Schwann cell transplantation is considered one of the most promising cell-based therapy to repair injured spinal cord due to its unique growth-promoting and myelin-forming properties.A the Food and Drug Administration...Schwann cell transplantation is considered one of the most promising cell-based therapy to repair injured spinal cord due to its unique growth-promoting and myelin-forming properties.A the Food and Drug Administration-approved Phase I clinical trial has been conducted to evaluate the safety of transplanted human autologous Schwann cells to treat patients with spinal cord injury.A major challenge for Schwann cell transplantation is that grafted Schwann cells are confined within the lesion cavity,and they do not migrate into the host environment due to the inhibitory barrier formed by injury-induced glial scar,thus limiting axonal reentry into the host spinal cord.Here we introduce a combinatorial strategy by suppressing the inhibitory extracellular environment with injection of lentivirus-mediated transfection of chondroitinase ABC gene at the rostral and caudal borders of the lesion site and simultaneously leveraging the repair capacity of transplanted Schwann cells in adult rats following a mid-thoracic contusive spinal cord injury.We report that when the glial scar was degraded by chondroitinase ABC at the rostral and caudal lesion borders,Schwann cells migrated for considerable distances in both rostral and caudal directions.Such Schwann cell migration led to enhanced axonal regrowth,including the serotonergic and dopaminergic axons originating from supraspinal regions,and promoted recovery of locomotor and urinary bladder functions.Importantly,the Schwann cell survival and axonal regrowth persisted up to 6 months after the injury,even when treatment was delayed for 3 months to mimic chronic spinal cord injury.These findings collectively show promising evidence for a combinatorial strategy with chondroitinase ABC and Schwann cells in promoting remodeling and recovery of function following spinal cord injury.展开更多
Schwann cells are essential for the maintenance and function of motor neurons,axonal networks,and the neuromuscular junction.In amyotrophic lateral sclerosis,where motor neuron function is progressively lost,Schwann c...Schwann cells are essential for the maintenance and function of motor neurons,axonal networks,and the neuromuscular junction.In amyotrophic lateral sclerosis,where motor neuron function is progressively lost,Schwann cell function may also be impaired.Recently,important signaling and potential trophic activities of Schwann cell-derived exosomal vesicles have been reported.This case report describes the treatment of a patient with advanced amyotrophic lateral sclerosis using serial intravenous infusions of allogeneic Schwann cell-derived exosomal vesicles,marking,to our knowledge,the first instance of such treatment.An 81-year-old male patient presented with a 1.5-year history of rapidly progressive amyotrophic lateral sclerosis.After initial diagnosis,the patient underwent a combination of generic riluzole,sodium phenylbutyrate for the treatment of amyotrophic lateral sclerosis,and taurursodiol.The patient volunteered to participate in an FDA-approved single-patient expanded access treatment and received weekly intravenous infusions of allogeneic Schwann cell-derived exosomal vesicles to potentially restore impaired Schwann cell and motor neuron function.We confirmed that cultured Schwann cells obtained from the amyotrophic lateral sclerosis patient via sural nerve biopsy appeared impaired(senescent)and that exposure of the patient’s Schwann cells to allogeneic Schwann cell-derived exosomal vesicles,cultured expanded from a cadaver donor improved their growth capacity in vitro.After a period of observation lasting 10 weeks,during which amyotrophic lateral sclerosis Functional Rating Scale-Revised and pulmonary function were regularly monitored,the patient received weekly consecutive infusions of 1.54×1012(×2),and then consecutive infusions of 7.5×1012(×6)allogeneic Schwann cell-derived exosomal vesicles diluted in 40 mL of Dulbecco’s phosphate-buffered saline.None of the infusions were associated with adverse events such as infusion reactions(allergic or otherwise)or changes in vital signs.Clinical lab serum neurofilament and cytokine levels measured prior to each infusion varied somewhat without a clear trend.A more sensitive in-house assay suggested possible inflammasome activation during the disease course.A trend for clinical stabilization was observed during the infusion period.Our study provides a novel approach to address impaired Schwann cells and possibly motor neuron function in patients with amyotrophic lateral sclerosis using allogeneic Schwann cell-derived exosomal vesicles.Initial findings suggest that this approach is safe.展开更多
