期刊文献+
共找到5,708篇文章
< 1 2 250 >
每页显示 20 50 100
Olfactory ensheathing cells promote nerve regeneration and functional recovery after facial nerve defects 被引量:4
1
作者 Jian Gu He Xu +6 位作者 Ya-Ping Xu Huan-Hai Liu Jun-Tian Lang Xiao-Ping Chen Wei-Hua Xu Yue Deng Jing-Ping Fan 《Neural Regeneration Research》 SCIE CAS CSCD 2019年第1期124-131,共8页
Olfactory ensheathing cells from the olfactory bulb and olfactory mucosa have been tbund to increase axonal sprouting and pathfinding and promote the recovery of vibrissae motor performance in facial nerve transection... Olfactory ensheathing cells from the olfactory bulb and olfactory mucosa have been tbund to increase axonal sprouting and pathfinding and promote the recovery of vibrissae motor performance in facial nerve transection injured rats. However, it is not yet clear whether olfactory ensheathing cells promote the reparation of facial nerve defects in rats. In this study, a collagen sponge and silicone tube neural conduit was implanted into the 6-mm defect of the buccal branch of the facial nerve in adult rats. Olfactory ensheathing cells isolated from the olfactory bulb of newborn Sprague-Dawley rats were injected into the neural conduits connecting the ends of tile broken nerves, the morphology and function of the regenerated nerves were compared between the rats implanted with olfactory ensheathing cells with the rats injected with saline. Facial paralysis was assessed. Nerve electrography was used to measure facial nerve-induced action potentials. Visual inspection, anatomical microscopy and hematoxylin-eosin staining were used to assess the histomorphology around the trans planted neural conduit and the morphology of the regenerated nerve. Using fluorogold retrograde tracing, toluidine blue staining and lead uranyl acetate staining, we also measured the number of neurons in the anterior exterior lateral f:acial nerve motor nucleus, the number of myelinated nerve fibers, and nerve fiber diameter and myelin sheath thickness, respectively. After surgery, olfactory ensheathing cells de- creased facial paralysis and the latency of the facial nerve-induced action potentials. There were no differences in the general morphology of the regenerating nerves between the rats implanted with olfactory ensheathing cells and the rats injected with saline. Between-group results showed that olfactory ensheathing cell treatment increased the number of regenerated neurons, improved nerve fiber morphology, and increased the number of myelinated nerve fibers, nerve fiber diameter, and myelin sheath thickness. In conclusion, implantation of olfactory ensheathing cells can promote regeneration and functional recovery after facial nerve damage in rats. 展开更多
关键词 nerve regeneration facial nerve defects olfactory ensheathing cells nerve fibers MYELINATION NEURONS nerve muscle action potentials facial nerve motor nucleus neural regeneration
下载PDF
Electroacupuncture promotes peripheral nerve regeneration after facial nerve crush injury and upregulates the expression of glial cell-derived neurotrophic factor 被引量:26
2
作者 Jing Fei Lin Gao +2 位作者 Huan-Huan Li Qiong-Lan Yuan Lei-Ji Li 《Neural Regeneration Research》 SCIE CAS CSCD 2019年第4期673-682,共10页
The efficacy of electroacupuncture in the treatment of peripheral facial paralysis is known, but the specific mechanism has not been clarified. Glial cell-derived neurotrophic factor(GDNF) has been shown to protect ne... The efficacy of electroacupuncture in the treatment of peripheral facial paralysis is known, but the specific mechanism has not been clarified. Glial cell-derived neurotrophic factor(GDNF) has been shown to protect neurons by binding to N-cadherin. Our previous results have shown that electroacupuncture could increase the expression of N-cadherin mRNA in facial neurons and promote facial nerve regeneration. In this study, the potential mechanisms by which electroacupuncture promotes nerve regeneration were elucidated through assessing the effects of electroacupuncture on GDNF and N-cadherin expression in facial motoneurons of rabbits with peripheral facial nerve crush injury. New Zealand rabbits were randomly divided into a normal group(normal control, n = 21), injury group(n = 45) and electroacupuncture group(n = 45). Model rabbits underwent facial nerve crush injury only. Rabbits in the electroacupuncture group received facial nerve injury, and then underwent electroacupuncture at Yifeng(TE17), Jiache(ST6), Sibai(ST2), Dicang(ST4), Yangbai(GB14), Quanliao(SI18), and Hegu(LI4; only acupuncture, no electrical stimulation). The results showed that in behavioral assessments, the total scores of blink reflex, vibrissae movement, and position of apex nasi, were markedly lower in the EA group than those in the injury group. Hematoxylin-eosin staining of the right buccinator muscle of each group showed that the cross-sectional area of buccinator was larger in the electroacupuncture group than in the injury group on days 1, 14 and 21 post-surgery. Toluidine blue staining of the right facial nerve tissue of each group revealed that on day 14 post-surgery, there was less axonal demyelination and fewer inflammatory cells in the electroacupuncture group compared with the injury group. Quantitative real time-polymerase chain reaction showed that compared with the injury group, N-cadherin mRNA levels on days 4, 7, 14 and 21 and GDNF mRNA levels on days 4, 7 and 14 were significantly higher in the electroacupuncture group. Western