Hyper-and multi-spectral image fusion is an important technology to produce hyper-spectral and hyper-resolution images,which always depends on the spectral response function andthe point spread function.However,few wo...Hyper-and multi-spectral image fusion is an important technology to produce hyper-spectral and hyper-resolution images,which always depends on the spectral response function andthe point spread function.However,few works have been payed on the estimation of the two degra-dation functions.To learn the two functions from image pairs to be fused,we propose a Dirichletnetwork,where both functions are properly constrained.Specifically,the spatial response function isconstrained with positivity,while the Dirichlet distribution along with a total variation is imposedon the point spread function.To the best of our knowledge,the neural network and the Dirichlet regularization are exclusively investigated,for the first time,to estimate the degradation functions.Both image degradation and fusion experiments demonstrate the effectiveness and superiority of theproposed Dirichlet network.展开更多
Temperature response functions have been developed to investigate sensor design and divertor heat flux estimation in magnetically confined plasmas. The time-dependent heat flux can be derived by fitting the response f...Temperature response functions have been developed to investigate sensor design and divertor heat flux estimation in magnetically confined plasmas. The time-dependent heat flux can be derived by fitting the response function to experimental thermocouple(TC) data. Because the TC signals have a time delay to transit events such as discharge start or confinement transition, the time delay is taken into account in a temperature response function. Such a function accurately describes the signal from each TC channel with time delay in a sensor test using a neutral beam injection. Measurement for commercial TCs shows that the time delay is caused by the finite heat capacity of TC wire and contact heat resistance between TC and target surface.展开更多
Tool condition monitoring(TCM)is a key technology for intelligent manufacturing.The objective is to monitor the tool operation status and detect tool breakage so that the tool can be changed in time to avoid significa...Tool condition monitoring(TCM)is a key technology for intelligent manufacturing.The objective is to monitor the tool operation status and detect tool breakage so that the tool can be changed in time to avoid significant damage to workpieces and reduce manufacturing costs.Recently,an innovative TCM approach based on sensor data modelling and model frequency analysis has been proposed.Different from traditional signal feature-based monitoring,the data from sensors are utilized to build a dynamic process model.Then,the nonlinear output frequency response functions,a concept which extends the linear system frequency response function to the nonlinear case,over the frequency range of the tooth passing frequency of the machining process are extracted to reveal tool health conditions.In order to extend the novel sensor data modelling and model frequency analysis to unsupervised condition monitoring of cutting tools,in the present study,a multivariate control chart is proposed for TCM based on the frequency domain properties of machining processes derived from the innovative sensor data modelling and model frequency analysis.The feature dimension is reduced by principal component analysis first.Then the moving average strategy is exploited to generate monitoring variables and overcome the effects of noises.The milling experiments of titanium alloys are conducted to verify the effectiveness of the proposed approach in detecting excessive flank wear of solid carbide end mills.The results demonstrate the advantages of the new approach over conventional TCM techniques and its potential in industrial applications.展开更多
Structural strain modes are able to detect changes in local structural performance, but errors are inevitably intermixed in the measured data. In this paper, strain modal parameters are considered as random variables,...Structural strain modes are able to detect changes in local structural performance, but errors are inevitably intermixed in the measured data. In this paper, strain modal parameters are considered as random variables, and their uncertainty is analyzed by a Bayesian method based on the structural frequency response function (FRF). The estimates of strain modal parameters with maximal posterior probability are determined. Several independent measurements of the FRF of a four-story reinforced concrete flame structural model were performed in the laboratory. The ability to identify the stiffness change in a concrete column using the strain mode was verified. It is shown that the uncertainty of the natural frequency is very small. Compared with the displacement mode shape, the variations of strain mode shapes at each point are quite different. The damping ratios are more affected by the types of test systems. Except for the case where a high order strain mode does not identify local damage, the first order strain mode can provide an exact indication of the damage location.展开更多
Model reduction technique is usually employed in model updating process. In this paper, a new model updat- ing method named as cross-model cross-frequency response function (CMCF) method is proposed and a new iterat...Model reduction technique is usually employed in model updating process. In this paper, a new model updat- ing method named as cross-model cross-frequency response function (CMCF) method is proposed and a new iterative method associating the model updating method with the mo- del reduction technique is investigated. The new model up- dating method utilizes the frequency response function to avoid the modal analysis process and it does not need to pair or scale the measured and the analytical frequency re- sponse function, which could greatly increase the number of the equations and the updating parameters. Based on the traditional iterative method, a correction term related to the errors resulting from the replacement of the reduction ma- trix of the experimental model with that of the finite element model is added in the new iterative method. Comparisons be- tween the traditional iterative method and the proposed itera- tive method are shown by model updating examples of solar panels, and both of these two iterative methods combine the CMCF method and the succession-level approximate reduc- tion technique. Results show the effectiveness of the CMCF method and the proposed iterative method .展开更多