Our previous study found that rat bone marrow–derived neural crest cells(acting as Schwann cell progenitors)have the potential to promote long-distance nerve repair.Cell-based therapy can enhance peripheral nerve rep...Our previous study found that rat bone marrow–derived neural crest cells(acting as Schwann cell progenitors)have the potential to promote long-distance nerve repair.Cell-based therapy can enhance peripheral nerve repair and regeneration through paracrine bioactive factors and intercellular communication.Nevertheless,the complex contributions of various types of soluble cytokines and extracellular vesicle cargos to the secretome remain unclear.To investigate the role of the secretome and extracellular vesicles in repairing damaged peripheral nerves,we collected conditioned culture medium from hypoxia-pretreated neural crest cells,and found that it significantly promoted the repair of sensory neurons damaged by oxygen-glucose deprivation.The mRNA expression of trophic factors was highly expressed in hypoxia-pretreated neural crest cells.We performed RNA sequencing and bioinformatics analysis and found that miR-21-5p was enriched in hypoxia-pretreated extracellular vesicles of neural crest cells.Subsequently,to further clarify the role of hypoxia-pretreated neural crest cell extracellular vesicles rich in miR-21-5p in axonal growth and regeneration of sensory neurons,we used a microfluidic axonal dissociation model of sensory neurons in vitro,and found that hypoxia-pretreated neural crest cell extracellular vesicles promoted axonal growth and regeneration of sensory neurons,which was greatly dependent on loaded miR-21-5p.Finally,we constructed a miR-21-5p-loaded neural conduit to repair the sciatic nerve defect in rats and found that the motor and sensory functions of injured rat hind limb,as well as muscle tissue morphology of the hind limbs,were obviously restored.These findings suggest that hypoxia-pretreated neural crest extracellular vesicles are natural nanoparticles rich in miRNA-21-5p.miRNA-21-5p is one of the main contributors to promoting nerve regeneration by the neural crest cell secretome.This helps to explain the mechanism of action of the secretome and extracellular vesicles of neural crest cells in repairing damaged peripheral nerves,and also promotes the application of miR-21-5p in tissue engineering regeneration medicine.展开更多
Exosomes exhibit complex biological functions and mediate a variety of biological processes,such as promoting axonal regeneration and functional recove ry after injury.Long non-coding RNAs(IncRNAs)have been reported t...Exosomes exhibit complex biological functions and mediate a variety of biological processes,such as promoting axonal regeneration and functional recove ry after injury.Long non-coding RNAs(IncRNAs)have been reported to play a crucial role in axonal regeneration.Howeve r,the role of the IncRNA-microRNAmessenger RNA(mRNA)-competitive endogenous RNA(ceRNA)network in exosome-mediated axonal regeneration remains unclear.In this study,we performed RNA transcriptome sequencing analysis to assess mRNA expression patterns in exosomes produced by cultured fibroblasts(FC-EXOs)and Schwann cells(SCEXOs).Diffe rential gene expression analysis,Gene Ontology analysis,Kyoto Encyclopedia of Genes and Genomes analysis,and protein-protein intera ction network analysis were used to explo re the functions and related pathways of RNAs isolated from FC-EXOs and SC-EXOs.We found that the ribosome-related central gene Rps5 was enriched in FC-EXOs and SC-EXOs,which suggests that it may promote axonal regeneration.In addition,using the miRWalk and Starbase prediction databases,we constructed a regulatory network of ceRNAs targeting Rps5,including 27 microRNAs and five IncRNAs.The ceRNA regulatory network,which included Ftx and Miat,revealed that exsosome-derived Rps5 inhibits scar formation and promotes axonal regeneration and functional recovery after nerve injury.Our findings suggest that exosomes derived from fibro blast and Schwann cells could be used to treat injuries of peripheral nervous system.展开更多
Background:During Enterovirus type 71(EV71)infection,the structural viral protein 1(VP1)activates endoplasmic reticulum(ER)stress associated with peripheral myelin protein 22(PMP22)accumulation and induces autophagy.H...Background:During Enterovirus type 71(EV71)infection,the structural viral protein 1(VP1)activates endoplasmic reticulum(ER)stress associated with peripheral myelin protein 22(PMP22)accumulation and induces autophagy.However,the specific mechanism behind this process remains elusive.Methods:In this research,we used the VP1-overexpressing mouse Schwann cells(SCs)models co-transfected with a PMP22 silencing or Autocrine motility factor receptor(AMFR/gp78)overexpressing vector to explore the regulation of gp78 on PMP22 and its relationship