitoring system.However,capturing the seasonal patterns is considered challenging because the vegetation index values estimated by the reflection from vegetation are often governed by meteorological conditions,such as solar irradiance and precipitation.Further,unlike growth/phenology,the physiological condition has diurnal changes as well as seasonal characteristics.This study proposed a novel filtering method for extracting the seasonal signals of SRS-based NDVI and PRI in paddy rice,barley,and garlic.First,the measurement accuracy of SRSs was compared with handheld spectrometers,and the R^(2)values between the two devices were 0.96 and 0.81 for NDVI and PRI,respectively.Second,the experimental study of threshold criteria with respect to meteorological variables(i.e.,insolation,cloudiness,sunshine duration,and precipitation)was conducted,and sunshine duration was the most useful one for excluding distorted values of the vegetation indices.After data processing based on sunshine duration,the R^(2)values between the measured vegetation indices and the extracted seasonal signals of vegetation indices increased by approximately 0.002–0.004(NDVI)and 0.065–0.298(PRI)on the three crops,and the seasonal signals of vegetation indices became noticeably improved.This method will contribute to an agricultural monitoring system by identifying the seasonal changes in crop growth and physiological conditions.展开更多
In order to reduce greenhouse gas emission and urban heat island mitigation, pure and titanium(Ti)-doped Cr2O3 cool pigments were prepared via the thermal decomposition of CrOOH. The result reveals that the pure Cr2...In order to reduce greenhouse gas emission and urban heat island mitigation, pure and titanium(Ti)-doped Cr2O3 cool pigments were prepared via the thermal decomposition of CrOOH. The result reveals that the pure Cr2O3 pigment presents both a high near-infrared reflectance and excellent yellowish-green color. Meanwhile, titanium was doped to improve the NIR reflectance and strengthen the color. The color of the designed pigments was brighter, and most importantly, the NIR reflectance increased from 84.04% to 91.25% with increasing Ti content from 0 to 0.006% (mole fraction). However, excessive doping of Ti4+ for Cr3+ in Cr2O3 (x(Ti)≥0.008%) decreased the NIR reflectance. One possible reason is that the conductivity type of the Cr2?xTixO3+δ changed from p-type conduction to n-type conduction with increasing Ti content, accompanied by the change of the electrical resistivity and the NIR reflectance. The prepared yellowish-green Cr2O3 pigments have a great potential for extensive applications in construction and military.展开更多
To further develop the methods to remotely sense the biochemical content of plant canopies,we report the results of an experiment to estimate the concentrations of three biochemical variables of corn,i.e.,nitrogen(N),...To further develop the methods to remotely sense the biochemical content of plant canopies,we report the results of an experiment to estimate the concentrations of three biochemical variables of corn,i.e.,nitrogen(N),crude fat(EE) and crude fiber(CF) concentrations,by spectral reflectance and the first derivative reflectance at fresh leaf scale. The correlations between spectral reflectance and the first derivative transformation and three biochemical variables were analyzed,and a set of estimation models were established using curve-fitting analyses. Coefficient of determination(R2),root mean square error(RMSE) and relative error of prediction(REP) of estimation models were calculated for the model quality evaluations,and the possible opti-mum estimation models of three biochemical variables were proposed,with R2 being 0.891,0.698 and 0.480 for the estimation models of N,EE and CF concentrations,respectively. The results also indicate that using the first derivative reflectance was better than using raw spectral reflectance for all three biochemical variables estimation,and that the first derivative reflectances at 759 nm,1954 nm and 2370 nm were most suitable to develop the estimation models of N,EE and CF concentrations,respectively. In addition,the high correlation coefficients of the theoretical and the measured biochemical parameters were obtained,especially for nitrogen(r=0.948).展开更多
The solar spectrum covers a broad wavelength range, which requires that antireflection coating (ARC) is effective over a relatively wide wavelength range for more incident light coming into the cell. In this paper, ...The solar spectrum covers a broad wavelength range, which requires that antireflection coating (ARC) is effective over a relatively wide wavelength range for more incident light coming into the cell. In this paper, we present two methods to measure the composite reflection of SiO2/ZnS double-layer ARC in the wavelength ranges of 300-870 nm (duaI- junction) and 300-1850 nm (triple-junction), under the solar spectrum AM0. In order to give sufficient consideration to the ARC coupled with the window layer and the dispersion effect of the refractive index of each layer, we use multidimensional matrix data for reliable simulation. A comparison between the results obtained from the weighted-average reflectance (WAR) method commonly used and that from the effective-average reflectance (EAR) method introduced here shows that the optimized ARC through minimizing the effective-average reflectance is convenient and available.展开更多