Structural cracks can change the frequency response function (FRF) of an offshore platform. Thus, FRF shifts can be used to detect cracks. When a crack at a specific location and magnitude occurs in an offshore struct...Structural cracks can change the frequency response function (FRF) of an offshore platform. Thus, FRF shifts can be used to detect cracks. When a crack at a specific location and magnitude occurs in an offshore structure, changes in the FRF can be measured. In this way, shifts in FRF can be used to detect cracks. An experimental model was constructed to verify the FRF method. The relationship between FRF and cracks was found to be non-linear. The effect of multiple cracks on FRF was analyzed, and the shift due to multiple cracks was found to be much more than the summation of FRF shifts due to each of the cracks. Then the effects of noise and changes in the mass of the jacket on FRF were evaluated. The results show that significant damage to a beam can be detected by dramatic changes in the FRF, even when 10% random noise exists. FRF can also be used to approximately locate the breakage, but it can neither be efficiently used to predict the location of breakage nor the existence of small hairline cracks. The FRF shift caused by a 7% mass change is much less than the FRF shift caused by the breakage of any beam, but is larger than that caused by any early cracks.展开更多
Using the generalized viscoelastic fluid model, we derive the dielectric response function in a strongly coupled dusty magnetoplasma which reveals two different dust acoustic(DA) wave modes in the hydrodynamic and k...Using the generalized viscoelastic fluid model, we derive the dielectric response function in a strongly coupled dusty magnetoplasma which reveals two different dust acoustic(DA) wave modes in the hydrodynamic and kinetic limits. The effects of the strong interaction of dust grains and the external magnetic on these DA modes, as well as on the shear wave are examined. It is found that both the real and imaginary parts of DA waves are significantly modified in strongly coupled dusty magnetoplasmas. The implications of our results to space and laboratory dusty plasmas are briefly discussed.展开更多
This study was executed to offer the basis for optimized profit from fertilizer use for sorghum yield and to determine robust crop nutrient response function and economic rate for the production of sorghum at Miesso C...This study was executed to offer the basis for optimized profit from fertilizer use for sorghum yield and to determine robust crop nutrient response function and economic rate for the production of sorghum at Miesso Central Rift Valley of Ethiopia. Trails were conducted at six experimental sites, sorghum yield response to N and P fertilizers application and economically optimum rates of nitrogen (EONR) and phosphorus (EOPR) were evaluated on a vertisols within the semi-arid Miesso districts west Hararge zone of Oromia region. The nutrient rates in 2014 cropping season four levels of Nitrogen (N) alone, these levels with 20 <span style="white-space:nowrap;">kg·ha<sup>−1</sup></span> Phosphorus (P) and without N, 69 kg<span style="white-space:nowrap;">·</span>ha<sup><span style="white-space:nowrap;">−</span>1</sup> N with three levels of P treatments including the zero control were evaluated. In 2015, cropping season similar rates of N alone, the same rate N with 20 <span style="white-space:nowrap;">kg·ha<sup>−1</sup></span> P, 92 <span style="white-space:nowrap;">kg·ha<sup>−1</sup></span> N with three rates of P including the zero control were evaluated. The treatments were arranged in a randomized complete block with three replications in factorial design. Nutrient responses of sorghum were determined using asymptotic quadratic plateau functions. The significantly highest nitrogen rate was 46 <span style="white-space:nowrap;">kg·ha<sup>−1</sup></span> alone in 2014 season, which gave grain yield of 2.56 Mg<span style="white-space:nowrap;">·ha<sup>−1</sup></span><sup> </sup>with a maximum yield advantage of 43%. P rates in both seasons and combined (sites + seasons) were not significantly influenced sorghum yield. Nitrogen agronomic and partial factor productivity peaked at 23 kg N <span style="white-space:nowrap;">ha<sup>−1</sup></span> but declined with increasing N rate. The EONR combined (sites + seasons) were 37, 45, 52 and 60 <span style="white-space:nowrap;">kg·ha<sup>−1</sup></span><sup> </sup>and for the profit to cost ratio (PCR) were 2.43, 3.65, 4.86 and 5.79 at difference cost to grain price ratios (CP) = 3.6, 2.3, 1.6 and 1.2 respectively at Miesso Ethiopia. Nitrogen application had economically profitable than P. The study concluded that the application of N at 37 or 60 kg N <span style="white-space:nowrap;">ha<sup>−1</sup></span> to sorghum production could be economically profitable for those economically constrained farmers or economically not constrained farmers. Validation should be farther conducted on farmers’ fields for refining the results obtained.展开更多
Based on the continuum physics and taking into account variation of the heat dissipation, Helmholtz free ener-gy, internal energy and exothermicity with the thermodynamic process, in this paper, the functional equatio...Based on the continuum physics and taking into account variation of the heat dissipation, Helmholtz free ener-gy, internal energy and exothermicity with the thermodynamic process, in this paper, the functional equations of the general-ized stress and entropy associated ivith the time and temperature are derived for the irreversible process of thermoviscoelastic-plastic materials. As an example, the response functionals of Maxwell viscoelastic materials are obtained.展开更多
A generalized response function based on the use of dielectric spectra for dielectric relaxation process is derived. We apply the general response function to the special case in order to examine how special dielectri...A generalized response function based on the use of dielectric spectra for dielectric relaxation process is derived. We apply the general response function to the special case in order to examine how special dielectric relaxation functions developed by other authors for solvent relaxation can be derived based on our formulations. Three typical solvents, water, methanol, and acetonitrile are used to investigate the electronic polarization processes of polar solvents. The solvent electronic polarization process is shown after a linear variation with the external electric field imposed on the solvent. The results show a conclusion that the electronic polarization of the solvents will accompany the electronic transition synchronously, without time lag.展开更多
In recent years,rumor spreading has caused widespread public panic and affected the whole social harmony and stability.Consequently,how to control the rumor spreading effectively and reduce its negative influence urge...In recent years,rumor spreading has caused widespread public panic and affected the whole social harmony and stability.Consequently,how to control the rumor spreading effectively and reduce its negative influence urgently needs people to pay much attention.In this paper,we mainly study the near-optimal control of a stochastic rumor spreading model with Holling II functional response function and imprecise parameters.Firstly,the science knowledge propagation and the refutation mechanism as the control strategies are introduced into a stochastic rumor spreading model.Then,some sufficient and necessary conditions for the near-optimal control of the stochastic rumor spreading model are discussed respectively.Finally,through some numerical simulations,the validity and availability of theoretical analysis is verified.Meanwhile,it shows the significance and effectiveness of the proposed control strategies on controlling rumor spreading,and demonstrates the influence of stochastic disturbance and imprecise parameters on the process of rumor spreading.展开更多