with autophagy and apoptosis.Results:The activity of gp78 could be influenced by EV71-VP1,leading to a decrease in the ubiquitination and degradation of PMP22,resulting in PMP22 accumulation in ER.In VP1-overexpressing mouse SCs,all three ER stress sensors,including pancreatic endoplasmic reticulum kinase(PERK),activating transcription factor 6(ATF6)and inositol-requiring enzyme 1(IRE1)and the related downstream signals(C/EBP-homologous protein(CHOP)and Caspase 12)were activated,as well as the ER-resident chaperone Glucose-regulated protein 78(GRP78).In addition,VP1 upregulated the autophagy marker Microtubule-associated protein 1 light chain 3 beta(LC3B),while PMP22 silencing or gp78 overexpression reversed the phenomenon.Meanwhile,PMP22 silencing or gp78 overexpression increased proliferation of EV71-VP1-transfected mouse SCs.Conclusion:Gp78 could regulate PMP22 accumulation through ubiquitination degradation and cause ER stress and autophagy in EV71-VP1-overexpressing mouse SCs.Therefore,the gp78/PMP22/ER stress axis might emerge as a promising therapeutic target for myelin and neuronal damage induced by EV71 infection.展开更多
Runx2 is a major regulator of osteoblast differentiation and function;however,the role of Runx2 in peripheral nerve repair is unclea r.Here,we analyzed Runx2expression following injury and found that it was specifical...Runx2 is a major regulator of osteoblast differentiation and function;however,the role of Runx2 in peripheral nerve repair is unclea r.Here,we analyzed Runx2expression following injury and found that it was specifically up-regulated in Schwann cells.Furthermore,using Schwann cell-specific Runx2 knocko ut mice,we studied peripheral nerve development and regeneration and found that multiple steps in the regeneration process following sciatic nerve injury were Runx2-dependent.Changes observed in Runx2 knoc kout mice include increased prolife ration of Schwann cells,impaired Schwann cell migration and axonal regrowth,reduced re-myelination of axo ns,and a block in macrophage clearance in the late stage of regeneration.Taken together,our findings indicate that Runx2 is a key regulator of Schwann cell plasticity,and therefore peripheral nerve repair.Thus,our study shows that Runx2 plays a major role in Schwann cell migration,re-myelination,and peripheral nerve functional recovery following injury.展开更多
Schwann cells in peripheral nerves react to traumatic nerve injury by attempting to grow and regenerate.Howeve r,it is unclear what factors play a role in this process.In this study,we searched a GEO database and foun...Schwann cells in peripheral nerves react to traumatic nerve injury by attempting to grow and regenerate.Howeve r,it is unclear what factors play a role in this process.In this study,we searched a GEO database and found that expression of platelet factor 4 was markedly up-regulated after sciatic nerve injury.Platelet factor is an important molecule in cell apoptosis,diffe rentiation,survival,and proliferation.Further,polymerase chain reaction and immunohistochemical staining confirmed the change in platelet factor 4 in the sciatic nerve at different time points after injury.Enzyme-linked immunosorbent assay confirmed that platelet factor 4 was secreted by Schwann cells.We also found that silencing platelet factor 4 decreased the proliferation and migration of primary cultured Schwann cells,while exogenously applied platelet factor 4 stimulated Schwann cell prolife ration and migration and neuronal axon growth.Furthermore,knocking out platelet factor 4 inhibited the prolife ration of Schwann cells in injured rat sciatic nerve.These findings suggest that Schwann cell-secreted platelet factor 4 may facilitate peripheral nerve repair and regeneration by regulating Schwann cell activation and axon growth.Thus,platelet factor 4 may be a potential therapeutic target for traumatic peripheral nerve injury.展开更多
Objective To investigate the effect of rat Schwann cell secretion on the proliferation and differentiation of human embryonic neural stem cells (NSCs). Methods The samples were divided into three groups. In Group One,...Objective To investigate the effect of rat Schwann cell secretion on the proliferation and differentiation of human embryonic neural stem cells (NSCs). Methods The samples were divided into three groups. In Group One, NSCs were cultured in DMED/F12 in which Schwann cells had grown for one day. In Group Two, NSCs and Schwann cells were co-cultured. In Group Three, NSCs were cultured in DMEM/F12. The morphology of NSCs was checked and β-tubulin, GalC, hoechst 33342 and GFAP labellings were detected. Results In Group One, all neural spheres were attached to the bottom and differentiated. The majority of them were p-tubulin positive while a few of cells were GFAP or GalC positive. In Group Two, neural spheres remained undifferentiatied and their proliferation was inhibited in places where Schwann cells were robust. In places where there were few Schwann cells, NSCs performed in a similar manner as in Group One. In Group Three, the cell growth state deteriorated day after day. On the 7th day, most NSCs died. Conclusion The secretion of rat Schwann cells has a growth supportive and differentiation-inducing effect on human NSCs.展开更多