[Objective] This study was conducted to establish a near-infrared diffuse reflectance spectroscopy of Guizhou Aspidistra plants. [Method] Twenty three batch- es of Guizhou Aspidistra plants including A. chishuiensis, ...[Objective] This study was conducted to establish a near-infrared diffuse reflectance spectroscopy of Guizhou Aspidistra plants. [Method] Twenty three batch- es of Guizhou Aspidistra plants including A. chishuiensis, A. spinula, A. Caespitosa, A. sichuanensis, A. ebianensis, A. retusa, A. guizhouensis and A. liboensis were subjected to drying, pulverization and sieving and then directly determined for near- infrared reflectance spectrums; and the plants in this genus were classified by clus- ter analysis and principal component analysis (PCA). [Result] The near-infrared re- flectance spectrums of the 23 batches of Guizhou Aspidistra plants showed very high similarity. The spectrums were processed by first derivative method, and the spectral range of 4 000-7 500 cm-1 was selected as the analytical range. Cluster analysis and PCA were employed to mass spectrum variables of plants in Aspidis- tra, fewer new variables became the linear combination of primary variables, and small differences between different varieties were enlarged, thereby facilitating intu- itive classification of plants in this genus. [Conclusion] Near-infrared diffuse re- flectance spectroscopy is nondestructive and rapid for determination of solid sam- pies, and provides a new method for the classification of Guizhou Aspidistra plants combined by information processing techniques.展开更多
[Objective] The aim was to build an evaluation method rapidly identifying wheat drought tolerance with near infrared diffuse reflectance spectroscopy. [Method] In the research, 36 wheat varieties in 2007-2009 were cho...[Objective] The aim was to build an evaluation method rapidly identifying wheat drought tolerance with near infrared diffuse reflectance spectroscopy. [Method] In the research, 36 wheat varieties in 2007-2009 were chosen and drought-tolerance degrees of wheat were graded and identified according to Winter-wheat Drought Tol- erance Evaluation Technical Standards (GB/T 21127-2007), and harvest wheat grains underwent spectrum collection, with a full-spectrum analyzer, to establish a database. [Result] Based on qualitative analysis and full-spectrum correlation research, the coef- ficient of determination (RSQ) and cross-validation coefficient of determination (1-VR) were concluded at 0.697 5 and 0.600 2, showing near-infrared diffuse reflectance spectroscopy is of significant differences among wheat varieties and of significant or extremely significant correlation with drought-tolerance indices. [Conclusion] The re- search indicates that to evaluate drought-tolerance of wheat with near-infrared diffuse reflectance spectroscopy is a rapid and feasible way, which is simple, convenient without damages on grains, and of practical values for construction wheat drought-tol- erance evaluation index system and identification of breeding materials.展开更多
Concentrations of Iron (Fe), As, and Cu in soil samples from the fields near the Baoshan Mine in Hunan Province, China, were analyzed and soil spectral reflectance was measured with an ASD FieldSpec FR spectroradiomet...Concentrations of Iron (Fe), As, and Cu in soil samples from the fields near the Baoshan Mine in Hunan Province, China, were analyzed and soil spectral reflectance was measured with an ASD FieldSpec FR spectroradiometer (Analytical Spectral Devices, Inc., USA) under laboratory condition. Partial least square regression (PLSR) models were constructed for predicting soil metal concentrations. The data pre-processing methods, first and second derivatives (FD and SD), baseline correction (BC), standard normal variate (SNV), multiplicative scatter correction (MSC), and continuum removal (CR), were used for the spectral reflectance data pretreatments. Then, the prediction results were evaluated by relative root mean square error (RRMSE) and coefficients of determination (R 2 ). According to the criteria of minimal RRMSE and maximal R 2 , the PLSR models with the FD pretreatment (RRMSE = 0.24, R 2 = 0.61), SNV pretreatment (RRMSE = 0.08, R 2 = 0.78), and BC-pretreatment (RRMSE = 0.20, R 2 = 0.41) were considered as the final models for predicting As, Fe, and Cu, respectively. Wavebands at around 460, 1 400, 1 900, and 2 200 nm were selected as important spectral variables to construct final models. In conclusion, concentrations of heavy metals in contaminated soils could be indirectly assessed by soil spectra according to the correlation between the spectrally featureless components and Fe; therefore, spectral reflectance would be an alternative tool for monitoring soil heavy metals contamination.展开更多
In the present study,we synthesized CeO2 catalysts doped with various transition metals(M=Co,Fe,or Cu)using a supercritical water hydrothermal route,which led to the incorporation of the metal ions in the CeO2 lattice...In the present study,we synthesized CeO2 catalysts doped with various transition metals(M=Co,Fe,or Cu)using a supercritical water hydrothermal route,which led to the incorporation of the metal ions in the CeO2 lattice,forming solid solutions.The catalysts were then used for the selective catalytic reduction(SCR)of NO by CO.The Cu‐doped catalyst exhibited the highest SCR activity;it had a T50(i.e.,50%NO conversion)of only 83°C and a T90(i.e.,90%NO conversion)of 126°C.Such an activity was also higher than in many state‐of‐the‐art catalysts.In situ diffuse reflectance Fourier transform infrared spectroscopy suggested that the MOx‐CeO2 catalysts(M=Co and Fe)mainly followed an Eley‐Rideal reaction mechanism for CO‐SCR.In contrast,a Langmuir‐Hinshelwood SCR reaction mechanism occurred in CuO‐CeO2 owing to the presence of Cu+species,which ensured effective adsorption of CO.This explains why CuO‐CeO2 exhibited the highest activity with regard to the SCR of NO by CO.展开更多