Usually, there are several methods, e.g. experiment, interpolation experiment-based, analytic function, and Monte-Carlo simulation, to calculate the response functions in LaBr3(Ce) detectors. In logging applications...Usually, there are several methods, e.g. experiment, interpolation experiment-based, analytic function, and Monte-Carlo simulation, to calculate the response functions in LaBr3(Ce) detectors. In logging applications, the experiment-based methods cannot be adopted because of their limitations. Analytic function has the advantage of fast calculating speed, but it is very difficult to take into account many effects that occur in practical applications. On the contrary, Monte-Carlo simulation can deal with physical and geometric configurations very tactfully. It has a distinct advantage for calculating the functions with complex configurations in borehole. A new application of LaBr3(Ce) detector is in natural gamma-rays borehole spectrometer for uranium well logging. Calculation of response functions must consider a series of physical and geometric factors under complex logging conditions, including earth formations and its relevant parameters, different energies, material and thickness of the casings, the fluid between the two tubes, and relative position of the LaBr3(Ce) crystal to steel ingot at the front of logging tube. The present work establishes Monte-Carlo simulation models for the above-mentioned situations, and then performs calculations for main gamma-rays from natural radio-elements series. The response functions can offer experimental directions for the design of borehole detection system, and provide technique basis and basic data for spectral analysis of natural gamma-rays, and for sonrceless calibration in uranium quantitative interpretation.展开更多
This paper proposes the continuous-time singular value decomposition (SVD) for the impulse response function, a special kind of Green’s functions, in order to find a set of singular functions and singular values so t...This paper proposes the continuous-time singular value decomposition (SVD) for the impulse response function, a special kind of Green’s functions, in order to find a set of singular functions and singular values so that the convolutions of such function with the set of singular functions on a specified domain are the solutions to the inhomogeneous differential equations for those singular functions. A numerical example was illustrated to verify the proposed method. Besides the continuous-time SVD, a discrete-time SVD is also presented for the impulse response function, which is modeled using a Toeplitz matrix in the discrete system. The proposed method has broad applications in signal processing, dynamic system analysis, acoustic analysis, thermal analysis, as well as macroeconomic modeling.展开更多
The geomagnetic night-time values were used to estimate the electromagnetic response function Q1 for half-year period. If the spatial structure of the source field can be described by the approximation, one can estim...The geomagnetic night-time values were used to estimate the electromagnetic response function Q1 for half-year period. If the spatial structure of the source field can be described by the approximation, one can estimate the Q1 value using the single-station Z/H method. This technique enables us to carry out regional deep gcomagnetic sounding by the method. The data used for analyses are geomagnetic night-time values for about, typically, 26 years from 5 good-quality stations and for several years from 34 stations distributed over the globe. The results indicate that the night-time values yield more reliable response estimates for half-year period compared to the usual estimates obtained from daily means. It implies that the approximation for the night-time fields holds good for the half-year period, but the daily means are not suitable for estimating the response function of the semi-annual variations by using the single-station method. Source field analyses for daily means data and night-time means data have also been carried out in this paper.展开更多
In order to make further studies on fusion neutron diagnosis on HL-2A /HL-2M,we have developed and succeeded in the calculation of the Response Function for a Bonner sphere spectrometer,which consists of eight polyeth...In order to make further studies on fusion neutron diagnosis on HL-2A /HL-2M,we have developed and succeeded in the calculation of the Response Function for a Bonner sphere spectrometer,which consists of eight polyethylene spheres with ^3He proportional counters inside.The response function of the Bonner spectrometer to neutrons is of fundamental importance for its neutron spectrum unfolding procedure and is directly related to the quality of the unfolded spectrum.In this paper,we calculated the response function to neutrons from 10^-9 MeV to100 MeV by Geant4.In order to test the accuracy of the Geant4 simulation,we apply it to measure an ^241Am-Be neutron source,and the measured neutron counts of the spectrometer and simulated counts are found to be highly consistent,with a relative error up to 9.3%.This has proven the calculation of the neutron response of the Bonner sphere spectrometer by Geant4 to be quite accurate.展开更多
A suspicion of a femoral neck fracture is a frequently recurring situation, especially in nursing homes. For the clarification of such a suspicion normally imaging techniques are used. Such equipment is expensive and ...A suspicion of a femoral neck fracture is a frequently recurring situation, especially in nursing homes. For the clarification of such a suspicion normally imaging techniques are used. Such equipment is expensive and therefore is located in hospitals. In addition to the costs, a transport causes stress for the patient. This pilot study is devoted to the question whether the detection of a femoral neck fracture with vibration measurements is possible in principal. In such a case, the clarification could be done on-site by an ordinary person using much cheaper equipment. This would reduce the stress for the patient and save money. For this purpose vibration measurements on a dead body with intact, with partially fractured and with complete cut femoral neck have been performed. Two different methods for the vibration initiation have been investigated, the so called impact testing and the shaker testing. The frequency response function has been determined for all combinations on both sides of the body. It turned out that there is a clear difference in the frequency response functions of the fractured bone with respect to the intact bone when shaker testing is used. This indicates that the method could have the potential to be a cost-saving alternative to imaging techniques. However, in a next step a statistically reliable clinical survey on living persons needs to be done.展开更多