Objective To study the transplantation efficacy of neural stem cells (NSCs) and Schwann cells (SC) in a rat model of spinal cord contusion injury. Methods Multipotent neural stem cells (NSCs) and Schwann cells w...Objective To study the transplantation efficacy of neural stem cells (NSCs) and Schwann cells (SC) in a rat model of spinal cord contusion injury. Methods Multipotent neural stem cells (NSCs) and Schwann cells were harvested from the spinal cords of embryonic rats at 16 days post coitus and sciatic nerves of newborn rats, respectively. The differential characteristics of NSCs in vitro induced by either serum-based culture or co-culture with SC were analyzed by immunofluorescence. NSCs and SCs were co-transplanted into adult rats having undergone spinal cord contusion at T9 level. The animals were weekly monitored using the Basso-Beattie-Bresnahan locomotor rating system to evaluate functional recovery from contusion-induced spinal cord injury. Migration and differentiation of transplanted NSCs were studied in tissue sections using immunohistochemical staining. Results Embryonic spinal cord-derived NSCs differentiated into a large number of oligodendrocytes in serum-based culture upon the withdrawal of mitogens. In cocultures with SCs, NSCs differentiated into neuron more readily. Rats with spinal cord contusion injury which had undergone transplantation of NSCs and SCs into the intraspinal cavity demonstrated a moderate improvement in motor functions. Conclusions SC may contribute to neuronal differentiation of NSCs in vitro and in vivo. Transplantation of NSCs and SCs into the affected area may be a feasible approach to promoting motor recovery in patients after spinal cord injury.展开更多
Bone marrow mesenchymal stem cells were isolated from New Zealand white rabbits, culture-expanded and differentiated into Schwann cell-like cells. Autologous platelet-dch plasma and Schwann cell-like cells were mixed ...Bone marrow mesenchymal stem cells were isolated from New Zealand white rabbits, culture-expanded and differentiated into Schwann cell-like cells. Autologous platelet-dch plasma and Schwann cell-like cells were mixed in suspension at a density of 1 x 106 cells/mL, prior to introduction into a poly (lactic-co-glycolic acid) conduit. Fabricated tissue-engineered nerves were implanted into rabbits to bridge 10 mm sciatic nerve defects (platelet-rich plasma group). Controls were established using fibrin as the seeding matrix for Schwann cell-like cells at identical density to construct tissue-engineered nerves (fibrin group). Twelve weeks after implantation, toluidine blue staining and scanning electron microscopy were used to demonstrate an increase in the number of regenerating nerve fibers and thickness of the myelin sheath in the platelet-rich plasma group compared with the fibrin group. Fluoro-gold retrograde labeling revealed that the number of Fluoro-gold-positive neurons in the dorsal root ganglion and the spinal cord anterior horn was greater in the platelet-rich plasma group than in the fibrin group. Electrophysiological examination confirmed that compound muscle action potential and nerve conduction velocity were superior in the platelet-rich plasma group compared with the fibrin group. These results indicate that autologous platelet-rich plasma gel can effectively serve as a seeding matrix for Schwann cell-like cells to construct tissue-engineered nerves to promote perJpheral nerve regeneration.展开更多
Schwann cells (SCs) are significantly better at promoting neural stem cell (NSCs) proliferation, differentiation and synaptic formation when cocultured with NSCs in vitro, compared with cultured in a single nerve ...Schwann cells (SCs) are significantly better at promoting neural stem cell (NSCs) proliferation, differentiation and synaptic formation when cocultured with NSCs in vitro, compared with cultured in a single nerve growth factor. The present study transplanted NSCs and SCs into the brain of a rat model of Alzheimer's disease to investigate the effect of cotransplantation. Results show transplantation of both NSCs alone and NSCs + SCs significantly promoted learning and memory functions in Alzheimer's disease rats, decreased glial fibrillary acidic protein and calcium binding protein S100β expression, but increased expression of the cholinergic neuron marker choline acetyl transferase mRNA. The effect of NSCs + SCs cotransplantation was, however, more significant. NSCs and SCs cotransplantation significantly reduced the number of astrocytes and increased cholinergic neurons, facilitating the recovery of learning and memory function, compared with NSCs transplantation alone.展开更多
