Salt balance in simulated soil columns was calculated on the basis of a large amount of long termobservation data. The results showed that under the climate conditions of senii-arid region of the Hnaiig-Huai-Hai Plain...Salt balance in simulated soil columns was calculated on the basis of a large amount of long termobservation data. The results showed that under the climate conditions of senii-arid region of the Hnaiig-Huai-Hai Plain, the soils in the columns were under salt accumulation conditions when the groundwater depthwas controlled at less than 2.0 m, and under desalinization conditions when at larger than 2.5 m. In the soilcolnmns with clay soil and silty loam soil intercalated with a clay layer, the aniount of salt accumulated wasfar less than that in the soil column with silty loain soil throughout the whole profile. Under no irrigationconditions crop planting niay increase groundwater evaporation and hence salt accumulation in soil, mforingthe soil colnmns under desalinization be under salt accumulation conditions.展开更多
A three-dimensional,high resolution,Finite Volume Coastal Ocean Model(FVCOM) is used to diagnose the influences of winds during the fall of 2001 on the salt balance of the Tampa Bay.To distinguish the wind effecting...A three-dimensional,high resolution,Finite Volume Coastal Ocean Model(FVCOM) is used to diagnose the influences of winds during the fall of 2001 on the salt balance of the Tampa Bay.To distinguish the wind effecting,two experiments are designed:one is driven by tides and rivers;the other is driven by tides,rivers and winds.First,the salinity change induced by wind is provided.Wind forcing can significantly increase the salinity inside the Tampa Bay,along with decreases of horizontal and vertical salt gradients.Subsequently,the salt balance principles are detailed addressed.The primary salt balance is between the total(horizontal plus vertical)advective salt flux divergence and vertical diffusive salt flux divergence except at the channel bottom where horizontal diffusive salt flux divergence comes into play.At last,the salt balance variation induced by winds is further addressed.Wind forcing does not change the relative importance of salt balance terms.The variations of the salt balance terms influenced by winds are highly dependent on the specific locations.Besides,the variations of the total advective salt flux divergence and the vertical diffusive salt flux divergence are nearly couterbalance,and both of two terms are much greater than that of the horizontal diffusive salt flux divergence.展开更多
Fresh water resource scarcity and soil salt accumulation in the root-zone are two key limiting factors for sustainable agricultural development in the oasis region of arid inland basin, northwest China. The aim of thi...Fresh water resource scarcity and soil salt accumulation in the root-zone are two key limiting factors for sustainable agricultural development in the oasis region of arid inland basin, northwest China. The aim of this study was to explore an appropriate irrigation scheme to maintain sustainable crop cultivation in this region. The effects of four irrigation levels (full irrigation, mild deficit, moderate deficit, and severe deficit) and three irrigation methods (border, surface drip and subsurface drip) on soil water and salt dynamics, highland barley (Hordeum vulgare L.) yield, and crop water use efficiency were studied by field plot experiments. The results showed that soil salt in 0-100 cm profile was accumulated under all experimental treatments after one season of highland barley planting, but the accumulated salt mass decreased with the decrease of the lower limit of irrigation. Salt mass in 0-100 cm soil profile under subsurface drip irrigation was 16.8%-57.8% and 2.9%-58.4% less than that under border and surface drip irrigation, respectively. The grain yield of highland barley decreased first and then increased with the decrease of the lower limit of irrigation under surface drip and subsurface drip irrigation, but it was on the contrary under border irrigation. Mean grain yield for all irrigation levels under subsurface drip irrigation was 5.7% and 18.8% higher than that under border and surface drip irrigation, respectively. Water use efficiency increased with the decrease of the lower limit of irrigation, and the averaged water use efficiency of all irrigation levels under subsurface drip irrigation was 11.9% and 14.2% higher than that under border and surface drip irrigation, respectively. Considering economic benefit and irrigation water requirement, subsurface drip irrigation with the lower limit of irrigation of 50%-55% field capacity is suggested for highland barley planting in the arid oasis region.展开更多