blot assay displayed that compared with the injury group, the expression of GDNF protein levels on days 7, 14 and 21 were significantly upregulated in the electroacupuncture group. The histology with hematoxylin-eosin staining and Nissl staining of brainstem tissues containing facial neurons in the middle and lower part of the pons exhibited that on day 7 post-surgery, there were significantly fewer apoptotic neurons in the electroacupuncture group than in the injury group. By day 21, there was no significantly difference in the number of neurons between the electroacupuncture and normal groups. Taken together, these results have confirmed that electroacupuncture promotes regeneration of peripheral facial nerve injury in rabbits, inhibits neuronal apoptosis, and reduces peripheral inflammatory response, resulting in the recovery of facial muscle function. This is achieved by up-regulating the expression of GDNF and N-cadherin in central facial neurons. 展开更多
关键词 nerve regeneration facial paralysis ELECTROACUPUNCTURE glial cell-derived neurotrophic factor N-cadherin crush injury neuronal apoptosis facial neuron nerve DEMYELINATION neural regeneration
下载PDF
Immunobiology of Facial Nerve Repair and Regeneration 被引量:2
3
作者 QUAN Shi-ming, GAO Zhi-qiang Department of Otorhinolaryngology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing People’s Republic, China 《Journal of Otology》 2006年第2期107-115,共9页
Immunobiological study is a key to revealing the important basis of facial nerve repair and regeneration for both research and development of clinic treatments. The microenvironmental changes around an injuried facial... Immunobiological study is a key to revealing the important basis of facial nerve repair and regeneration for both research and development of clinic treatments. The microenvironmental changes around an injuried facial motoneuron, i.e., the aggregation and expression of various types of immune cells and molecules in a dynamic equilibrium, impenetrate from the start to the end of the repair of an injured facial nerve. The concept of 'immune microenvironment for facial nerve repair and regeneration', mainly concerns with the dynamic exchange between expression and regulation networks and a variaty of immune cells and immune molecules in the process of facial nerve repair and regeneration for the maintenance of a immune microenvironment favorable for nerve repair. Investigation on microglial activation and recruitment, T cell behavior, cytokine networks, and immunological cellular and molecular signaling pathways in facial nerve repair and regeneration are the current hot spots in the research on immunobiology of facial nerve injury. The current paper provides a comprehensive review of the above mentioned issues. Research of these issues will eventually make immunological interventions practicable treatments for facial nerve injury in the clinic. 展开更多
关键词 MICROGLIA T cell cytokine network microenviroment signaling pathway repair and regeneration facial nerve
下载PDF
Role of transforming growth factor-βin peripheral nerve regeneration 被引量:3
4
作者 Zihan Ding Maorong Jiang +4 位作者 Jiaxi Qian Dandan Gu Huiyuan Bai Min Cai Dengbing Yao 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第2期380-386,共7页
Injuries caused by trauma and neurodegenerative diseases can damage the peripheral nervous system and cause functional deficits.Unlike in the central nervous system,damaged axons in peripheral nerves can be induced to... Injuries caused by trauma and neurodegenerative diseases can damage the peripheral nervous system and cause functional deficits.Unlike in the central nervous system,damaged axons in peripheral nerves can be induced to regenerate in response to intrinsic cues after reprogramming or in a growth-promoting microenvironment created by Schwann cells.However,axon regeneration and repair do not automatically result in the restoration of function,which is the ultimate therapeutic goal but also a major clinical challenge.Transforming growth factor(TGF)is a multifunctional cytokine that regulates various biological processes including tissue repair,embryo development,and cell growth and differentiation.There is accumulating evidence that TGF-βfamily proteins participate in peripheral nerve repair through various factors and signaling pathways by regulating the growth and transformation of Schwann cells;recruiting specific immune cells;controlling the permeability of the blood-nerve barrier,thereby stimulating axon growth;and inhibiting remyelination of regenerated axons.TGF-βhas been applied to the treatment of peripheral nerve injury in animal models.In this context,we review the functions of TGF-βin peripheral nerve regeneration and potential clinical applications. 展开更多
关键词 MYELINATION nerve repair and regeneration NEURITE NEUROINFLAMMATION peripheral nerve injury Schwann cell transforming growth factor-β Wallerian degeneration
下载PDF
Chemokine platelet factor 4 accelerates peripheral nerve regeneration by regulating Schwann cell activation and axon elongation 被引量:1
5
作者 Miao Gu Xiao Cheng +3 位作者 Di Zhang Weiyan Wu Yi Cao Jianghong He 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第1期190-195,共6页