Several studies have demonstrated that soil reflectance decreases with increasing soil moisture content, or increases when the soil moisture reaches a certain content; however, there are few analyses on the quantitati...Several studies have demonstrated that soil reflectance decreases with increasing soil moisture content, or increases when the soil moisture reaches a certain content; however, there are few analyses on the quantitative relationship between soil reflectance and its moisture, especially in the case of black soils in northeast China. A new moisture adjusting method was developed to obtain soil reflectance with a smaller moisture interval to describe the quantitative relationship between soil reflectance and moisture. For the soil samples with moisture contents ranging from air-dry to saturated, the changes in soil reflectance with soil moisture can be depicted using a cubic equation. Both moisture threshold (MT) and moisture inflexion (MI) of soil reflectance can also be determined by the equation. When the moisture range was smaller than MT, soil reflectance can be simulated with a linear model. However, for samples with different soil organic matter (OM), the parameters of the linear model varied regularly with the OM content. Based on their relationship, the soil moisture can be estimated from soil reflectance in the black soil region.展开更多
The resource of the gas from coal and coal measures deep in Songliao Basin has been drawing more and more attention to . It is necessary to find out the evolution regularity of the geothermal field of the basin in add...The resource of the gas from coal and coal measures deep in Songliao Basin has been drawing more and more attention to . It is necessary to find out the evolution regularity of the geothermal field of the basin in addition to a series of geological studies in order to predict its resources because the ancient geothermal field of the basin is one of the main factors controlling the generation , evolution and disappearance of oil and gas . In the recent twenty years , it is generally believed that vitrinite reflectance is the best quantitative marker for the ancient geothermal field . In the present paper , a systematic study of the vitrinite reflectance value of Songliao Basin and its influence factors is made by multiple statistical analysis so as to reconstruct the evolutional process of the Moho and the corresponding geothermal field . Then , an overall prediction is made of the vitrinite reflectance and the distribution of J3-K1 fault basin group at the bottom of Songliao Basin , which provides the evidence for the further prediction of the gas potentiality from coal and coal measures deep in the basin .展开更多
Spaceborne synthetic remote sensing of atmospheric aerosol optical depth and vegetation reflectance is very significant, but it remains to be a question unresolved yet. Based on the property of vegetation reflectance ...Spaceborne synthetic remote sensing of atmospheric aerosol optical depth and vegetation reflectance is very significant, but it remains to be a question unresolved yet. Based on the property of vegetation reflectance spectra from near ultra violet to near infrared and the sensitivity of outgoing radiance to vegetation reflectance and atmospheric aerosol optical depth, a new method for spaceborne synthetic remote sensing of the reflectance and the depth is proposed, and an iteration correlation inversion algorithm is developed in this paper. According to numerical experiment, effects of radiance error, error in aerosol imaginary index and vegetation medium inhomogeneity on retrieved result are analyzed. Inversion results show that the effect of error in aerosol imaginary index is very important. As the error of aerosol imaginary index is within 0.01, standard errors of aerosol optical depth and vegetation reflectance solutions for 14 spectral channels from 410 nm to 900 nm are respectively less than 0.063 and 0.023. And as the radiance error is within 2%, the standard errors are less than 0.023 and 0.0056.展开更多
基金support from the National Natural Science Foundation of China(No.62174152)。
文摘Sweat loss monitoring is important for understanding the body’s thermoregulation and hydration status,as well as for comprehensive sweat analysis.Despite recent advances,developing a low-cost,scalable,and universal method for the fabrication of colorimetric microfluidics designed for sweat loss monitoring remains challenging.In this study,we propose a novel laserengraved surface roughening strategy for various flexible substrates.This process permits the construction of microchannels that show distinct structural reflectance changes before and after sweat filling.By leveraging these unique optical properties,we have developed a fully laser-engraved microfluidic device for the quantification of naked-eye sweat loss.This sweat loss sensor is capable of a volume resolution of 0.5µL and a total volume capacity of 11µL,and can be customized to meet different performance requirements.Moreover,we report the development of a crosstalk-free dual-mode sweat microfluidic system that integrates an Ag/AgCl chloride sensor and a matching wireless measurement flexible printed circuit board.This integrated system enables the real-time monitoring of colorimetric sweat loss signals and potential ion concentration signals without crosstalk.Finally,we demonstrate the potential practical use of this microfluidic sweat loss sensor and its integrated system for sports medicine via on-body studies.