In the dominant winter wheat (WW)-summer maize (SM) double cropping system in the low plain located in the North China, limited access to fresh water, especially during dry season, constitutes a major obstacle to ...In the dominant winter wheat (WW)-summer maize (SM) double cropping system in the low plain located in the North China, limited access to fresh water, especially during dry season, constitutes a major obstacle to realize high crop productivity. Using the vast water resources of the saline upper aquifer for irrigation during WW jointing stage, may help to bridge the peak of dry season and relieve the tight water situation in the region. A field experiment was conducted during 2009-2012 to investigate the effects of saline irrigation during WW jointing stage on soil salt accumulation and productivity of WW and SM. The experiment treatments comprised no irrigation (T1), fresh water irrigation (T2), slightly saline water irrigation (T3:2.8 dS m-l), and strongly saline water irrigation (T4:8.2 dS m-1) at WW jointing stage. With regard to WW yields and aggregated annual WW-SM yields, clear benefits of saline water irrigation (T3 & T4) compared to no irrigation (T1), as well as insignificant yield losses compared to fresh water irrigation (T2) occurred in all three experiment years. However, the increased soil salinity in eady SM season in consequence of saline irrigation exerted a negative effect on SM photosynthesis and final yield in two of three experiment years. To avoid the negative aftereffects of saline irrigation, sufficient fresh water irrigation during SM sowing phase (i.e., increase from 60 to 90 mm) is recommended to guarantee good growth conditions during the sensitive early growing period of SM. The risk of long-term accumulation of salts as a result of saline irrigation during the peak of dry season is considered low, due to deep leaching of salts during regularly occurring wet years, as demonstrated in the 2012 experiment year. Thus, applying saline water irrigation at jointing stage of WW and fresh water at sowing of SM is most promising to realize high yield and fresh irrigation water saving.展开更多
A field experiment was carried out to investigate the effects of different emitter discharge rates under drip irrigation on soil salinity distribution and cotton yield in an extreme arid region of Tarim River catchmen...A field experiment was carried out to investigate the effects of different emitter discharge rates under drip irrigation on soil salinity distribution and cotton yield in an extreme arid region of Tarim River catchment in Northwest China. Four treatments of emitter discharge rates, i.e. 1.8, 2.2, 2.6 and 3.2 L/h, were designed under drip irrigation with plastic mulch in this paper. The salt distribution in the range of 70-cm horizontal distance and 100-cm vertical distance from the emitter was measured and analyzed during the cotton growing season. The soil salinity is expressed in terms of electrical conductivity (dS/m) of the saturated soil extract (ECe), which was measured using Time Domain Reflector (TDR) 20 times a year, including 5 irrigation events and 4 measured times before/after an irrigation event. All the treatments were repeated 3 times. The groundwater depth was observed by SEBA MDS Dipper 3 automatically at three experimental sites. The results showed that the order of reduction in averaged soil salinity was 2.6 L/h 〉 2.2 L/h 〉 1.8 L/h 〉 3.2 L/h after the completion of irrigation for the 3-year cotton growing season. Therefore, the choice of emitter discharge rate is considerably important in arid silt loam. Usually, the ideal emitter discharge rate is 2.4-3.0 L/h for soil desalinization with plastic mulch, which is advisable mainly because of the favorable salt leaching of silt loam and the climatic conditions in the studied arid area. Maximum cotton yield was achieved at the emitter discharge rate of 2.6 L/h under drip irrigation with plastic mulch in silty soil at the study site. Hence, the emitter discharge rate of 2.6 L/h is recommended for drip irrigation with plastiic mulch applied in silty soil in arid regions.展开更多
Jizzakh Province in Uzbekistan is one of the largest irrigated areas in Central Asia without natural drainage.In combination with aridity,climate change and extensive irrigation practices,this has led to the widesprea...Jizzakh Province in Uzbekistan is one of the largest irrigated areas in Central Asia without natural drainage.In combination with aridity,climate change and extensive irrigation practices,this has led to the widespread salinization of agricultural land.The aim of this study was to identify opportunities to improve the reclamation status of the irrigated area and how best to effectively use the water resources in Jizzakh Province based on investigations conducted between 1995 and 2016.A database of field measurements of groundwater levels,mineralization and soil salinity conducted by the provincial Hydro-Geological Reclamation Expeditions was used in the study.The total groundwater mineralization was determined using a portable electric conductometer(Progress 1T)and the chloride concentration was determined using the Mohr method.The soil salinity analyses were conducted by applying two different methods:(1)the extraction and assessment of