Background:All neurons of the visual system exhibit response to differences in luminance.This neural response to visual contrast,also known as the contrast response function(CRF),follows a characteristic sigmoid shape...Background:All neurons of the visual system exhibit response to differences in luminance.This neural response to visual contrast,also known as the contrast response function(CRF),follows a characteristic sigmoid shape that can be fitted with the Naka-Rushton equation.Four parameters define the CRF,and they are often used in different visual research disciplines,since they describe selective variations of neural responses.As novel technologies have grown,the capacity to record thousands of neurons simultaneously brings new challenges:processing and robustly analyzing larger amounts of data to maximize the outcomes of our experimental measurements.Nevertheless,current guidelines to fit neural activity based on the Naka-Rushton equation have been poorly discussed in depth.In this study,we explore several methods of boundary-setting and least-square curve-fitting for the CRF in order to avoid the pitfalls of blind curve-fitting.Furthermore,we intend to provide recommendations for experimenters to better prepare a solid quantification of CRF parameters that also minimize the time of the data acquisition.For this purpose,we have created a simplified theoretical model of spike-response dynamics,in which the firing rate of neurons is generated by a Poisson process.The spike trains generated by the theoretical model depending on visual contrast intensities were then fitted with the Naka-Rushton equation.This allowed us to identify combinations of parameters that were more important to adjust before performing experiments,to optimize the precision and efficiency of curve fitting(e.g.,boundaries of CRF parameters,number of trials,number of contrast tested,metric of contrast used and the effect of including multi-unit spikes into a single CRF,among others).Several goodness-of-fit methods were also examined in order to achieve ideal fits.With this approach,it is possible to anticipate the minimal requirements to gather and analyze data in a more efficient way in order to build stronger functional models.Methods:Spike-trains were randomly generated following a Poisson distribution in order to draw both an underlying theoretical curve and an empirical one.Random noise was added to the fit to simulate empirical conditions.The correlation function was recreated on the simulated data and re-fit using the Naka-Rushton equation.The two curves were compared:the idea being to determine the most advantageous boundaries and conditions for the curve-fit to be optimal.Statistical analysis was performed on the data to determine those conditions for experiments.Experiments were then conducted to acquire data from mice and cats to verify the model.Results:Results were obtained successfully and a model was proposed to assess the goodness of the fit of the contrast response function.Various parametres and their influence of the model were tested.Other similar models were proposed and their performance was assessed and compared to the previous ones.The fit was optimized to give semi-strict guidelines for scientists to follow in order to maximize their efficiency while obtaining the contrast tuning of a neuron.Conclusions:The aim of the study was to assess the optimal testing parametres of the neuronal response to visual gratings with various luminance,also called the CRF.As technology gets more powerful and potent,one must make choices when experimenting.With a strong model,robust boundaries,and strong experimental conditioning,the best fit to a function can lead to more efficient analysis and stronger cognitive models.展开更多
Because robotic milling has become an important means for machining significant large parts,obtaining the structural frequency response function(FRF)of a milling robot is an important basis for machining process optim...Because robotic milling has become an important means for machining significant large parts,obtaining the structural frequency response function(FRF)of a milling robot is an important basis for machining process optimization.However,because of its articulated serial structure,a milling robot has an enormous number of operating postures,and its dynamics are affected by the motion state.To accurately obtain the FRF in the operating state of a milling robot,this paper proposes a method based on the structural modification concept.Unlike the traditional excitation method,the proposed method uses robot joint motion excitation instead of hammering excitation to realize automation.To address the problem of the lack of information brought by motion excitation,which leads to inaccurate FRF amplitudes,this paper derives the milling robot regularization theory based on the sensitivity of structural modification,establishes the modal regularization factor,and calibrates the FRF amplitude.Compared to the commonly used manual hammering experiments,the proposed method has high accuracy and reliability when the milling robot is in different postures.Because the measurement can be performed directly and automatically in the operation state,and the problem of inaccurate amplitudes is solved,the proposed method provides a basis for optimizing the machining posture of a milling robot and improving machining efficiency.展开更多
In this paper, we study a modified Leslie-Gower predator-prey model with Smith growth subject to homogeneous Neumann boundary condition, in which the functional response is the Crowley-Martin functional response term....In this paper, we study a modified Leslie-Gower predator-prey model with Smith growth subject to homogeneous Neumann boundary condition, in which the functional response is the Crowley-Martin functional response term. Firstly, for ODE model, the local stability of equilibrium point is given. And by using bifurcation theory and selecting suitable bifurcation parameters, we find many kinds of bifurcation phenomena, including Transcritical bifurcation and Hopf bifurcation. For the reaction-diffusion model, we find that Turing instability occurs. Besides, it is proved that Hopf bifurcation exists in the model. Finally, numerical simulations are presented to verify and illustrate the theoretical results.展开更多
To investigate the effects of self-memory diffusion on predator-prey models, we consider a predator-prey model with Bazykin functional response of self- memory diffusion. The uniqueness, boundedness, positivity, exist...To investigate the effects of self-memory diffusion on predator-prey models, we consider a predator-prey model with Bazykin functional response of self- memory diffusion. The uniqueness, boundedness, positivity, existence and stability of equilibrium point of the model are studied. In this paper, the uniqueness of the solution is discussed under the non-negative initial function and Neumann boundary conditions satisfying a specific space. The boundness of the solution is proved by the comparison principle of parabolic equations, and the positivity of the solution is proved by the strong maximum principle of parabolic equations. Hurwitz criterion and Lyapunov function construction are used to analyze the local stability and global stability of feasible equilibrium points. The results show that the system solution is unique non-negative and bounded. The model is unstable at the trivial equilibrium point E0 and the boundary equilibrium point E1, and the condition of whether the positive equilibrium point E2 is stable under certain conditions is given.展开更多
基金the Postdoctoral ScienceFoundation of China(No.2023M730156)the NationalNatural Foundation of China(No.62301012).