Schwann cells in peripheral nerves react to traumatic nerve injury by attempting to grow and regenerate.Howeve r,it is unclear what factors play a role in this process.In this study,we searched a GEO database and foun... Schwann cells in peripheral nerves react to traumatic nerve injury by attempting to grow and regenerate.Howeve r,it is unclear what factors play a role in this process.In this study,we searched a GEO database and found that expression of platelet factor 4 was markedly up-regulated after sciatic nerve injury.Platelet factor is an important molecule in cell apoptosis,diffe rentiation,survival,and proliferation.Further,polymerase chain reaction and immunohistochemical staining confirmed the change in platelet factor 4 in the sciatic nerve at different time points after injury.Enzyme-linked immunosorbent assay confirmed that platelet factor 4 was secreted by Schwann cells.We also found that silencing platelet factor 4 decreased the proliferation and migration of primary cultured Schwann cells,while exogenously applied platelet factor 4 stimulated Schwann cell prolife ration and migration and neuronal axon growth.Furthermore,knocking out platelet factor 4 inhibited the prolife ration of Schwann cells in injured rat sciatic nerve.These findings suggest that Schwann cell-secreted platelet factor 4 may facilitate peripheral nerve repair and regeneration by regulating Schwann cell activation and axon growth.Thus,platelet factor 4 may be a potential therapeutic target for traumatic peripheral nerve injury. 展开更多
关键词 axon elongation bioinformatic analysis cell migration cell proliferation dorsal root ganglia peripheral nerve regeneration peripheral nerve trauma platelet factor 4 rat sciatic nerve Schwann cells
下载PDF
Runx2 regulates peripheral nerve regeneration to promote Schwann cell migration and re-myelination 被引量:1
6
作者 Rong Hu Xinpeng Dun +1 位作者 Lolita Singh Matthew C.Banton 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第7期1575-1583,共9页
Runx2 is a major regulator of osteoblast differentiation and function;however,the role of Runx2 in peripheral nerve repair is unclea r.Here,we analyzed Runx2expression following injury and found that it was specifical... Runx2 is a major regulator of osteoblast differentiation and function;however,the role of Runx2 in peripheral nerve repair is unclea r.Here,we analyzed Runx2expression following injury and found that it was specifically up-regulated in Schwann cells.Furthermore,using Schwann cell-specific Runx2 knocko ut mice,we studied peripheral nerve development and regeneration and found that multiple steps in the regeneration process following sciatic nerve injury were Runx2-dependent.Changes observed in Runx2 knoc kout mice include increased prolife ration of Schwann cells,impaired Schwann cell migration and axonal regrowth,reduced re-myelination of axo ns,and a block in macrophage clearance in the late stage of regeneration.Taken together,our findings indicate that Runx2 is a key regulator of Schwann cell plasticity,and therefore peripheral nerve repair.Thus,our study shows that Runx2 plays a major role in Schwann cell migration,re-myelination,and peripheral nerve functional recovery following injury. 展开更多
关键词 macrophage clearance MIGRATION peripheral nerve injury regeneration re-myelination RUNX2 Schwann cells
下载PDF
A functional tacrolimus-releasing nerve wrap for enhancing nerve regeneration following surgical nerve repair
7
作者 Simeon C.Daeschler Katelyn J.W.So +7 位作者 Konstantin Feinberg Marina Manoraj Jenny Cheung Jennifer Zhang Kaveh Mirmoeini JPaul Santerre Tessa Gordon Gregory HBorschel 《Neural Regeneration Research》 SCIE CAS 2025年第1期291-304,共14页
Axonal regeneration following surgical nerve repair is slow and often incomplete,resulting in poor functional recovery which sometimes contributes to lifelong disability.Currently,there are no FDA-approved therapies a... Axonal regeneration following surgical nerve repair is slow and often incomplete,resulting in poor functional recovery which sometimes contributes to lifelong disability.Currently,there are no FDA-approved therapies available to promote nerve regeneration.Tacrolimus accelerates axonal regeneration,but systemic side effects presently outweigh its potential benefits for peripheral nerve surgery.The authors describe herein a biodegradable polyurethane-based drug delivery system for the sustained local release of tacrolimus at the nerve repair site,with suitable properties for scalable production and clinical application,aiming to promote nerve regeneration and functional recovery with minimal systemic drug exposure.Tacrolimus is encapsulated into co-axially electrospun polycarbonate-urethane nanofibers to generate an implantable nerve wrap that releases therapeutic doses of bioactive tacrolimus over 31 days.Size and drug loading are adjustable for applications in small and large caliber nerves,and the wrap degrades within 120 days into biocompatible byproducts.Tacrolimus released from the nerve wrap promotes axon elongation in vitro and accelerates nerve regeneration and functional recovery in preclinical nerve repair models while off-target systemic drug exposure is reduced by 80%compared with systemic delivery.Given its surgical suitability and preclinical efficacy and safety,this system may provide a readily translatable approach to support axonal regeneration and recovery in patients undergoing nerve surgery. 展开更多
关键词 BIODEGRADABLE local drug delivery nerve injury nerve regeneration nerve wrap TACROLIMUS
下载PDF
A novel flexible nerve guidance conduit promotes nerve regeneration while providing excellent mechanical properties
8
作者 Tong Li Quhan Cheng +11 位作者 Jingai Zhang Boxin Liu Yu Shi Haoxue Wang Lijie Huang Su Zhang Ruixin Zhang Song Wang Guangxu Lu Peifu Tang Zhongyang Liu Kai Wang 《Neural Regeneration Research》 SCIE CAS 2025年第7期2084-2094,共11页