the soluble salt content,and(2)using an SM-138 conductivity sensor applied to a 1:1 mixture of soil sample and water.The analyses of the monitoring results and the salt balance in the"irrigation water–soil–drainage water"system clearly demonstrated that the condition of the irrigated land in the province was not significantly improved.Under these conditions,the stability of crop yields is achieved mainly through the use of large volumes of fertilizer.However,excess amounts of mineral fertilizers can also cause the salinization of soils.The average groundwater salinization value in most of the irrigated land(75.3%)fluctuated between 1.1 and 5.0 g/L,while the values were less than 1.0 g/L in 13.1%of the land and in the range of 5.1–10.0 g/L in 10.5%of the land.During the period of 1995–2016 the salinization level of the irrigated land in Jizzakh Province increased slightly and the area could be divided into the following classes:no salinity(17.7%of the total area),low salinity(51.3%),moderate salinity(29.0%),and high salinity(2.0%).Detailed studies of the salt balance in irrigated land,the impact of climate change,increased fertilizer use,and repeated remediation leaching on the groundwater level and mineralization should be conducted in the future,due to the possibility of accelerated salinization,fertility decline,and reduced yields of agricultural crops.展开更多
An Mg-Zn-Mn-Ca alloy with high Zn content was fabricated by vacuum melting. The as-cast microstructure was investigated using XRD, SEM and EDS. It was shown that the alloy was composed of α-Mg, strip-like Ca2Mg6Zn3 a...An Mg-Zn-Mn-Ca alloy with high Zn content was fabricated by vacuum melting. The as-cast microstructure was investigated using XRD, SEM and EDS. It was shown that the alloy was composed of α-Mg, strip-like Ca2Mg6Zn3 and a few Mn- containing phases. Most of the Ca2Mg6Zn3 phase was distributed at grain boundaries while Mn-containing particles were deposited within grains. The as-cast samples were immersed in a Hank's balanced salt solution (HBSS) up to 24 h. The corroded surface morphology and cross-section microstructure were analyzed after different time of immersion so as to understand the corrosion behavior of the alloy. During immersion in the HBSS, the alloy corroded homogeneously at the very beginning and then localized corrosion occurred. The secondary phases protruded on the surface due to the dissolution of α-Mg, suggesting micro- galvanic corrosion occurred with secondary phases acting as the cathode and ct-Mg as the anode. Micro-cracks were formed at the interfaces between Ca2Mg6Zn3 and α-Mg, indicating an undermining tendency of the secondary phases.展开更多
文摘Salt balance in simulated soil columns was calculated on the basis of a large amount of long termobservation data. The results showed that under the climate conditions of senii-arid region of the Hnaiig-Huai-Hai Plain, the soils in the columns were under salt accumulation conditions when the groundwater depthwas controlled at less than 2.0 m, and under desalinization conditions when at larger than 2.5 m. In the soilcolnmns with clay soil and silty loam soil intercalated with a clay layer, the aniount of salt accumulated wasfar less than that in the soil column with silty loain soil throughout the whole profile. Under no irrigationconditions crop planting niay increase groundwater evaporation and hence salt accumulation in soil, mforingthe soil colnmns under desalinization be under salt accumulation conditions.
基金The Scientific Research Foundation of Third Institute of Oceanography,State Oceanic Administration under contract No.2014025The National Natural Science Foundation of China under contract Nos.41076003 and 41406070
文摘A three-dimensional,high resolution,Finite Volume Coastal Ocean Model(FVCOM) is used to diagnose the influences of winds during the fall of 2001 on the salt balance of the Tampa Bay.To distinguish the wind effecting,two experiments are designed:one is driven by tides and rivers;the other is driven by tides,rivers and winds.First,the salinity change induced by wind is provided.Wind forcing can significantly increase the salinity inside the Tampa Bay,along with decreases of horizontal and vertical salt gradients.Subsequently,the salt balance principles are detailed addressed.The primary salt balance is between the total(horizontal plus vertical)advective salt flux divergence and vertical diffusive salt flux divergence except at the channel bottom where horizontal diffusive salt flux divergence comes into play.At last,the salt balance variation induced by winds is further addressed.Wind forcing does not change the relative importance of salt balance terms.The variations of the salt balance terms influenced by winds are highly dependent on the specific locations.Besides,the variations of the total advective salt flux divergence and the vertical diffusive salt flux divergence are nearly couterbalance,and both of two terms are much greater than that of the horizontal diffusive salt flux divergence.