基金National Key Research and Development Project(Grant No.2019YFE0123300)National Natural Science Foundation of China(Grant Nos.42072337,42241111,and 42241129)+1 种基金Pandeng Program of National Space Science Center,Chinese Academy of Sciences.Xing Wu also acknowledges support from the Young Elite Scientists Sponsorship Program by the China Association for Science and Technology(Grant No.2022QNRC001)China Postdoctoral Science Foundation(Grant No.2021M700149).
文摘With the development of the hyperspectral remote sensing technique,extensive chemical weathering profiles have been identified on Mars.These weathering sequences,formed through precipitation-driven leaching processes,can reflect the paleoenvironments and paleoclimates during pedogenic processes.The specific composition and stratigraphic profiles mirror the mineralogical and chemical trends observed in weathered basalts on Hainan Island in south China.In this study,we investigated the laboratory reflectance spectra of a 53-m-long drilling core of a thick basaltic weathering profile collected from Hainan Island.We established a quantitative spectral model by combining the genetic algorithm and partial least squares regression(GA-PLSR)to predict the chemical properties(SiO2,Al2O3,Fe2O3)and index of laterization(IOL).The entire sample set was divided into a calibration set of 25 samples and a validation set of 12 samples.Specifically,the GA was used to select the spectral subsets for each composition,which were then input into the PLSR model to derive the chemical concentration.The coefficient of determination(R2)values on the validation set for SiO2,Al2O3,Fe2O3,and the IOL were greater than 0.9.In addition,the effects of various spectral preprocessing techniques on the model accuracy were evaluated.We found that the spectral derivative treatment boosted the prediction accuracy of the GA-PLSR model.The improvement achieved with the second derivative was more pronounced than when using the first derivative.The quantitative model developed in this work has the potential to estimate the contents of similar weathering basalt products,and thus infer the degree of alteration and provide insights into paleoclimatic conditions.Moreover,the informative bands selected by the GA can serve as a guideline for designing spectral channels for the next generation of spectrometers.
基金This project was funded by the National Natural Science Foundation of China(41972161)the 2021 American Association of Petroleum Geologists Foundation Grants-in-Aid Program and Science and Technology Cooperation Project of the CNPC-SWPU Innovation Alliance(2020CX050103).
文摘To quantify the pore characteristics of various macerals in Chang 7 lacustrine shales,macerals were effectively identified according to their optical and morphological characteristics,and the nanoscale pore structure of macerals was observed by scanning electron microscope.Meanwhile,the reflectances of different positions in the same pieces of vitrinite or solid bitumen with heterogeneous pores development were measured.The results showed that the average contents of sapropelinite,liptinite,vitrinite,inertinite and solid bitumen are 42.7%,8.7%,13.6%,13.8% and 21.2%,respectively,which suggests that the source of the organic matter of the Chang 7 shales is a mixed source input.The organic pores of Chang 7 shales are enriched,and the pore shapes are mostly round or elliptical.The pore size of organic pores has a wide distribution,mainly concentrate in the range of 100-400 nm,and the average plane porosity of organic pores is 10.13%.The size order of the organic pores in various macerals is:solid bitumen<bituminite<alginite<vitrinite<fusinite<liptinite.The abundance order of organic matter pores of each maceral is as follows:alginite>fusinite>bituminite>solid bitumen>vitrinite>liptinite.OM pores are mainly contributed by bituminite,solid bitumen and fusinite.The plane porosity of bituminite increases with maturity.In the process of thermal evolution,the plane porosity of fusinite is distributed in the two ranges of 20%-28% and 1%-7%.The former is mainly the primary pores of the fusinite itself,and the latter is the secondary pores formed in the thermal evolution.As for the organic pores of other macerals,no obvious thermal evolution law was found.Meanwhile,the surface imperfections of vitrinite or solid bitumen is enhanced by the enrichment of organic pores(an increase in pore size or pore number),which may result in the underestimation of their reflectances.
基金the National Key Research andDevelopment Program of China(No.2021YFA1101100)the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDA16020807)+3 种基金the Major Innovative Research Team of Suzhou,China(No.ZXT2019007)Suzhou Institute of Biomedical Engineering and Technology(SIBET)Jilin City Science and Technology Cooperation Project(No.E0550104)Science and Technology Innovation Talents in Universities of Henan Province and Doctor of Entrepreneurship and Innovation Program of Jiangsu Province in the year of 2020.
文摘The process of wound healing is routinely evaluated by histological evaluation in the clinic,which may cause scarring and secondary injury.Reflectance confocal microscopy(RCM)represents a noninvasive,real-time imaging technique that allows in vivo evaluation of the skin.Traditional RCM was wide-probe-based,which limited its application on uneven and covered skin.In this study,we report the development of a portable reflectance confocal microscope(PRCM)in which all components were assembled in a handheld shell.Although the size and weight of the PRCM were reduced based on the use of a microelectromechanical system,the resolution was kept at 0.91μm,and the field of view of the system was 343μm×532μm.When used in vivo,the PRCM was able to visualize cellular and nuclear morphology for both mouse and human skin.PRCM evaluations were then performed on wounds after topically applied mesenchymal stem cells(MSCs)or saline treatment.The PRCM allowed visualization of the formation of collagen bundles,re-epithelization from the wound edge to the wound bed,and hair follicle regeneration,which were consistent with histological evaluations.Therefore,we offer new insights into monitoring the effects of topically applied MSCs on the process of wound healing by using PRCM.This study illustrates that the newly developed PRCM represents a promising device for real-time,noninvasive monitoring of the dynamic process of wound healing,which demonstrates its potential to diagnose,monitor,or predict disease in clinical wound therapy.