Hair follicle-derived neural crest stem cells can be induced to differentiate into Schwann cells in vivo and in vitro. However, the underlying regulatory mechanism during cell differentiation remains poorly understood...Hair follicle-derived neural crest stem cells can be induced to differentiate into Schwann cells in vivo and in vitro. However, the underlying regulatory mechanism during cell differentiation remains poorly understood. This study isolated neural crest stem cells from human hair folli-cles and induced them to differentiate into Schwann cells. Quantitative RT-PCR showed that microRNA (miR)-21 expression was gradually increased during the differentiation of neural crest stem cells into Schwann cells. After transfection with the miR-21 agonist (agomir-21), the differentiation capacity of neural crest stem cells was enhanced. By contrast, after transfection with the miR-21 antagonist (antagomir-21), the differentiation capacity was attenuated. Further study results showed that SOX-2 was an effective target of miR-21. Without compromising SOX2 mRNA expression, miR-21 can down-regulate SOX protein expression by binding to the 3′-UTR of miR-21 mRNA. Knocking out the SOX2 gene from the neural crest stem cells significantly reversed the antagomir-21 inhibition of neural crest stem cells differentiating into Schwann cells. The results suggest that miR-21 expression was increased during the differentiation of neural crest stem cells into Schwann cells and miR-21 promoted the differentiation through down-regu-lating SOX protein expression by binding to the 3′-UTR of SOX2 mRNA.展开更多
Because the inhibition of Nogo proteins can promote neurite growth and nerve cell differentiation, a cell-scaffold complex seeded with Nogo receptor (NgR)-silenced neural stem cells and Schwann cells may be able to ...Because the inhibition of Nogo proteins can promote neurite growth and nerve cell differentiation, a cell-scaffold complex seeded with Nogo receptor (NgR)-silenced neural stem cells and Schwann cells may be able to improve the microenvironment for spinal cord injury repair. Previous studies have found that mild hypothermia helps to attenuate secondary damage in the spinal cord and exerts a neuroprotective effect. Here, we constructed a cell-scaffold complex consisting of a poly(D,L-lactide-co-glycolic acid) (PLGA) scaffold seeded with NgR-silenced neural stem cells and Schwann cells, and determined the effects of mild hypothermia combined with the cell-scaffold complexes on the spinal cord hemi-transection injury in the T9 segment in rats. Compared with the PLGA group and the NgR-silencing cells + PLGA group, hindlimb motor function and nerve electrophysiological function were dearly improved, pathological changes in the injured spinal cord were attenuated, and the number of surviving cells and nerve fibers were increased in the group treated with the NgR-silenced cell scaffold + mild hypothermia at 34℃ for 6 hours. Furthermore, fewer pathological changes to the injured spinal cord and more surviving cells and nerve fibers were found after mild hypothermia therapy than in injuries not treated with mild hypothermia. These experimental results indicate that mild hypothermia combined with NgR gene-silenced cells in a PLGA scaffold may be an effective therapy for treating spinal cord injury.展开更多
Peripheral nerve injury(PNI)is common and,unlike damage to the central nervous system injured nerves can effectively regenerate depending on the location and severity of injury.Peripheral myelinating glia,Schwann cell...Peripheral nerve injury(PNI)is common and,unlike damage to the central nervous system injured nerves can effectively regenerate depending on the location and severity of injury.Peripheral myelinating glia,Schwann cells(SCs),interact with various cells in and around the injury site and are important for debris elimination,repair,and nerve regeneration.Following PNI,Wallerian degeneration of the distal stump is rapidly initiated by degeneration of damaged axons followed by morphologic changes in SCs and the recruitment of circulating macrophages.Interaction with fibroblasts from the injured nerve microenvironment also plays a role in nerve repair.The replication and migration of injury-induced dedifferentiated SCs are also important in repairing the nerve.In particular,SC migration stimulates axonal regeneration and subsequent myelination of regenerated nerve fibers.This mobility increases SC interactions with other cells in the nerve and the exogenous environment,which influence SC behavior post-injury.Following PNI,SCs directly and indirectly interact with other SCs,fibroblasts,and macrophages.In addition,the inter-and intracellular mechanisms that underlie morphological and functional changes in SCs following PNI still require further research to explain known phenomena and less understood cell-specific roles in the repair of the injured peripheral nerve.This review provides a basic assessment of SC function post-PNI,as well as a more comprehensive evaluation of the literature concerning the SC interactions with macrophages and fibroblasts that can influence SC behavior and,ultimately,repair of the injured nerve.展开更多
