This paper presents an expert-based fuzzy analytic hierarchy process( AHP) model for evaluating emergency response capacity of Chemical Industrial Park( ERCCIP) by jointly using an improved fuzzy preference programmin...This paper presents an expert-based fuzzy analytic hierarchy process( AHP) model for evaluating emergency response capacity of Chemical Industrial Park( ERCCIP) by jointly using an improved fuzzy preference programming( FPP) and 2-tuple fuzzy linguistic approach. An evaluation index system for ERCCIP is proposed. The weight of sub-criteria and criteria of the evaluation index system for ERCCIP are determined using the improved FPP. And the ratings of sub-criteria are assessed in linguistic values according to the experts' subjective opinions. Finally,the aggregated ratings of criteria and the overall ERCCIP are calculated.展开更多
Aging is closely related to redox regulation.In our previous work,we proposed a new concept,“redox-stress response capacity(RRC),”and found that the decline in RRC was a dynamic characteristic of aging.However,the m...Aging is closely related to redox regulation.In our previous work,we proposed a new concept,“redox-stress response capacity(RRC),”and found that the decline in RRC was a dynamic characteristic of aging.However,the mechanism of RRC decline during aging remains unknown.In this study,using the senescent human fibroblast cell model and Caenorhabditis elegans model,we identified that peroxiredoxin 2(PRDX2),as a hydrogen peroxide(H_(2)O_(2))sensor,was involved in mediating RRC.PRDX2 knockdown led to a decline of RRC and accelerated senescence in fibroblasts and prdx-2 mutant C.elegans also showed decreased RRC.The mechanism study showed that the decreased sensor activity of PRDX2 was related to the increase in hyperoxidation of PRDX2 in senescent cells.Moreover,the level of PRDX2 hyperoxidation also increased in old C.elegans.Simultaneous overexpression of both PRDX2 and sulfiredoxin(SRX)rescued the reduced RRC and delayed senescence.The increase in PRDX2 hyperoxidation in senescent cells led to a decrease in its sensor activity,resulting in the decreased cellular response to H_(2)O_(2),which is similar to the mechanism of insulin resistance due to the lower insulin receptor sensitivity.Treatment of young cells with a high level of H_(2)O_(2)to induce a higher level of PRDX2-SO_(3) resulted in mimicking the RRC decline in senescent cells,which is also similar to a model of insulin resistance induced by high levels of insulin.All these results thrillingly indicate that there is an insulin-resistance-like phenomenon in senescent cells,we named it redox-stress response resistance,RRR.RRR in senescent cells is an important new discovery that explains RRC decline during aging and reveals the internal relationship between redox regulation and aging from a new perspective.展开更多
Battery models are of great importance to develop portable computing systems,for whether the design of low power hardware architecture or the design of battery-aware scheduling policies.In this paper,we present a phys...Battery models are of great importance to develop portable computing systems,for whether the design of low power hardware architecture or the design of battery-aware scheduling policies.In this paper,we present a physically justified iterative computing method to illustrate the discharge,recovery and charge process of Li/Li-ion batteries.The discharge and recovery processes correspond well to an existing accurate analytical battery model:R-V-W's analytical model,and thus interpret this model algorithmically.Our method can also extend R-V-W's model easily to accommodate the charge process.The work will help the system designers to grasp the characteristics of R-V-W's battery model and also,enable to predict the battery behavior in the charge process in a uniform way as the discharge process and the recovery process.Experiments are performed to show the ac-curacy of the extended model by comparing the predicted charge times with those derived from the DUALFOIL simulations.Various profiles with different combinations of battery modes were tested.The experimental results show that the extended battery model preserves high accuracy in predicting the charge behavior.展开更多
The theory of action liberal in cause has a long history. But this concept originally did not exist in our country's traditional crinainal law. It has caused widespread controversy and discussion after being introduc...The theory of action liberal in cause has a long history. But this concept originally did not exist in our country's traditional crinainal law. It has caused widespread controversy and discussion after being introduced into Chinese academy of criminal law. From researches on various viewpoints about the theory of action liberal in cause in German and Japanese theories of criminal law, this paper discusses problems such as recognition of the form of a crime of action liberal in cause, the basis of straPoarkeit and how to coordinate with criminal law principles like "capacity for responsibility coexists with capacity for act". In the end, it puts forward the scheme of modification for relevant legislation of action liberal in cause.展开更多