Autografting is the gold standard for surgical repair of nerve defects>5 mm in length;however,autografting is associated with potential complications at the nerve donor site.As an alternative,nerve guidance conduit... Autografting is the gold standard for surgical repair of nerve defects>5 mm in length;however,autografting is associated with potential complications at the nerve donor site.As an alternative,nerve guidance conduits may be used.The ideal conduit should be flexible,resistant to kinks and lumen collapse,and provide physical cues to guide nerve regeneration.We designed a novel flexible conduit using electrospinning technology to create fibers on the innermost surface of the nerve guidance conduit and employed melt spinning to align them.Subsequently,we prepared disordered electrospun fibers outside the aligned fibers and helical melt-spun fibers on the outer wall of the electrospun fiber lumen.The presence of aligned fibers on the inner surface can promote the extension of nerve cells along the fibers.The helical melt-spun fibers on the outer surface can enhance resistance to kinking and compression and provide stability.Our novel conduit promoted nerve regeneration and functional recovery in a rat sciatic nerve defect model,suggesting that it has potential for clinical use in human nerve injuries. 展开更多
关键词 aligned fibers anti-kinking helical fibers nerve guidance conduit nerve regeneration peripheral nerve injury topological guidance
下载PDF
FK506 contributes to peripheral nerve regeneration by inhibiting neuroinflammatory responses and promoting neuron survival
9
作者 Yuhui Kou Zongxue Jin +3 位作者 Yusong Yuan Bo Ma Wenyong Xie Na Han 《Neural Regeneration Research》 SCIE CAS 2025年第7期2108-2115,共8页
FK506(Tacrolimus)is a systemic immunosuppressant approved by the U.S.Food and Drug Administration.FK506 has been shown to promote peripheral nerve regeneration,however,its precise mechanism of action and its pathways ... FK506(Tacrolimus)is a systemic immunosuppressant approved by the U.S.Food and Drug Administration.FK506 has been shown to promote peripheral nerve regeneration,however,its precise mechanism of action and its pathways remain unclear.In this study,we established a rat model of sciatic nerve injury and found that FK506 improved the morphology of the injured sciatic nerve,increased the numbers of motor and sensory neurons,reduced inflammatory responses,markedly improved the conduction function of the injured nerve,and promoted motor function recovery.These findings suggest that FK506 promotes peripheral nerve structure recovery and functional regeneration by reducing the intensity of inflammation after neuronal injury and increasing the number of surviving neurons. 展开更多
关键词 FK506 inflammation motor neurons nerve regeneration NEURON peripheral nerve injury sensory neurons
下载PDF
Blockade of Rho-associated kinase prevents inhibition of axon regeneration of peripheral nerves induced by anti-ganglioside antibodies
10
作者 Andrés Berardo Cristian R.Bacaglio +3 位作者 Bárbara B.Báez Rubén Sambuelli Kazim A.Sheikh Pablo H.H.Lopez 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第4期895-899,共5页
Anti-ganglioside antibodies are associated with delayed/poor clinical recovery in Guillain-Barrèsyndrome,mostly related to halted axon regeneration.Cross-linking of cell surface gangliosides by anti-ganglioside a... Anti-ganglioside antibodies are associated with delayed/poor clinical recovery in Guillain-Barrèsyndrome,mostly related to halted axon regeneration.Cross-linking of cell surface gangliosides by anti-ganglioside antibodies triggers inhibition of nerve repair in in vitro and in vivo paradigms of axon regeneration.These effects involve the activation of the small GTPase Rho A/ROCK signaling pathways,which negatively modulate growth cone cytoskeleton,similarly to well stablished inhibitors of axon regeneration described so far.The aim of this work was to perform a proof of concept study to demonstrate the effectiveness of Y-27632,a selective pharmacological inhibitor of ROCK,in a mouse model of axon regeneration of peripheral nerves,where the passive immunization with a monoclonal antibody targeting gangliosides GD1a and GT1b was previously reported to exert a potent inhibitory effect on regeneration of both myelinated and unmyelinated fibers.Our results demonstrate a differential sensitivity of myelinated and unmyelinated axons to the pro-regenerative effect of Y-27632.Treatment with a total dosage of 9 mg/kg of Y-27632 resulted in a complete prevention of anti-GD1a/GT1b monoclonal antibody-mediated inhibition of axon regeneration of unmyelinated fibers to skin and the functional recovery of mechanical cutaneous sensitivity.In contrast,the same dose showed toxic effects on the regeneration of myelinated fibers.Interestingly,scale down of the dosage of Y-27632 to 5 mg/kg resulted in a significant although not complete recovery of regenerated myelinated axons exposed to anti-GD1a/GT1b monoclonal antibody in the absence of toxicity in animals exposed to only Y-27632.Overall,these findings confirm the in vivo participation of Rho A/ROCK signaling pathways in the molecular mechanisms associated with the inhibition of axon regeneration induced by anti-GD1a/GT1b monoclonal antibody.Our findings open the possibility of therapeutic pharmacological intervention targeting Rho A/Rock pathway in immune neuropathies associated with the presence of anti-ganglioside antibodies and delayed or incomplete clinical recovery after injury in the peripheral nervous system. 展开更多