Oxidative stress may be the unifying factor for the injury caused by hyperglycemia in diabetic peripheral neuropathy. Puerarin is the major isoflavonoid derived from Radix puerariae and has been shown to be effective ...Oxidative stress may be the unifying factor for the injury caused by hyperglycemia in diabetic peripheral neuropathy. Puerarin is the major isoflavonoid derived from Radix puerariae and has been shown to be effective in increasing superoxide dismutase activity. This study sought to investigate the neuroprotective effect of puerarin on high glucose-induced oxidative stress and Schwann cell apoptosis in vitro. Intracellular reactive oxygen radicals and mitochondrial transmembrane potential were detected by flow cytometry analysis. Apoptosis was confirmed by TUNEL and oxidative stress was monitored using an enzyme-linked immunosorbent assay for the DNA marker 8-hydroxy-2-deoxyguanosine. The expression levels of bax and bcl-2 were analyzed by quantitative real-time reverse transcriptase-PCR, while protein expression of cleaved caspase-3 and -9 were analyzed by means of western blotting. Results suggested that puerarin treatment inhibited high glucose-induced oxidative stress, mitochondrial depolarization and apoptosis in a dose-dependent manner. Furthermore, puerarin treatment downregulated Bax expression, upregulated bcl-2 expression and attenuated the activation of caspase-3 and -9. Overall, our results indicated that puerarin antagonized high glucose-induced oxidative stress and apoptosis in Schwann cells.展开更多
Biomaterial bridging provides physical substrates to guide axonal growth across the lesion.To achieve efficient directional guidance,combinatory strategies using permissive matrix,cells and trophic factors are necessa...Biomaterial bridging provides physical substrates to guide axonal growth across the lesion.To achieve efficient directional guidance,combinatory strategies using permissive matrix,cells and trophic factors are necessary.In the present study,we evaluated permissive effect of poly(acrylonitrile-co-vinyl chloride)guidance channels filled by different densities of laminin-precoated unidirectional polypropylene filaments combined with Schwann cells,and glial cell line-derived neurotrophic factor for axonal regeneration through a T10 hemisected spinal cord gap in adult rats.We found that channels with filaments significantly reduced the lesion cavity,astrocytic gliosis,and inflammatory responses at the graft-host boundaries.The laminin coated low density filament provided the most favorable directional guidance for axonal regeneration which was enhanced by co-grafting of Schwann cells and glial cell line-derived neurotrophic factor.These results demonstrate that the combinatorial strategy of filament-filled guiding scaffold,adhesive molecular laminin,Schwann cells,and glial cell line-derived neurotrophic factor,provides optimal topographical cues in stimulating directional axonal regeneration following spinal cord injury.This study was approved by Indiana University Institutional Animal Care and Use Committees(IACUC#:11011)on October 29,2015.展开更多
Schwann cell proliferation,migration and remyelination of regenerating axons contribute to regeneration after peripheral nervous system injury.Lithium promotes remyelination by Schwann cells and improves peripheral ne...Schwann cell proliferation,migration and remyelination of regenerating axons contribute to regeneration after peripheral nervous system injury.Lithium promotes remyelination by Schwann cells and improves peripheral nerve regeneration.However,whether lithium modulates other phenotypes of Schwann cells,especially their proliferation and migration remains elusive.In the current study,primary Schwann cells from rat sciatic nerve stumps were cultured and exposed to 0,5,10,15,or 30 mM lithium chloride(LiCl)for 24 hours.The effects of LiCl on Schwann cell proliferation and migration were examined using the Cell Counting Kit-8,5-ethynyl-2′-deoxyuridine,Transwell and wound healing assays.Cell Counting Kit-8 and 5-ethynyl-2′-deoxyuridine assays showed that 5,10,15,and 30 mM LiCl significantly increased the viability and proliferation rate of Schwann cells.Transwell-based migration assays and wound healing assays showed that 10,15,and 30 mM LiCl suppressed the migratory ability of Schwann cells.Furthermore,the effects of LiCl on the proliferation and migration phenotypes of Schwann cells were mostly dose-dependent.These data indicate that lithium treatment significantly promotes the proliferation and inhibits the migratory ability of Schwann cells.This conclusion will inform strategies to promote the repair and regeneration of peripheral nerves.All of the animal experiments in this study were ethically approved by the Administration Committee of Experimental Animal Center of Nantong University,China(approval No.20170320-017)on March 2,2017.展开更多