A natural tolerance of various environmental stresses is typically supported by various cytoprotective mechanisms that protect macromolecules and promote extended viability. Among these are antioxidant defenses that h...A natural tolerance of various environmental stresses is typically supported by various cytoprotective mechanisms that protect macromolecules and promote extended viability. Among these are antioxidant defenses that help to limit damage from reactive oxygen species and chaperones that help to minimize protein misfolding or unfolding under stress conditions. To understand the molecular mechanisms that act to protect cells during primate torpor, the present study characterizes antioxidant and heat shock protein(HSP) responses in various organs of control(aroused)and torpid gray mouse lemurs, Microcebus murinus. Protein expression of HSP70 and HSP90 a was elevated to 1.26 and 1.49 fold, respectively, in brown adipose tissue during torpor as compared with control animals, whereas HSP60 in liver of torpid animals was 1.15 fold of that in control(P 〈 0.05). Among antioxidant enzymes, protein levels of thioredoxin 1 were elevated to 2.19 fold in white adipose tissue during torpor, whereas Cu–Zn superoxide dismutase 1 levels rose to 1.1 fold in skeletal muscle(P 〈 0.05). Additionally, total antioxidant capacity was increased to 1.6 fold in liver during torpor(P 〈 0.05), while remaining unchanged in the five other tissues. Overall, our data suggest that antioxidant and HSP responses are modified in a tissue-specific manner during daily torpor in gray mouse lemurs. Furthermore, our data also show that cytoprotective strategies employed during primate torpor are distinct from the strategies in rodent hibernation as reported in previous studies.展开更多
基金Sponsored by the National Natural Science Foundation of China(Grant No.41001354)Fundamental Research Funds for the Central Universities of China(Grant No.23420110083)
文摘This paper presents an expert-based fuzzy analytic hierarchy process( AHP) model for evaluating emergency response capacity of Chemical Industrial Park( ERCCIP) by jointly using an improved fuzzy preference programming( FPP) and 2-tuple fuzzy linguistic approach. An evaluation index system for ERCCIP is proposed. The weight of sub-criteria and criteria of the evaluation index system for ERCCIP are determined using the improved FPP. And the ratings of sub-criteria are assessed in linguistic values according to the experts' subjective opinions. Finally,the aggregated ratings of criteria and the overall ERCCIP are calculated.
基金the Strategic Priority Research Program of the Chinese Academy of Sciences(XDB39000000)the National Key Research and Development Program of China(2022YFA1303000,2022YFA1305100,2017YFA0504000)the National Natural Science Foundation of China(91849203)。
文摘Aging is closely related to redox regulation.In our previous work,we proposed a new concept,“redox-stress response capacity(RRC),”and found that the decline in RRC was a dynamic characteristic of aging.However,the mechanism of RRC decline during aging remains unknown.In this study,using the senescent human fibroblast cell model and Caenorhabditis elegans model,we identified that peroxiredoxin 2(PRDX2),as a hydrogen peroxide(H_(2)O_(2))sensor,was involved in mediating RRC.PRDX2 knockdown led to a decline of RRC and accelerated senescence in fibroblasts and prdx-2 mutant C.elegans also showed decreased RRC.The mechanism study showed that the decreased sensor activity of PRDX2 was related to the increase in hyperoxidation of PRDX2 in senescent cells.Moreover,the level of PRDX2 hyperoxidation also increased in old C.elegans.Simultaneous overexpression of both PRDX2 and sulfiredoxin(SRX)rescued the reduced RRC and delayed senescence.The increase in PRDX2 hyperoxidation in senescent cells led to a decrease in its sensor activity,resulting in the decreased cellular response to H_(2)O_(2),which is similar to the mechanism of insulin resistance due to the lower insulin receptor sensitivity.Treatment of young cells with a high level of H_(2)O_(2)to induce a higher level of PRDX2-SO_(3) resulted in mimicking the RRC decline in senescent cells,which is also similar to a model of insulin resistance induced by high levels of insulin.All these results thrillingly indicate that there is an insulin-resistance-like phenomenon in senescent cells,we named it redox-stress response resistance,RRR.RRR in senescent cells is an important new discovery that explains RRC decline during aging and reveals the internal relationship between redox regulation and aging from a new perspective.