基金supported by the National Key Research and Development Program of China (Grant No.2018YFC0406604).
文摘Fresh water resource scarcity and soil salt accumulation in the root-zone are two key limiting factors for sustainable agricultural development in the oasis region of arid inland basin, northwest China. The aim of this study was to explore an appropriate irrigation scheme to maintain sustainable crop cultivation in this region. The effects of four irrigation levels (full irrigation, mild deficit, moderate deficit, and severe deficit) and three irrigation methods (border, surface drip and subsurface drip) on soil water and salt dynamics, highland barley (Hordeum vulgare L.) yield, and crop water use efficiency were studied by field plot experiments. The results showed that soil salt in 0-100 cm profile was accumulated under all experimental treatments after one season of highland barley planting, but the accumulated salt mass decreased with the decrease of the lower limit of irrigation. Salt mass in 0-100 cm soil profile under subsurface drip irrigation was 16.8%-57.8% and 2.9%-58.4% less than that under border and surface drip irrigation, respectively. The grain yield of highland barley decreased first and then increased with the decrease of the lower limit of irrigation under surface drip and subsurface drip irrigation, but it was on the contrary under border irrigation. Mean grain yield for all irrigation levels under subsurface drip irrigation was 5.7% and 18.8% higher than that under border and surface drip irrigation, respectively. Water use efficiency increased with the decrease of the lower limit of irrigation, and the averaged water use efficiency of all irrigation levels under subsurface drip irrigation was 11.9% and 14.2% higher than that under border and surface drip irrigation, respectively. Considering economic benefit and irrigation water requirement, subsurface drip irrigation with the lower limit of irrigation of 50%-55% field capacity is suggested for highland barley planting in the arid oasis region.
基金funded by the National Scientific and Technological Supporting Scheme,China (2013BAD05B02 )the Demonstration Plan of Modern Agriculture of Chinese Academy of Sciences (CXJQ120108-2)the support by the Sino-German Center for Research Promotion,Germany (GZ 1149)
文摘In the dominant winter wheat (WW)-summer maize (SM) double cropping system in the low plain located in the North China, limited access to fresh water, especially during dry season, constitutes a major obstacle to realize high crop productivity. Using the vast water resources of the saline upper aquifer for irrigation during WW jointing stage, may help to bridge the peak of dry season and relieve the tight water situation in the region. A field experiment was conducted during 2009-2012 to investigate the effects of saline irrigation during WW jointing stage on soil salt accumulation and productivity of WW and SM. The experiment treatments comprised no irrigation (T1), fresh water irrigation (T2), slightly saline water irrigation (T3:2.8 dS m-l), and strongly saline water irrigation (T4:8.2 dS m-1) at WW jointing stage. With regard to WW yields and aggregated annual WW-SM yields, clear benefits of saline water irrigation (T3 & T4) compared to no irrigation (T1), as well as insignificant yield losses compared to fresh water irrigation (T2) occurred in all three experiment years. However, the increased soil salinity in eady SM season in consequence of saline irrigation exerted a negative effect on SM photosynthesis and final yield in two of three experiment years. To avoid the negative aftereffects of saline irrigation, sufficient fresh water irrigation during SM sowing phase (i.e., increase from 60 to 90 mm) is recommended to guarantee good growth conditions during the sensitive early growing period of SM. The risk of long-term accumulation of salts as a result of saline irrigation during the peak of dry season is considered low, due to deep leaching of salts during regularly occurring wet years, as demonstrated in the 2012 experiment year. Thus, applying saline water irrigation at jointing stage of WW and fresh water at sowing of SM is most promising to realize high yield and fresh irrigation water saving.