Aim Given the well-known properties of Schwann cells in promoting nerve regeneration, transplanting Schwann cells into implant sockets might be an effective method to promote sensory responses of osseointegrated impla...Aim Given the well-known properties of Schwann cells in promoting nerve regeneration, transplanting Schwann cells into implant sockets might be an effective method to promote sensory responses of osseointegrated implants. The aim of this study was to evaluate the interaction between Schwann cells and osteoblasts. Methodology Schwann cells derived from the sciatic nerves of neonatal rat were co-culured with osteoblasts using Transwell inserts. The proliferation of Schwann cells in the co-culture system was evaluated using methylthiazol tetrazolium (MTT) colorimetric method. Moreover, the secretions and mRNA levels of brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) were measured by enzyme-linked immunosorbent assay (ELISA) and quantitative real-time PCR, respectively. In order to test the effect of Schwann cells on osteoblasts, alkaline phosphatase (ALP) staining and Alizerin red staining were performed as well. Results Schwann cells, which were co-cultured with the osteoblasts, showed an intact proliferation during the observation period. Moreover, the gene expression and synthesis of BDNF and NGF were not impaired by the osteoblasts. Meanwhile, co-cultured osteoblasts exhibited a significant increase in the proliferation on day 3 and 6 (P〈 0.05). Co-culture of these two types of cells also led to a more intense staining of ALP and an elevated number of calcified nodules. Conclusion These findings demonstrate that, in the in vitro indirect co-culture environment, Schwann cells can maintain their normal ability to synthesize neurotrophins, which then enhance the proliferation and differentiation of osteoblasts.展开更多
Transplantation of activated transgenic Schwann cells or a fetal spinal cord cell suspension has been widely used to treat spinal cord injury. However, little is known regarding the effects of co-transplantation. In t...Transplantation of activated transgenic Schwann cells or a fetal spinal cord cell suspension has been widely used to treat spinal cord injury. However, little is known regarding the effects of co-transplantation. In the present study, autologous Schwann cells in combination with a fetal spinal cord cell suspension were transplanted into adult Wistar rats with spinal cord injury, and newly generated axonal connections were observed ultrastructurally. Transmission electron microscopic observations showed that the neuroblast first presented cytoplasmic processes, followed by pre- and postsynaptic membranes with low electron density forming a dense projection. The number and types of synaptic vesicles were increased. Synaptic connections developed from single cell body-dendritic synapses into multiple cell body-dendritic and dendrite-dendritic synapses. In addition, the cell organs of the transplanted neuroblast, oligodendroblast and astroblast matured gradually. The blood-brain barrier appeared subsequently. Moreover, neurofilament, histamine, calcitonin-gene-related peptides, and glial fibrillary acidic protein positive fibers were observed in the transplant region. These findings demonstrate that fetal spinal cord cells in the presence of autologous activated Schwann cells can develop into mature synapses in the cavity of injured spinal cords, suggesting the possibility of information exchange through the reconstructed synapse between fetal spinal cord cells and the host.展开更多