文摘Hyper-and multi-spectral image fusion is an important technology to produce hyper-spectral and hyper-resolution images,which always depends on the spectral response function andthe point spread function.However,few works have been payed on the estimation of the two degra-dation functions.To learn the two functions from image pairs to be fused,we propose a Dirichletnetwork,where both functions are properly constrained.Specifically,the spatial response function isconstrained with positivity,while the Dirichlet distribution along with a total variation is imposedon the point spread function.To the best of our knowledge,the neural network and the Dirichlet regularization are exclusively investigated,for the first time,to estimate the degradation functions.Both image degradation and fusion experiments demonstrate the effectiveness and superiority of theproposed Dirichlet network.
基金partially performed with the support and under the auspices of the NIFS Collaborative Research Program(Nos.NIFS20KLPR051,NIFS20KUHL099 and NIFS20KUGM153)。
文摘Temperature response functions have been developed to investigate sensor design and divertor heat flux estimation in magnetically confined plasmas. The time-dependent heat flux can be derived by fitting the response function to experimental thermocouple(TC) data. Because the TC signals have a time delay to transit events such as discharge start or confinement transition, the time delay is taken into account in a temperature response function. Such a function accurately describes the signal from each TC channel with time delay in a sensor test using a neutral beam injection. Measurement for commercial TCs shows that the time delay is caused by the finite heat capacity of TC wire and contact heat resistance between TC and target surface.
文摘Tool condition monitoring(TCM)is a key technology for intelligent manufacturing.The objective is to monitor the tool operation status and detect tool breakage so that the tool can be changed in time to avoid significant damage to workpieces and reduce manufacturing costs.Recently,an innovative TCM approach based on sensor data modelling and model frequency analysis has been proposed.Different from traditional signal feature-based monitoring,the data from sensors are utilized to build a dynamic process model.Then,the nonlinear output frequency response functions,a concept which extends the linear system frequency response function to the nonlinear case,over the frequency range of the tooth passing frequency of the machining process are extracted to reveal tool health conditions.In order to extend the novel sensor data modelling and model frequency analysis to unsupervised condition monitoring of cutting tools,in the present study,a multivariate control chart is proposed for TCM based on the frequency domain properties of machining processes derived from the innovative sensor data modelling and model frequency analysis.The feature dimension is reduced by principal component analysis first.Then the moving average strategy is exploited to generate monitoring variables and overcome the effects of noises.The milling experiments of titanium alloys are conducted to verify the effectiveness of the proposed approach in detecting excessive flank wear of solid carbide end mills.The results demonstrate the advantages of the new approach over conventional TCM techniques and its potential in industrial applications.
基金Ministry of Construction of China through the Science and Technique Program Grant No.06-k6-13Guangzhou Construction Technological Development Foundation through Grant No.200409+1 种基金Guangdong Province Natural Science Foundation through Grant No.5300381 Guangzhou Science and Technique Bureau through Science and Technique Program Grant No.2006J1-C0451
文摘Structural strain modes are able to detect changes in local structural performance, but errors are inevitably intermixed in the measured data. In this paper, strain modal parameters are considered as random variables, and their uncertainty is analyzed by a Bayesian method based on the structural frequency response function (FRF). The estimates of strain modal parameters with maximal posterior probability are determined. Several independent measurements of the FRF of a four-story reinforced concrete flame structural model were performed in the laboratory. The ability to identify the stiffness change in a concrete column using the strain mode was verified. It is shown that the uncertainty of the natural frequency is very small. Compared with the displacement mode shape, the variations of strain mode shapes at each point are quite different. The damping ratios are more affected by the types of test systems. Except for the case where a high order strain mode does not identify local damage, the first order strain mode can provide an exact indication of the damage location.
基金supported by the Key Project of the National Natural Science Foundation of China (11132007)
文摘Model reduction technique is usually employed in model updating process. In this paper, a new model updat- ing method named as cross-model cross-frequency response function (CMCF) method is proposed and a new iterative method associating the model updating method with the mo- del reduction technique is investigated. The new model up- dating method utilizes the frequency response function to avoid the modal analysis process and it does not need to pair or scale the measured and the analytical frequency re- sponse function, which could greatly increase the number of the equations and the updating parameters. Based on the traditional iterative method, a correction term related to the errors resulting from the replacement of the reduction ma- trix of the experimental model with that of the finite element model is added in the new iterative method. Comparisons be- tween the traditional iterative method and the proposed itera- tive method are shown by model updating examples of solar panels, and both of these two iterative methods combine the CMCF method and the succession-level approximate reduc- tion technique. Results show the effectiveness of the CMCF method and the proposed iterative method .