关键词 anti-ganglioside antibodies anti-glycan antibodies axon regeneration GANGLIOSIDE Guillain-Barrésyndrome nerve repair ROCK Y-27632
下载PDF
Enhanced axonal regeneration and functional recovery of the injured sciatic nerve in a rat model by lithium-loaded electrospun nanofibrous scaffolds
11
作者 Banafsheh Dolatyar Bahman Zeynali +2 位作者 Iman Shabani Azita Parvaneh Tafreshi Reza Karimi-Soflou 《Bio-Design and Manufacturing》 SCIE EI CAS CSCD 2024年第5期701-720,共20页
Increasing evidence indicates that engineered nerve grafts have great potential for the regeneration of peripheral nerve injuries(PNIs).While most studies have focused only on the topographical features of the grafts,... Increasing evidence indicates that engineered nerve grafts have great potential for the regeneration of peripheral nerve injuries(PNIs).While most studies have focused only on the topographical features of the grafts,we have considered both the biophysical and biochemical manipulations in our applied nanoscaffold.To achieve this,we fabricated an electrospun nanofibrous scaffold(ENS)containing polylactide nanofibers loaded with lithium(Li)ions,a Wnt/β-catenin signaling activator.In addition,we seeded human adipose-derived mesenchymal stem cells(hADMSCs)onto this engineered scaffold to examine if their differentiation toward Schwann-like cells was induced.We further examined the efficacy of the scaffolds for nerve regeneration in vivo via grafting in a PNI rat model.Our results showed that Li-loaded ENSs gradually released Li within 11 d,at concentrations ranging from 0.02 to(3.64±0.10)mmol/L,and upregulated the expression of Wnt/β-catenin target genes(cyclinD1 and c-Myc)as well as those of Schwann cell markers(growth-associated protein 43(GAP43),S100 calcium binding protein B(S100B),glial fibrillary acidic protein(GFAP),and SRY-box transcription factor 10(SOX10))in differentiated hADMSCs.In the PNI rat model,implantation of Li-loaded ENSs with/without cells improved behavioral features such as sensory and motor functions as well as the electrophysiological characteristics of the injured nerve.This improved function was further validated by histological analysis of sciatic nerves grafted with Li-loaded ENSs,which showed no fibrous connective tissue but enhanced organized myelinated axons.The potential of Li-loaded ENSs in promoting Schwann cell differentiation of hADMSCs and axonal regeneration of injured sciatic nerves suggests their potential for application in peripheral nerve tissue engineering. 展开更多
关键词 Stem cell Schwann cell differentiation Electrospun nanofibrous scaffold Lithium ion nerve regeneration
下载PDF
A hyaluronic acid granular hydrogel nerve guidance conduit promotes regeneration and functional recovery of injured sciatic nerves in rats 被引量:4
12
作者 Jie Yang Chia-Chen Hsu +3 位作者 Ting-Ting Cao Hua Ye Jing Chen Yun-Qing Li 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第3期657-663,共7页
A hyaluronic acid granular hydrogel can promote neuronal and astrocyte colony formation and axonal extension in vitro,suggesting that the hydrogel can simulate an extracellular matrix structure to promote neural regen... A hyaluronic acid granular hydrogel can promote neuronal and astrocyte colony formation and axonal extension in vitro,suggesting that the hydrogel can simulate an extracellular matrix structure to promote neural regeneration.However,in vivo experiments have not been conducted.In this study,we transplanted a hyaluronic acid granular hydrogel nerve guidance conduit to repair a 10-mm long sciatic nerve gap.The Basso,Beattie,and Bresnahan locomotor rating scale,sciatic nerve compound muscle action potential recording,Fluoro-Gold retrograde tracing,growth related protein 43/S100 immunofluorescence staining,transmission electron microscopy,gastrocnemius muscle dry/wet weight ratio,and Masson’s trichrome staining results showed that the nerve guidance conduit exhibited similar regeneration of sciatic nerve axons and myelin sheath,and recovery of the electrophysiological function and motor function as autologous nerve transplantation.The conduit results were superior to those of a bulk hydrogel or silicone tube transplant.These findings suggest that tissue-engineered nerve conduits containing hyaluronic acid granular hydrogels effectively promote the morphological and functional recovery of the injured sciatic nerve.The nerve conduits have the potential as a material for repairing peripheral nerve defects. 展开更多
关键词 functional recovery granular hydrogel hyaluronic acid myelin sheath nerve conduit nerve regeneration peripheral nerve regeneration sciatic nerve injury tissue engineering transection injury
下载PDF
Mechanism by which Rab5 promotes regeneration and functional recovery of zebrafish Mauthner axons
13
作者 Jiantao Cui Yueru Shen +2 位作者 Zheng Song Dinggang Fan Bing Hu 《Neural Regeneration Research》 SCIE CAS 2025年第6期1816-1824,共9页