文摘Rice yellow mottle is considered the most destructive disease threatening rice production in Africa. Early detection of this infection in rice is essential to limit its expansion and proliferation. However, there is no research devoted to the spectral detection of rice yellow mottle virus (RYMV) infection, especially in the asymptomatic or early stages. This work proposes the use of hyperspectral fluorescence and reflectance data at leaf level for the detection of this disease in asymptomatic stages. A greenhouse experiment was therefore conducted to collect hyperspectral fluorescence and reflectance data at different stages of infection. These data allowed to calculate nine vegetation indices: one from fluorescence spectra and eight from reflectance spectra. A t-test made it possible to identify, from the second day after infection, four relevant reflectance vegetation indices to discriminate healthy leaves from those infected: these are Photochemical Reflectance Index (PRI), Transformed Chlorophyll Absorption in Reflectance Index (TCARI), Structure Intensive Pigment Index (SIPI) and Simple Ratio Pigment Index (SRPI). The fluorescence index was less sensitive in detecting infection. The four significant vegetation indices for the detection of RYMV were then used to build and evaluate models for discriminating plants according to their health status by the supervised classification of support vector machine (SVM) at different stages of infection. The maximum overall accuracy is 92.5% six days after inoculation (6 DAI). The sixth day after inoculation would be the adequate day to detect RYMV. This plants discrimination was validated by the mean reflectance spectra and by the histograms showing the differences between the average reflectance vegetation indices values of the two types of plants. Our results demonstrate the feasibility of differentiating RYMV-infected samples. They suggest that support vector machine learning models could be developed to diagnose RYMV-infected plants based on vegetation indices derived from spectral profiles at early stages of disease development.
基金National Key Technologies R&D Program Foundation of China (Grant No. 2006BAK04A11)
文摘To develop near-infrared (NIR) reflectance spectroscopic methods for the quantitative analysis of cefoperazone sodium/ sulbactam sodium from different manufacturers for injection powder medicaments. Various powders of cefoperazone sodium/ sulbactam sodium were directly analyzed by non-destructive NIR reflectance spectroscopy using the spectrometer EQUINOX55. Two quantitative methods via integrating sphere (IS) and fiberoptic probe (FOP) models were explored from 6 batches of commercial samples and 42 batches of laboratory samples at a content ranging from 30% to 70% for cefoperazone and 60% to 20% for sulbactam. The root mean square errors of cross validation (RMSECV) and the root mean square errors of prediction (RMSEP) of IS were 1.79% and 2.85%, respectively, for cefoperazone sodium, and were 1.86% and 3.08%, respectively, for sulbactam sodium; and those of FOP were 2.93% and 2.92%, respectively, for cefoperazone sodium, and were 2.23% and 3.01%, respectively, for sulbactam sodium. Based on the ICH guidelines and Ref. 12, the quantitative models were then evaluated in terms of specificity, linearity, accuracy, precision, robustness and model transferability. The non-destructive quantitative NIR methods used in this study are applicable for rapid analysis of injectable powdered drugs from different manufacturers.
基金Supported by the National Natural Science Foundation of China(31160252)~~
文摘Monitoring rice growth by spectral remote sensing technology can provide scientific basis for the high yield and efficient production of rice. Field experiments with different nitrogen application amounts using Tianyouhuazhan rice as test sam- ples were set up to study the relationship between rice leaf area index (LAI) and canopy reflectance spectral. The results showed that: the LAI increased with the amount of applied nitrogen; the canopy reflectance spectral showed significant re- sponse characteristics to groups with different nitrogen application levels; the corre- lation coefficient of LAI and canopy spectral reflectance reached the maximum at 720 nm red edge region. The mathematical model was constructed to predict the LAI according to the canopy reflectance spectra of rice.
文摘The law of mathematical statistics, which the coal vitrinite reflectance index obeys, the existing vitrinite representing deviations, and the advantages of judging coalification and the shortage of judging coal type were analyzed. The advantages and disadvantages of various determination methods and the expression index and different methods of identifying vitrinite on the determination results were compared. The vitality of coal vitrinite reflectance depends on its full play the unique function of reflectance histogram and the systematic errors between different determination methods do not affect the application based on reflectance histogram are considered.
基金supported by the National High Technology Research and Development Program of China (Grant No. 2006AA10Z203) the National Natural Science Foundation of China (Grant No. 40571115).