基金Supported by National Natural Science Foundation of China under Grant No.50379025.
文摘Structural cracks can change the frequency response function (FRF) of an offshore platform. Thus, FRF shifts can be used to detect cracks. When a crack at a specific location and magnitude occurs in an offshore structure, changes in the FRF can be measured. In this way, shifts in FRF can be used to detect cracks. An experimental model was constructed to verify the FRF method. The relationship between FRF and cracks was found to be non-linear. The effect of multiple cracks on FRF was analyzed, and the shift due to multiple cracks was found to be much more than the summation of FRF shifts due to each of the cracks. Then the effects of noise and changes in the mass of the jacket on FRF were evaluated. The results show that significant damage to a beam can be detected by dramatic changes in the FRF, even when 10% random noise exists. FRF can also be used to approximately locate the breakage, but it can neither be efficiently used to predict the location of breakage nor the existence of small hairline cracks. The FRF shift caused by a 7% mass change is much less than the FRF shift caused by the breakage of any beam, but is larger than that caused by any early cracks.
文摘Using the generalized viscoelastic fluid model, we derive the dielectric response function in a strongly coupled dusty magnetoplasma which reveals two different dust acoustic(DA) wave modes in the hydrodynamic and kinetic limits. The effects of the strong interaction of dust grains and the external magnetic on these DA modes, as well as on the shear wave are examined. It is found that both the real and imaginary parts of DA waves are significantly modified in strongly coupled dusty magnetoplasmas. The implications of our results to space and laboratory dusty plasmas are briefly discussed.
文摘This study was executed to offer the basis for optimized profit from fertilizer use for sorghum yield and to determine robust crop nutrient response function and economic rate for the production of sorghum at Miesso Central Rift Valley of Ethiopia. Trails were conducted at six experimental sites, sorghum yield response to N and P fertilizers application and economically optimum rates of nitrogen (EONR) and phosphorus (EOPR) were evaluated on a vertisols within the semi-arid Miesso districts west Hararge zone of Oromia region. The nutrient rates in 2014 cropping season four levels of Nitrogen (N) alone, these levels with 20 <span style="white-space:nowrap;">kg·ha<sup>−1</sup></span> Phosphorus (P) and without N, 69 kg<span style="white-space:nowrap;">·</span>ha<sup><span style="white-space:nowrap;">−</span>1</sup> N with three levels of P treatments including the zero control were evaluated. In 2015, cropping season similar rates of N alone, the same rate N with 20 <span style="white-space:nowrap;">kg·ha<sup>−1</sup></span> P, 92 <span style="white-space:nowrap;">kg·ha<sup>−1</sup></span> N with three rates of P including the zero control were evaluated. The treatments were arranged in a randomized complete block with three replications in factorial design. Nutrient responses of sorghum were determined using asymptotic quadratic plateau functions. The significantly highest nitrogen rate was 46 <span style="white-space:nowrap;">kg·ha<sup>−1</sup></span> alone in 2014 season, which gave grain yield of 2.56 Mg<span style="white-space:nowrap;">·ha<sup>−1</sup></span><sup> </sup>with a maximum yield advantage of 43%. P rates in both seasons and combined (sites + seasons) were not significantly influenced sorghum yield. Nitrogen agronomic and partial factor productivity peaked at 23 kg N <span style="white-space:nowrap;">ha<sup>−1</sup></span> but declined with increasing N rate. The EONR combined (sites + seasons) were 37, 45, 52 and 60 <span style="white-space:nowrap;">kg·ha<sup>−1</sup></span><sup> </sup>and for the profit to cost ratio (PCR) were 2.43, 3.65, 4.86 and 5.79 at difference cost to grain price ratios (CP) = 3.6, 2.3, 1.6 and 1.2 respectively at Miesso Ethiopia. Nitrogen application had economically profitable than P. The study concluded that the application of N at 37 or 60 kg N <span style="white-space:nowrap;">ha<sup>−1</sup></span> to sorghum production could be economically profitable for those economically constrained farmers or economically not constrained farmers. Validation should be farther conducted on farmers’ fields for refining the results obtained.
文摘Based on the continuum physics and taking into account variation of the heat dissipation, Helmholtz free ener-gy, internal energy and exothermicity with the thermodynamic process, in this paper, the functional equations of the general-ized stress and entropy associated ivith the time and temperature are derived for the irreversible process of thermoviscoelastic-plastic materials. As an example, the response functionals of Maxwell viscoelastic materials are obtained.
文摘A generalized response function based on the use of dielectric spectra for dielectric relaxation process is derived. We apply the general response function to the special case in order to examine how special dielectric relaxation functions developed by other authors for solvent relaxation can be derived based on our formulations. Three typical solvents, water, methanol, and acetonitrile are used to investigate the electronic polarization processes of polar solvents. The solvent electronic polarization process is shown after a linear variation with the external electric field imposed on the solvent. The results show a conclusion that the electronic polarization of the solvents will accompany the electronic transition synchronously, without time lag.