Rab5 is a GTPase protein that is involved in intracellular membrane trafficking. It functions by binding to various effector proteins and regulating cellular responses, including the formation of transport vesicles an... Rab5 is a GTPase protein that is involved in intracellular membrane trafficking. It functions by binding to various effector proteins and regulating cellular responses, including the formation of transport vesicles and their fusion with the cellular membrane. Rab5 has been reported to play an important role in the development of the zebrafish embryo;however, its role in axonal regeneration in the central nervous system remains unclear. In this study, we established a zebrafish Mauthner cell model of axonal injury using single-cell electroporation and two-photon axotomy techniques. We found that overexpression of Rab5 in single Mauthner cells promoted marked axonal regeneration and increased the number of intra-axonal transport vesicles. In contrast, treatment of zebrafish larvae with the Rab kinase inhibitor CID-1067700markedly inhibited axonal regeneration in Mauthner cells. We also found that Rab5 activated phosphatidylinositol 3-kinase(PI3K) during axonal repair of Mauthner cells and promoted the recovery of zebrafish locomotor function. Additionally, rapamycin, an inhibitor of the mechanistic target of rapamycin downstream of PI3K, markedly hindered axonal regeneration. These findings suggest that Rab5 promotes the axonal regeneration of injured zebrafish Mauthner cells by activating the PI3K signaling pathway. 展开更多
关键词 axonal regeneration Mauthner cell nerve regeneration Rab5 ZEBRAFISH
下载PDF
Hallmarks of peripheral nerve function in bone regeneration 被引量:5
14
作者 Ranyang Tao Bobin Mi +6 位作者 Yiqiang Hu Sien Lin Yuan Xiong Xuan Lu Adriana C.Panayi Gang Li Guohui Liu 《Bone Research》 SCIE CAS CSCD 2023年第1期47-64,共18页
Skeletal tissue is highly innervated.Although different types of nerves have been recently identified in the bone,the crosstalk between bone and nerves remains unclear.In this review,we outline the role of the periphe... Skeletal tissue is highly innervated.Although different types of nerves have been recently identified in the bone,the crosstalk between bone and nerves remains unclear.In this review,we outline the role of the peripheral nervous system(PNS)in bone regeneration following injury.We first introduce the conserved role of nerves in tissue regeneration in species ranging from amphibians to mammals.We then present the distribution of the PNS in the skeletal system under physiological conditions,fractures,or regeneration.Furthermore,we summarize the ways in which the PNS communicates with bone-lineage cells,the vasculature,and immune cells in the bone microenvironment.Based on this comprehensive and timely review,we conclude that the PNS regulates bone regeneration through neuropeptides or neurotransmitters and cells in the peripheral nerves.An in-depth understanding of the roles of peripheral nerves in bone regeneration will inform the development of new strategies based on bone-nerve crosstalk in promoting bone repair and regeneration. 展开更多
关键词 nerveS regeneration FUNCTION
下载PDF
Platelet-rich plasma promotes peripheral nerve regeneration after sciatic nerve injury 被引量:3
15
作者 Su-Long Wang Xi-Lin Liu +1 位作者 Zhi-Chen Kang Yue-Shu Wang 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第2期375-381,共7页
The effect of platelet-rich plasma on nerve regeneration remains controversial.In this study,we established a rabbit model of sciatic nerve small-gap defects with preserved epineurium and then filled the gaps with pla... The effect of platelet-rich plasma on nerve regeneration remains controversial.In this study,we established a rabbit model of sciatic nerve small-gap defects with preserved epineurium and then filled the gaps with platelet-rich plasma.Twenty-eight rabbits were divided into the following groups(7 rabbits/group):model,low-concentrati on PRP(2.5-3.5-fold concentration of whole blood platelets),medium-concentration PRP(4.5-6.5-fold concentration of whole blood platelets),and high-concentration PRP(7.5-8.5-fold concentration of whole blood platelets).Electrophysiological and histomorphometrical assessments and proteomics analysis we re used to evaluate regeneration of the sciatic nerve.Our results showed that platelet-rich plasma containing 4.5-6.5-and 7.5-8.5-fold concentrations of whole blood platelets promoted repair of sciatic nerve injury.Proteomics analysis was performed to investigate the possible mechanism by which platelet-rich plasma promoted nerve regeneration.Proteomics analysis showed that after sciatic nerve injury,platelet-rich plasma increased the expression of integrin subunitβ-8(ITGB8),which participates in angiogenesis,and differentially expressed proteins were mainly enriched in focal adhesion pathways.Additionally,two key proteins,ribosomal protein S27 a(RSP27 a)and ubiquilin 1(UBQLN1),which were selected after protein-protein interaction analysis,are involved in the regulation of ubiquitin levels in vivo.These data suggest that platelet-rich plasma promotes peripheral nerve regeneration after sciatic nerve injury by affecting angiogenesis and intracellular ubiquitin levels. 展开更多
关键词 bioinformatic analysis ITGB8 leukocyte-platelet rich plasma nerve regeneration peripheral nerve injury platelet-rich plasma proteomic analysis sciatic nerve injury
下载PDF
Translational bioengineering strategies for peripheral nerve regeneration:opportunities,challenges,and novel concepts 被引量:4
16
作者 Karim A.Sarhane Chenhu Qiu +3 位作者 Thomas G.W.Harris Philip J.Hanwright Hai-Quan Mao Sami H.Tuffaha 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第6期1229-1234,共6页