文摘Large-scale farming of agriculture crops requires real-time detection of disease for field pest management. Hyperspectral remote sensing data generally have high spectral resolution, which could be very useful for detecting disease stress in green vegetation at the leaf and canopy levels. In this study, hyperspectral reflectances of rice in the laboratory and field were measured to characterize the spectral regions and wavebands, which were the most sensitive to rice brown spot infected by Bipolaris oryzae (Helminthosporium oryzae Breda. de Hann). Leaf reflectance increased at the ranges of 450 to 500 nm and 630 to 680 nm with the increasing percentage of infected leaf surface, and decreased at the ranges of 520 to 580 nm, 760 to 790 nm, 1550 to 1750 nm, and 2080 to 2350 nm with the increasing percentage of infected leaf surface respectively. The sensitivity analysis and derivative technique were used to select the sensitive wavebands for the detection of rice brown spot infected by B. oryzae. Ratios of rice leaf reflectance were evaluated as indicators of brown spot. R669/R746 (the reflectance at 669 nm divided by the reflectance at 746 nm, the following ratios may be deduced by analogy), R702/R718, R692/R530, R692/R732, R535/R746, R521/R718, and R569/R718 increased significantly as the incidence of rice brown spot increased regardless of whether it's at the leaf or canopy level. R702/R718, R692/R530, R692/R732 were the best three ratios for estimating the disease severity of rice brown spot at the leaf and canopy levels. This result not only confirms the capability of hyperspectral remote sensing data in characterizing crop disease for precision pest management in the real world, but also testifies that the ratios of crop reflectance is a useful method to estimate crop disease severity.
基金supported by the Rural Development Administration(PJ013821032020),Republic of Korea。
文摘A spectral reflectance sensor(SRS)fixed on the near-surface ground was developed to support the continuous monitoring of vegetation indices such as the normalized difference vegetation index(NDVI)and photochemical reflectance index(PRI).NDVI is useful for indicating crop growth/phenology,whereas PRI was developed for observing physiological conditions.Thus,the seasonal change patterns of NDVI and PRI are two valuable pieces of information in a crop-monitoring system.However,capturing the seasonal patterns is considered challenging because the vegetation index values estimated by the reflection from vegetation are often governed by meteorological conditions,such as solar irradiance and precipitation.Further,unlike growth/phenology,the physiological condition has diurnal changes as well as seasonal characteristics.This study proposed a novel filtering method for extracting the seasonal signals of SRS-based NDVI and PRI in paddy rice,barley,and garlic.First,the measurement accuracy of SRSs was compared with handheld spectrometers,and the R^(2)values between the two devices were 0.96 and 0.81 for NDVI and PRI,respectively.Second,the experimental study of threshold criteria with respect to meteorological variables(i.e.,insolation,cloudiness,sunshine duration,and precipitation)was conducted,and sunshine duration was the most useful one for excluding distorted values of the vegetation indices.After data processing based on sunshine duration,the R^(2)values between the measured vegetation indices and the extracted seasonal signals of vegetation indices increased by approximately 0.002–0.004(NDVI)and 0.065–0.298(PRI)on the three crops,and the seasonal signals of vegetation indices became noticeably improved.This method will contribute to an agricultural monitoring system by identifying the seasonal changes in crop growth and physiological conditions.
基金Project(11204304)supported by the National Natural Science Foundation of ChinaProject(2013CB632600)supported by the National Basic Research Program of ChinaProject(2011AA060702)supported by the National High-tech Research and Development Program of China
文摘In order to reduce greenhouse gas emission and urban heat island mitigation, pure and titanium(Ti)-doped Cr2O3 cool pigments were prepared via the thermal decomposition of CrOOH. The result reveals that the pure Cr2O3 pigment presents both a high near-infrared reflectance and excellent yellowish-green color. Meanwhile, titanium was doped to improve the NIR reflectance and strengthen the color. The color of the designed pigments was brighter, and most importantly, the NIR reflectance increased from 84.04% to 91.25% with increasing Ti content from 0 to 0.006% (mole fraction). However, excessive doping of Ti4+ for Cr3+ in Cr2O3 (x(Ti)≥0.008%) decreased the NIR reflectance. One possible reason is that the conductivity type of the Cr2?xTixO3+δ changed from p-type conduction to n-type conduction with increasing Ti content, accompanied by the change of the electrical resistivity and the NIR reflectance. The prepared yellowish-green Cr2O3 pigments have a great potential for extensive applications in construction and military.