基金Project partly supported by the Key Program of the National NaturalScience Foundation of China (No. 60533040)the National Natural Science Funds for Distinguished Young Scholar (No. 60525202)+1 种基金the Program for New Century Excellent Talents in University (No. NCET-04-0545)the Key Scientific and Technological Project of Hangzhou Technology Bureau (No. 20062412B01),China
文摘Battery models are of great importance to develop portable computing systems,for whether the design of low power hardware architecture or the design of battery-aware scheduling policies.In this paper,we present a physically justified iterative computing method to illustrate the discharge,recovery and charge process of Li/Li-ion batteries.The discharge and recovery processes correspond well to an existing accurate analytical battery model:R-V-W's analytical model,and thus interpret this model algorithmically.Our method can also extend R-V-W's model easily to accommodate the charge process.The work will help the system designers to grasp the characteristics of R-V-W's battery model and also,enable to predict the battery behavior in the charge process in a uniform way as the discharge process and the recovery process.Experiments are performed to show the ac-curacy of the extended model by comparing the predicted charge times with those derived from the DUALFOIL simulations.Various profiles with different combinations of battery modes were tested.The experimental results show that the extended battery model preserves high accuracy in predicting the charge behavior.
文摘The theory of action liberal in cause has a long history. But this concept originally did not exist in our country's traditional crinainal law. It has caused widespread controversy and discussion after being introduced into Chinese academy of criminal law. From researches on various viewpoints about the theory of action liberal in cause in German and Japanese theories of criminal law, this paper discusses problems such as recognition of the form of a crime of action liberal in cause, the basis of straPoarkeit and how to coordinate with criminal law principles like "capacity for responsibility coexists with capacity for act". In the end, it puts forward the scheme of modification for relevant legislation of action liberal in cause.
基金supported by a Discovery grant from the Natural Sciences and Engineering Research Council (NSERC) of Canada (Grant No. 6793)a grant from the Heart and Stroke Foundation of Canada (Grant No. G-140005874) to KBS. KBS holds the Canada Research Chair in Molecular PhysiologyCWW, KKB, and SNT all held NSERC postgraduate scholarships
文摘A natural tolerance of various environmental stresses is typically supported by various cytoprotective mechanisms that protect macromolecules and promote extended viability. Among these are antioxidant defenses that help to limit damage from reactive oxygen species and chaperones that help to minimize protein misfolding or unfolding under stress conditions. To understand the molecular mechanisms that act to protect cells during primate torpor, the present study characterizes antioxidant and heat shock protein(HSP) responses in various organs of control(aroused)and torpid gray mouse lemurs, Microcebus murinus. Protein expression of HSP70 and HSP90 a was elevated to 1.26 and 1.49 fold, respectively, in brown adipose tissue during torpor as compared with control animals, whereas HSP60 in liver of torpid animals was 1.15 fold of that in control(P 〈 0.05). Among antioxidant enzymes, protein levels of thioredoxin 1 were elevated to 2.19 fold in white adipose tissue during torpor, whereas Cu–Zn superoxide dismutase 1 levels rose to 1.1 fold in skeletal muscle(P 〈 0.05). Additionally, total antioxidant capacity was increased to 1.6 fold in liver during torpor(P 〈 0.05), while remaining unchanged in the five other tissues. Overall, our data suggest that antioxidant and HSP responses are modified in a tissue-specific manner during daily torpor in gray mouse lemurs. Furthermore, our data also show that cytoprotective strategies employed during primate torpor are distinct from the strategies in rodent hibernation as reported in previous studies.