基金supported by the National Basic Research Program of China (2009CB421302)the National Natural Science Foundation of China (41071026,51069017)
文摘A field experiment was carried out to investigate the effects of different emitter discharge rates under drip irrigation on soil salinity distribution and cotton yield in an extreme arid region of Tarim River catchment in Northwest China. Four treatments of emitter discharge rates, i.e. 1.8, 2.2, 2.6 and 3.2 L/h, were designed under drip irrigation with plastic mulch in this paper. The salt distribution in the range of 70-cm horizontal distance and 100-cm vertical distance from the emitter was measured and analyzed during the cotton growing season. The soil salinity is expressed in terms of electrical conductivity (dS/m) of the saturated soil extract (ECe), which was measured using Time Domain Reflector (TDR) 20 times a year, including 5 irrigation events and 4 measured times before/after an irrigation event. All the treatments were repeated 3 times. The groundwater depth was observed by SEBA MDS Dipper 3 automatically at three experimental sites. The results showed that the order of reduction in averaged soil salinity was 2.6 L/h 〉 2.2 L/h 〉 1.8 L/h 〉 3.2 L/h after the completion of irrigation for the 3-year cotton growing season. Therefore, the choice of emitter discharge rate is considerably important in arid silt loam. Usually, the ideal emitter discharge rate is 2.4-3.0 L/h for soil desalinization with plastic mulch, which is advisable mainly because of the favorable salt leaching of silt loam and the climatic conditions in the studied arid area. Maximum cotton yield was achieved at the emitter discharge rate of 2.6 L/h under drip irrigation with plastic mulch in silty soil at the study site. Hence, the emitter discharge rate of 2.6 L/h is recommended for drip irrigation with plastiic mulch applied in silty soil in arid regions.
基金funded by the National Natural Science Foundation of China(U1603242)the Chinese Academy of Sciences President’s International Fellowship Initiative(2018VCA0007)the Science and Technology Service Network Initiative(Y838031)
文摘Jizzakh Province in Uzbekistan is one of the largest irrigated areas in Central Asia without natural drainage.In combination with aridity,climate change and extensive irrigation practices,this has led to the widespread salinization of agricultural land.The aim of this study was to identify opportunities to improve the reclamation status of the irrigated area and how best to effectively use the water resources in Jizzakh Province based on investigations conducted between 1995 and 2016.A database of field measurements of groundwater levels,mineralization and soil salinity conducted by the provincial Hydro-Geological Reclamation Expeditions was used in the study.The total groundwater mineralization was determined using a portable electric conductometer(Progress 1T)and the chloride concentration was determined using the Mohr method.The soil salinity analyses were conducted by applying two different methods:(1)the extraction and assessment of the soluble salt content,and(2)using an SM-138 conductivity sensor applied to a 1:1 mixture of soil sample and water.The analyses of the monitoring results and the salt balance in the"irrigation water–soil–drainage water"system clearly demonstrated that the condition of the irrigated land in the province was not significantly improved.Under these conditions,the stability of crop yields is achieved mainly through the use of large volumes of fertilizer.However,excess amounts of mineral fertilizers can also cause the salinization of soils.The average groundwater salinization value in most of the irrigated land(75.3%)fluctuated between 1.1 and 5.0 g/L,while the values were less than 1.0 g/L in 13.1%of the land and in the range of 5.1–10.0 g/L in 10.5%of the land.During the period of 1995–2016 the salinization level of the irrigated land in Jizzakh Province increased slightly and the area could be divided into the following classes:no salinity(17.7%of the total area),low salinity(51.3%),moderate salinity(29.0%),and high salinity(2.0%).Detailed studies of the salt balance in irrigated land,the impact of climate change,increased fertilizer use,and repeated remediation leaching on the groundwater level and mineralization should be conducted in the future,due to the possibility of accelerated salinization,fertility decline,and reduced yields of agricultural crops.
文摘An Mg-Zn-Mn-Ca alloy with high Zn content was fabricated by vacuum melting. The as-cast microstructure was investigated using XRD, SEM and EDS. It was shown that the alloy was composed of α-Mg, strip-like Ca2Mg6Zn3 and a few Mn- containing phases. Most of the Ca2Mg6Zn3 phase was distributed at grain boundaries while Mn-containing particles were deposited within grains. The as-cast samples were immersed in a Hank's balanced salt solution (HBSS) up to 24 h. The corroded surface morphology and cross-section microstructure were analyzed after different time of immersion so as to understand the corrosion behavior of the alloy. During immersion in the HBSS, the alloy corroded homogeneously at the very beginning and then localized corrosion occurred. The secondary phases protruded on the surface due to the dissolution of α-Mg, suggesting micro- galvanic corrosion occurred with secondary phases acting as the cathode and ct-Mg as the anode. Micro-cracks were formed at the interfaces between Ca2Mg6Zn3 and α-Mg, indicating an undermining tendency of the secondary phases.