基金Project supported by the National Natural Science Foundation of China (No. 40271078)the Basic Research Program of Science and Technology Department of China (No. 2003DEA2C010-13)
文摘To further develop the methods to remotely sense the biochemical content of plant canopies,we report the results of an experiment to estimate the concentrations of three biochemical variables of corn,i.e.,nitrogen(N),crude fat(EE) and crude fiber(CF) concentrations,by spectral reflectance and the first derivative reflectance at fresh leaf scale. The correlations between spectral reflectance and the first derivative transformation and three biochemical variables were analyzed,and a set of estimation models were established using curve-fitting analyses. Coefficient of determination(R2),root mean square error(RMSE) and relative error of prediction(REP) of estimation models were calculated for the model quality evaluations,and the possible opti-mum estimation models of three biochemical variables were proposed,with R2 being 0.891,0.698 and 0.480 for the estimation models of N,EE and CF concentrations,respectively. The results also indicate that using the first derivative reflectance was better than using raw spectral reflectance for all three biochemical variables estimation,and that the first derivative reflectances at 759 nm,1954 nm and 2370 nm were most suitable to develop the estimation models of N,EE and CF concentrations,respectively. In addition,the high correlation coefficients of the theoretical and the measured biochemical parameters were obtained,especially for nitrogen(r=0.948).
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 61176012 and 90921015)the National Basic Research Program of China (Grant Nos. 2010CB327601 and 2012CB932701)the National Science Foundation for Post-doctoral Scientists of China (Grant No. 20080440507)
文摘The solar spectrum covers a broad wavelength range, which requires that antireflection coating (ARC) is effective over a relatively wide wavelength range for more incident light coming into the cell. In this paper, we present two methods to measure the composite reflection of SiO2/ZnS double-layer ARC in the wavelength ranges of 300-870 nm (duaI- junction) and 300-1850 nm (triple-junction), under the solar spectrum AM0. In order to give sufficient consideration to the ARC coupled with the window layer and the dispersion effect of the refractive index of each layer, we use multidimensional matrix data for reliable simulation. A comparison between the results obtained from the weighted-average reflectance (WAR) method commonly used and that from the effective-average reflectance (EAR) method introduced here shows that the optimized ARC through minimizing the effective-average reflectance is convenient and available.
基金Supported by National Natural Science Foundation of China(81360623)~~
文摘[Objective] This study was conducted to establish a near-infrared diffuse reflectance spectroscopy of Guizhou Aspidistra plants. [Method] Twenty three batch- es of Guizhou Aspidistra plants including A. chishuiensis, A. spinula, A. Caespitosa, A. sichuanensis, A. ebianensis, A. retusa, A. guizhouensis and A. liboensis were subjected to drying, pulverization and sieving and then directly determined for near- infrared reflectance spectrums; and the plants in this genus were classified by clus- ter analysis and principal component analysis (PCA). [Result] The near-infrared re- flectance spectrums of the 23 batches of Guizhou Aspidistra plants showed very high similarity. The spectrums were processed by first derivative method, and the spectral range of 4 000-7 500 cm-1 was selected as the analytical range. Cluster analysis and PCA were employed to mass spectrum variables of plants in Aspidis- tra, fewer new variables became the linear combination of primary variables, and small differences between different varieties were enlarged, thereby facilitating intu- itive classification of plants in this genus. [Conclusion] Near-infrared diffuse re- flectance spectroscopy is nondestructive and rapid for determination of solid sam- pies, and provides a new method for the classification of Guizhou Aspidistra plants combined by information processing techniques.
基金Supported by National Wheat Industry System(CARS-E-2-36)Henan Wheat Industry System(S2010-10-02)National Science and Technology Support Plan(2011BAD35B-03)~~
文摘[Objective] The aim was to build an evaluation method rapidly identifying wheat drought tolerance with near infrared diffuse reflectance spectroscopy. [Method] In the research, 36 wheat varieties in 2007-2009 were chosen and drought-tolerance degrees of wheat were graded and identified according to Winter-wheat Drought Tol- erance Evaluation Technical Standards (GB/T 21127-2007), and harvest wheat grains underwent spectrum collection, with a full-spectrum analyzer, to establish a database. [Result] Based on qualitative analysis and full-spectrum correlation research, the coef- ficient of determination (RSQ) and cross-validation coefficient of determination (1-VR) were concluded at 0.697 5 and 0.600 2, showing near-infrared diffuse reflectance spectroscopy is of significant differences among wheat varieties and of significant or extremely significant correlation with drought-tolerance indices. [Conclusion] The re- search indicates that to evaluate drought-tolerance of wheat with near-infrared diffuse reflectance spectroscopy is a rapid and feasible way, which is simple, convenient without damages on grains, and of practical values for construction wheat drought-tol- erance evaluation index system and identification of breeding materials.