基金Project supported by the Program for Professor of Special Appointment(Eastern Scholar)at Shanghai Institutions of Higher Learningthe Project for the Natural Science Foundation of Shanghai,China(Grant No.21ZR1444100)the Project for the National Natural Science Foundation of China(Grant Nos.72174121,71774111,71871144,and 71804047)。
文摘In recent years,rumor spreading has caused widespread public panic and affected the whole social harmony and stability.Consequently,how to control the rumor spreading effectively and reduce its negative influence urgently needs people to pay much attention.In this paper,we mainly study the near-optimal control of a stochastic rumor spreading model with Holling II functional response function and imprecise parameters.Firstly,the science knowledge propagation and the refutation mechanism as the control strategies are introduced into a stochastic rumor spreading model.Then,some sufficient and necessary conditions for the near-optimal control of the stochastic rumor spreading model are discussed respectively.Finally,through some numerical simulations,the validity and availability of theoretical analysis is verified.Meanwhile,it shows the significance and effectiveness of the proposed control strategies on controlling rumor spreading,and demonstrates the influence of stochastic disturbance and imprecise parameters on the process of rumor spreading.
基金supported by Key Laboratory of Radioactive Geology and Exploration Technology Fundamental Science for National Defense(No. 2011RGET04)East China Institute of Technology, and National Natural Science Foundation of China (No. 41074078)
文摘Usually, there are several methods, e.g. experiment, interpolation experiment-based, analytic function, and Monte-Carlo simulation, to calculate the response functions in LaBr3(Ce) detectors. In logging applications, the experiment-based methods cannot be adopted because of their limitations. Analytic function has the advantage of fast calculating speed, but it is very difficult to take into account many effects that occur in practical applications. On the contrary, Monte-Carlo simulation can deal with physical and geometric configurations very tactfully. It has a distinct advantage for calculating the functions with complex configurations in borehole. A new application of LaBr3(Ce) detector is in natural gamma-rays borehole spectrometer for uranium well logging. Calculation of response functions must consider a series of physical and geometric factors under complex logging conditions, including earth formations and its relevant parameters, different energies, material and thickness of the casings, the fluid between the two tubes, and relative position of the LaBr3(Ce) crystal to steel ingot at the front of logging tube. The present work establishes Monte-Carlo simulation models for the above-mentioned situations, and then performs calculations for main gamma-rays from natural radio-elements series. The response functions can offer experimental directions for the design of borehole detection system, and provide technique basis and basic data for spectral analysis of natural gamma-rays, and for sonrceless calibration in uranium quantitative interpretation.
文摘This paper proposes the continuous-time singular value decomposition (SVD) for the impulse response function, a special kind of Green’s functions, in order to find a set of singular functions and singular values so that the convolutions of such function with the set of singular functions on a specified domain are the solutions to the inhomogeneous differential equations for those singular functions. A numerical example was illustrated to verify the proposed method. Besides the continuous-time SVD, a discrete-time SVD is also presented for the impulse response function, which is modeled using a Toeplitz matrix in the discrete system. The proposed method has broad applications in signal processing, dynamic system analysis, acoustic analysis, thermal analysis, as well as macroeconomic modeling.
文摘The geomagnetic night-time values were used to estimate the electromagnetic response function Q1 for half-year period. If the spatial structure of the source field can be described by the approximation, one can estimate the Q1 value using the single-station Z/H method. This technique enables us to carry out regional deep gcomagnetic sounding by the method. The data used for analyses are geomagnetic night-time values for about, typically, 26 years from 5 good-quality stations and for several years from 34 stations distributed over the globe. The results indicate that the night-time values yield more reliable response estimates for half-year period compared to the usual estimates obtained from daily means. It implies that the approximation for the night-time fields holds good for the half-year period, but the daily means are not suitable for estimating the response function of the semi-annual variations by using the single-station method. Source field analyses for daily means data and night-time means data have also been carried out in this paper.
基金supported by National Natural Science Foundation of China(Nos.10976028,11375195)National Magnetic Confinement Fusion Science Program of China(No.2013GB104003)
文摘In order to make further studies on fusion neutron diagnosis on HL-2A /HL-2M,we have developed and succeeded in the calculation of the Response Function for a Bonner sphere spectrometer,which consists of eight polyethylene spheres with ^3He proportional counters inside.The response function of the Bonner spectrometer to neutrons is of fundamental importance for its neutron spectrum unfolding procedure and is directly related to the quality of the unfolded spectrum.In this paper,we calculated the response function to neutrons from 10^-9 MeV to100 MeV by Geant4.In order to test the accuracy of the Geant4 simulation,we apply it to measure an ^241Am-Be neutron source,and the measured neutron counts of the spectrometer and simulated counts are found to be highly consistent,with a relative error up to 9.3%.This has proven the calculation of the neutron response of the Bonner sphere spectrometer by Geant4 to be quite accurate.
文摘A suspicion of a femoral neck fracture is a frequently recurring situation, especially in nursing homes. For the clarification of such a suspicion normally imaging techniques are used. Such equipment is expensive and therefore is located in hospitals. In addition to the costs, a transport causes stress for the patient. This pilot study is devoted to the question whether the detection of a femoral neck fracture with vibration measurements is possible in principal. In such a case, the clarification could be done on-site by an ordinary person using much cheaper equipment. This would reduce the stress for the patient and save money. For this purpose vibration measurements on a dead body with intact, with partially fractured and with complete cut femoral neck have been performed. Two different methods for the vibration initiation have been investigated, the so called impact testing and the shaker testing. The frequency response function has been determined for all combinations on both sides of the body. It turned out that there is a clear difference in the frequency response functions of the fractured bone with respect to the intact bone when shaker testing is used. This indicates that the method could have the potential to be a cost-saving alternative to imaging techniques. However, in a next step a statistically reliable clinical survey on living persons needs to be done.