Peripheral nerve injuries remain a challenging problem in need of better treatment strategies.Despite best efforts at surgical reconstruction and postoperative rehabilitation,patients are often left with persistent,de... Peripheral nerve injuries remain a challenging problem in need of better treatment strategies.Despite best efforts at surgical reconstruction and postoperative rehabilitation,patients are often left with persistent,debilitating motor and sensory deficits.There are currently no therapeutic strategies proven to enhance the regenerative process in humans.A clinical need exists for the development of technologies to promote nerve regeneration and improve functional outcomes.Recent advances in the fields of tissue engineering and nanotechnology have enabled biomaterial scaffolds to modulate the host response to tissue repair through tailored mechanical,chemical,and conductive cues.New bioengineered approaches have enabled targeted,sustained delivery of protein therapeutics with the capacity to unlock the clinical potential of a myriad of neurotrophic growth factors that have demonstrated promise in enhancing regenerative outcomes.As such,further exploration of combinatory strategies leveraging these technological advances may offer a pathway towards clinically translatable solutions to advance the care of patients with peripheral nerve injuries.This review first presents the various emerging bioengineering strategies that can be applied for the management of nerve gap injuries.We cover the rationale and limitations for their use as an alternative to autografts,focusing on the approaches to increase the number of regenerating axons crossing the repair site,and facilitating their growth towards the distal stump.We also discuss the emerging growth factor-based therapeutic strategies designed to improve functional outcomes in a multimodal fashion,by accelerating axonal growth,improving the distal regenerative environment,and preventing end-organs atrophy. 展开更多
关键词 BIOENGINEERING BIOMATERIALS growth hormone insulin-like growth factor 1 NANOTECHNOLOGY NEUROBIOLOGY peripheral nerve regeneration Schwann cells translational research
下载PDF
Repair and regeneration of peripheral nerve injuries that ablate branch points 被引量:1
17
作者 JuliAnne E.Allgood George D.Bittner Jared S.Bushman 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第12期2564-2568,共5页
The peripheral nervous system has an extensive branching organization, and peripheral nerve injuries that ablate branch points present a complex challenge for clinical repair. Ablations of linear segments of the PNS h... The peripheral nervous system has an extensive branching organization, and peripheral nerve injuries that ablate branch points present a complex challenge for clinical repair. Ablations of linear segments of the PNS have been extensively studied and routinely treated with autografts, acellular nerve allografts, conduits, wraps, and nerve transfers. In contrast, segmental-loss peripheral nerve injuries, in which one or more branch points are ablated so that there are three or more nerve endings, present additional complications that have not been rigorously studied or documented. This review discusses:(1) the branched anatomy of the peripheral nervous system,(2) case reports describing how peripheral nerve injuries with branched ablations have been surgically managed,(3) factors known to influence regeneration through branched nerve structures,(4) techniques and models of branched peripheral nerve injuries in animal models, and(5) conclusions regarding outcome measures and studies needed to improve understanding of regeneration through ablated branched structures of the peripheral nervous system. 展开更多
关键词 ALLOGRAFT animal model branched injuries femoral nerve peripheral nerve injury peripheral nervous system regeneration REPAIR sciatic nerve surgical repair
下载PDF
Long noncoding RNA H19 regulates degeneration and regeneration of injured peripheral nerves 被引量:1
18
作者 Yu-Mei Feng Jian Shao +6 位作者 Min Cai Yi-Yue Zhou Yi Yao Jia-Xi Qian Zi-Han Ding Mao-Rong Jiang Deng-Bing Yao 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第8期1847-1851,共5页
Our previous studies have shown that long noncoding RNA(lncRNA)H19 is upregulated in injured rat sciatic nerve during the process of Wallerian degeneration,and that it promotes the migration of Schwann cells and slows... Our previous studies have shown that long noncoding RNA(lncRNA)H19 is upregulated in injured rat sciatic nerve during the process of Wallerian degeneration,and that it promotes the migration of Schwann cells and slows down the growth of dorsal root ganglion axons.However,the mechanism by which lncRNA H19 regulates neural repair and regeneration after peripheral nerve injury remains unclear.In this study,we established a Sprague-Dawley rat model of sciatic nerve transection injury.We performed in situ hybridization and found that at 4–7 days after sciatic nerve injury,lncRNA H19 was highly expressed.At 14 days before injury,adeno-associated virus was intrathecally injected into the L4–L5 foramina to disrupt or overexpress lncRNA H19.After overexpression of lncRNA H19,the growth of newly formed axons from the sciatic nerve was inhibited,whereas myelination was enhanced.Then,we performed gait analysis and thermal pain analysis to evaluate rat behavior.We found that lncRNA H19 overexpression delayed the recovery of rat behavior function,whereas interfering with lncRNA H19 expression improved functional recovery.Finally,we examined the expression of lncRNA H19 downstream target SEMA6D,and found that after lncRNA H19 overexpression,the SEMA6D protein level was increased.These findings suggest that lncRNA H19 regulates peripheral nerve degeneration and regeneration through activating SEMA6D in injured nerves.This provides a new clue to understand the role of lncRNA H19 in peripheral nerve degeneration and regeneration. 展开更多