基金Project supported by the National Natural Science Foundation of China (No. 40571130)the Natural Science Foundation of Shanghai, China (No. 07ZR14032)
文摘Concentrations of Iron (Fe), As, and Cu in soil samples from the fields near the Baoshan Mine in Hunan Province, China, were analyzed and soil spectral reflectance was measured with an ASD FieldSpec FR spectroradiometer (Analytical Spectral Devices, Inc., USA) under laboratory condition. Partial least square regression (PLSR) models were constructed for predicting soil metal concentrations. The data pre-processing methods, first and second derivatives (FD and SD), baseline correction (BC), standard normal variate (SNV), multiplicative scatter correction (MSC), and continuum removal (CR), were used for the spectral reflectance data pretreatments. Then, the prediction results were evaluated by relative root mean square error (RRMSE) and coefficients of determination (R 2 ). According to the criteria of minimal RRMSE and maximal R 2 , the PLSR models with the FD pretreatment (RRMSE = 0.24, R 2 = 0.61), SNV pretreatment (RRMSE = 0.08, R 2 = 0.78), and BC-pretreatment (RRMSE = 0.20, R 2 = 0.41) were considered as the final models for predicting As, Fe, and Cu, respectively. Wavebands at around 460, 1 400, 1 900, and 2 200 nm were selected as important spectral variables to construct final models. In conclusion, concentrations of heavy metals in contaminated soils could be indirectly assessed by soil spectra according to the correlation between the spectrally featureless components and Fe; therefore, spectral reflectance would be an alternative tool for monitoring soil heavy metals contamination.
文摘In the present study,we synthesized CeO2 catalysts doped with various transition metals(M=Co,Fe,or Cu)using a supercritical water hydrothermal route,which led to the incorporation of the metal ions in the CeO2 lattice,forming solid solutions.The catalysts were then used for the selective catalytic reduction(SCR)of NO by CO.The Cu‐doped catalyst exhibited the highest SCR activity;it had a T50(i.e.,50%NO conversion)of only 83°C and a T90(i.e.,90%NO conversion)of 126°C.Such an activity was also higher than in many state‐of‐the‐art catalysts.In situ diffuse reflectance Fourier transform infrared spectroscopy suggested that the MOx‐CeO2 catalysts(M=Co and Fe)mainly followed an Eley‐Rideal reaction mechanism for CO‐SCR.In contrast,a Langmuir‐Hinshelwood SCR reaction mechanism occurred in CuO‐CeO2 owing to the presence of Cu+species,which ensured effective adsorption of CO.This explains why CuO‐CeO2 exhibited the highest activity with regard to the SCR of NO by CO.
基金Project supported by the National Key Technology Research and Development Program of China (Nos.40801167 and 2006BAD05B05)the Knowledge Innovation Program of the Chinese Academy of Sciences (No.KZCX3-SW-356)the Foundation of the Chinese Academy of Sciences for the Field Stations of Resources and Environment
文摘Several studies have demonstrated that soil reflectance decreases with increasing soil moisture content, or increases when the soil moisture reaches a certain content; however, there are few analyses on the quantitative relationship between soil reflectance and its moisture, especially in the case of black soils in northeast China. A new moisture adjusting method was developed to obtain soil reflectance with a smaller moisture interval to describe the quantitative relationship between soil reflectance and moisture. For the soil samples with moisture contents ranging from air-dry to saturated, the changes in soil reflectance with soil moisture can be depicted using a cubic equation. Both moisture threshold (MT) and moisture inflexion (MI) of soil reflectance can also be determined by the equation. When the moisture range was smaller than MT, soil reflectance can be simulated with a linear model. However, for samples with different soil organic matter (OM), the parameters of the linear model varied regularly with the OM content. Based on their relationship, the soil moisture can be estimated from soil reflectance in the black soil region.
文摘The resource of the gas from coal and coal measures deep in Songliao Basin has been drawing more and more attention to . It is necessary to find out the evolution regularity of the geothermal field of the basin in addition to a series of geological studies in order to predict its resources because the ancient geothermal field of the basin is one of the main factors controlling the generation , evolution and disappearance of oil and gas . In the recent twenty years , it is generally believed that vitrinite reflectance is the best quantitative marker for the ancient geothermal field . In the present paper , a systematic study of the vitrinite reflectance value of Songliao Basin and its influence factors is made by multiple statistical analysis so as to reconstruct the evolutional process of the Moho and the corresponding geothermal field . Then , an overall prediction is made of the vitrinite reflectance and the distribution of J3-K1 fault basin group at the bottom of Songliao Basin , which provides the evidence for the further prediction of the gas potentiality from coal and coal measures deep in the basin .
文摘Spaceborne synthetic remote sensing of atmospheric aerosol optical depth and vegetation reflectance is very significant, but it remains to be a question unresolved yet. Based on the property of vegetation reflectance spectra from near ultra violet to near infrared and the sensitivity of outgoing radiance to vegetation reflectance and atmospheric aerosol optical depth, a new method for spaceborne synthetic remote sensing of the reflectance and the depth is proposed, and an iteration correlation inversion algorithm is developed in this paper. According to numerical experiment, effects of radiance error, error in aerosol imaginary index and vegetation medium inhomogeneity on retrieved result are analyzed. Inversion results show that the effect of error in aerosol imaginary index is very important. As the error of aerosol imaginary index is within 0.01, standard errors of aerosol optical depth and vegetation reflectance solutions for 14 spectral channels from 410 nm to 900 nm are respectively less than 0.063 and 0.023. And as the radiance error is within 2%, the standard errors are less than 0.023 and 0.0056.