文摘Background:All neurons of the visual system exhibit response to differences in luminance.This neural response to visual contrast,also known as the contrast response function(CRF),follows a characteristic sigmoid shape that can be fitted with the Naka-Rushton equation.Four parameters define the CRF,and they are often used in different visual research disciplines,since they describe selective variations of neural responses.As novel technologies have grown,the capacity to record thousands of neurons simultaneously brings new challenges:processing and robustly analyzing larger amounts of data to maximize the outcomes of our experimental measurements.Nevertheless,current guidelines to fit neural activity based on the Naka-Rushton equation have been poorly discussed in depth.In this study,we explore several methods of boundary-setting and least-square curve-fitting for the CRF in order to avoid the pitfalls of blind curve-fitting.Furthermore,we intend to provide recommendations for experimenters to better prepare a solid quantification of CRF parameters that also minimize the time of the data acquisition.For this purpose,we have created a simplified theoretical model of spike-response dynamics,in which the firing rate of neurons is generated by a Poisson process.The spike trains generated by the theoretical model depending on visual contrast intensities were then fitted with the Naka-Rushton equation.This allowed us to identify combinations of parameters that were more important to adjust before performing experiments,to optimize the precision and efficiency of curve fitting(e.g.,boundaries of CRF parameters,number of trials,number of contrast tested,metric of contrast used and the effect of including multi-unit spikes into a single CRF,among others).Several goodness-of-fit methods were also examined in order to achieve ideal fits.With this approach,it is possible to anticipate the minimal requirements to gather and analyze data in a more efficient way in order to build stronger functional models.Methods:Spike-trains were randomly generated following a Poisson distribution in order to draw both an underlying theoretical curve and an empirical one.Random noise was added to the fit to simulate empirical conditions.The correlation function was recreated on the simulated data and re-fit using the Naka-Rushton equation.The two curves were compared:the idea being to determine the most advantageous boundaries and conditions for the curve-fit to be optimal.Statistical analysis was performed on the data to determine those conditions for experiments.Experiments were then conducted to acquire data from mice and cats to verify the model.Results:Results were obtained successfully and a model was proposed to assess the goodness of the fit of the contrast response function.Various parametres and their influence of the model were tested.Other similar models were proposed and their performance was assessed and compared to the previous ones.The fit was optimized to give semi-strict guidelines for scientists to follow in order to maximize their efficiency while obtaining the contrast tuning of a neuron.Conclusions:The aim of the study was to assess the optimal testing parametres of the neuronal response to visual gratings with various luminance,also called the CRF.As technology gets more powerful and potent,one must make choices when experimenting.With a strong model,robust boundaries,and strong experimental conditioning,the best fit to a function can lead to more efficient analysis and stronger cognitive models.
基金supported by the National Natural Science Foundation of China(Grant No.52175463)Key R&D plan of Hubei Province(Grant No.2022BAA055)State Key Laboratory of Smart Manufacturing for Special Vehicles and Transmission System(Grant No.GZ2022KF008)。
文摘Because robotic milling has become an important means for machining significant large parts,obtaining the structural frequency response function(FRF)of a milling robot is an important basis for machining process optimization.However,because of its articulated serial structure,a milling robot has an enormous number of operating postures,and its dynamics are affected by the motion state.To accurately obtain the FRF in the operating state of a milling robot,this paper proposes a method based on the structural modification concept.Unlike the traditional excitation method,the proposed method uses robot joint motion excitation instead of hammering excitation to realize automation.To address the problem of the lack of information brought by motion excitation,which leads to inaccurate FRF amplitudes,this paper derives the milling robot regularization theory based on the sensitivity of structural modification,establishes the modal regularization factor,and calibrates the FRF amplitude.Compared to the commonly used manual hammering experiments,the proposed method has high accuracy and reliability when the milling robot is in different postures.Because the measurement can be performed directly and automatically in the operation state,and the problem of inaccurate amplitudes is solved,the proposed method provides a basis for optimizing the machining posture of a milling robot and improving machining efficiency.
文摘In this paper, we study a modified Leslie-Gower predator-prey model with Smith growth subject to homogeneous Neumann boundary condition, in which the functional response is the Crowley-Martin functional response term. Firstly, for ODE model, the local stability of equilibrium point is given. And by using bifurcation theory and selecting suitable bifurcation parameters, we find many kinds of bifurcation phenomena, including Transcritical bifurcation and Hopf bifurcation. For the reaction-diffusion model, we find that Turing instability occurs. Besides, it is proved that Hopf bifurcation exists in the model. Finally, numerical simulations are presented to verify and illustrate the theoretical results.
文摘To investigate the effects of self-memory diffusion on predator-prey models, we consider a predator-prey model with Bazykin functional response of self- memory diffusion. The uniqueness, boundedness, positivity, existence and stability of equilibrium point of the model are studied. In this paper, the uniqueness of the solution is discussed under the non-negative initial function and Neumann boundary conditions satisfying a specific space. The boundness of the solution is proved by the comparison principle of parabolic equations, and the positivity of the solution is proved by the strong maximum principle of parabolic equations. Hurwitz criterion and Lyapunov function construction are used to analyze the local stability and global stability of feasible equilibrium points. The results show that the system solution is unique non-negative and bounded. The model is unstable at the trivial equilibrium point E0 and the boundary equilibrium point E1, and the condition of whether the positive equilibrium point E2 is stable under certain conditions is given.