关键词 adeno-associated virus dorsal root ganglion lncRNA H19 nerve degeneration nerve regeneration peripheral nerve rat sciatic nerve injury semaphorin 6D Wallerian degeneration
下载PDF
Potential application of let-7a antagomir in injured peripheral nerve regeneration 被引量:1
19
作者 Qian-Qian Chen Qian-Yan Liu +4 位作者 Pan Wang Tian-Mei Qian Xing-Hui Wang Sheng Yi Shi-Ying Li 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第7期1584-1590,共7页
Neurotrophic factors,particularly nerve growth factor,enhance neuronal regeneration.However,the in vivo applications of nerve growth factor are largely limited by its intrinsic disadvantages,such as its short biologic... Neurotrophic factors,particularly nerve growth factor,enhance neuronal regeneration.However,the in vivo applications of nerve growth factor are largely limited by its intrinsic disadvantages,such as its short biological half-life,its contribution to pain response,and its inability to cross the blood-brain barrier.Considering that let-7(human miRNA)targets and regulates nerve growth factor,and that let-7 is a core regulator in peripheral nerve regeneration,we evaluated the possibilities of let-7 application in nerve repair.In this study,anti-let-7a was identified as the most suitable let-7 family molecule by analyses of endogenous expression and regulatory relationship,and functional screening.Let-7a antagomir demonstrated biosafety based on the results of in vivo safety assessments and it entered into the main cell types of the sciatic nerve,including Schwann cells,fibroblasts and macrophages.Use of hydrogel effectively achieved controlled,localized,and sustained delivery of let-7a antagomir.Finally,let-7a antagomir was integrated into chitosan conduit to construct a chitosan-hydrogel scaffold tissue-engineered nerve graft,which promoted nerve regeneration and functional recovery in a rat model of sciatic nerve transection.Our study provides an experimental basis for potential in vivo application of let-7a. 展开更多
关键词 CHITOSAN chitosan-hydrogel scaffold LET-7 let-7a antagomir miRNA nerve graft peripheral nerve injury peripheral nerve regeneration Schwann cells
下载PDF
Peripheral nerve regeneration through nerve conduits evokes differential expression of growth-associated protein-43 in the spinal cord 被引量:1
20
作者 Jesús Chato-Astrain Olga Roda +5 位作者 David Sánchez-Porras Esther Miralles Miguel Alaminos Fernando Campos Óscar Darío García-García Víctor Carriel 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第8期1852-1856,共5页
Growth-associated protein 43 plays a key role in neurite outgrowth through cytoskeleton remodeling.We have previously demonstrated that structural damage of peripheral nerves induces growth-associated protein 43 upreg... Growth-associated protein 43 plays a key role in neurite outgrowth through cytoskeleton remodeling.We have previously demonstrated that structural damage of peripheral nerves induces growth-associated protein 43 upregulation to promote growth cone formation.Conversely,the limited regenerative capacity of the central nervous system due to an inhibitory environment prevents major changes in neurite outgrowth and should be presumably associated with low levels of growth-associated protein 43 expression.However,central alterations due to peripheral nerve damage have never been assessed using the growthassociated protein 43 marker.In this study,we used the tubulization technique to repair 1 cm-long nerve gaps in the rat nerve injury/repair model and detected growth-associated protein 43 expression in the peripheral and central nervous systems.First,histological analysis of the regeneration process confirmed an active regeneration process of the nerve gaps through the conduit from 10 days onwards.The growth-associated protein 43 expression profile varied across regions and follow-up times,from a localized expression to an abundant and consistent expression throughout the regeneration tissue,confirming the presence of an active nerve regeneration process.Second,spinal cord changes were also histologically assessed,and no apparent changes in the structural and cellular organization were observed using routine staining methods.Surprisingly,remarkable differences and local changes appeared in growth-associated protein 43 expression at the spinal cord level,in particular at 20 days post-repair and beyond.Growth-associated protein 43 protein was first localized in the gracile fasciculus and was homogeneously distributed in the left posterior cord.These findings differed from the growth-associated protein 43 pattern observed in the healthy control,which did not express growth-associated protein 43 at these levels.Our results revealed a differential expression in growth-associated protein 43 protein not only in the regenerating nerve tissue but also in the spinal cord after peripheral nerve transection.These findings open the possibility of using this marker to monitor changes in the central nervous system after peripheral nerve injury. 展开更多
关键词 growth-associated protein 43(GAP-43) IMMUNOHISTOCHEMISTRY nerve guide nerve tissue regeneration peripheral nerve repair spinal cord tissue engineering
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部