Transfection of the human telomerase reverse transcriptase(h TERT)gene has been shown to increase cell proliferation and enhance tissue repair.In the present study,h TERT was transfected into rat Schwann cells.A rat...Transfection of the human telomerase reverse transcriptase(h TERT)gene has been shown to increase cell proliferation and enhance tissue repair.In the present study,h TERT was transfected into rat Schwann cells.A rat model of acute spinal cord injury was established by the modified free-falling method.Retrovirus PLXSN was injected at the site of spinal cord injury as a vector to mediate h TERT gene-transfected Schwann cells(1×10^(10)/L;10μL)or Schwann cells(1×10^(10)/L;10μL)without h TERT gene transfection.Between 1 and 4 weeks after model establishment,motor function of the lower limb improved in the h TERT-transfected group compared with the group with non-transfected Schwann cells.Terminal deoxynucleotidyl transferase-mediated d UTP nick-end labeling and reverse transcription-polymerase chain reaction results revealed that the number of apoptotic cells,and gene expression of aquaporin 4/9 and matrix metalloproteinase 9/2decreased at the site of injury in both groups;however,the effect improved in the h TERT-transfected group compared with the Schwann cells without h TERT transfection group.Hematoxylin and eosin staining,PKH26 fluorescent labeling,and electrophysiological testing demonstrated that compared with the non-transfected group,spinal cord cavity and motor and sensory evoked potential latencies were reduced,while the number of PKH26-positive cells and the motor and sensory evoked potential amplitude increased at the site of injury in the h TERT-transfected group.These findings suggest that transplantation of h TERT gene-transfected Schwann cells repairs the structure and function of the injured spinal cord.展开更多
基金supported in part by NIH R01 NS100531,R01 NS103481NIH R21NS130241(to LD)+3 种基金Merit Review Award I01 BX002356,I01 BX003705 from the U.S.Department of Veterans AffairsIndiana Spinal Cord and Brain Injury Research Foundation(No.19919)Mari Hulman George Endowment Funds(to XMX)Indiana Spinal Cord&Brain Injury Research Fund from ISDH(to NKL and LD)。
文摘Schwann cell transplantation is considered one of the most promising cell-based therapy to repair injured spinal cord due to its unique growth-promoting and myelin-forming properties.A the Food and Drug Administration-approved Phase I clinical trial has been conducted to evaluate the safety of transplanted human autologous Schwann cells to treat patients with spinal cord injury.A major challenge for Schwann cell transplantation is that grafted Schwann cells are confined within the lesion cavity,and they do not migrate into the host environment due to the inhibitory barrier formed by injury-induced glial scar,thus limiting axonal reentry into the host spinal cord.Here we introduce a combinatorial strategy by suppressing the inhibitory extracellular environment with injection of lentivirus-mediated transfection of chondroitinase ABC gene at the rostral and caudal borders of the lesion site and simultaneously leveraging the repair capacity of transplanted Schwann cells in adult rats following a mid-thoracic contusive spinal cord injury.We report that when the glial scar was degraded by chondroitinase ABC at the rostral and caudal lesion borders,Schwann cells migrated for considerable distances in both rostral and caudal directions.Such Schwann cell migration led to enhanced axonal regrowth,including the serotonergic and dopaminergic axons originating from supraspinal regions,and promoted recovery of locomotor and urinary bladder functions.Importantly,the Schwann cell survival and axonal regrowth persisted up to 6 months after the injury,even when treatment was delayed for 3 months to mimic chronic spinal cord injury.These findings collectively show promising evidence for a combinatorial strategy with chondroitinase ABC and Schwann cells in promoting remodeling and recovery of function following spinal cord injury.
基金support from the Miami Project to Cure Paralysis,the Buoniconti Fund,and the Interdisciplinary Stem Cell Institute(to AK,WDD,JDG,and ADL)the unconditional support of Dean Henri Ford of the Leonard M.Miller School of Medicine at the University of Miami.
文摘Schwann cells are essential for the maintenance and function of motor neurons,axonal networks,and the neuromuscular junction.In amyotrophic lateral sclerosis,where motor neuron function is progressively lost,Schwann cell function may also be impaired.Recently,important signaling and potential trophic activities of Schwann cell-derived exosomal vesicles have been reported.This case report describes the treatment of a patient with advanced amyotrophic lateral sclerosis using serial intravenous infusions of allogeneic Schwann cell-derived exosomal vesicles,marking,to our knowledge,the first instance of such treatment.An 81-year-old male patient presented with a 1.5-year history of rapidly progressive amyotrophic lateral sclerosis.After initial diagnosis,the patient underwent a combination of generic riluzole,sodium phenylbutyrate for the treatment of amyotrophic lateral sclerosis,and taurursodiol.The patient volunteered to participate in an FDA-approved single-patient expanded access treatment and received weekly intravenous infusions of allogeneic Schwann cell-derived exosomal vesicles to potentially restore impaired Schwann cell and motor neuron function.We confirmed that cultured Schwann cells obtained from the amyotrophic lateral sclerosis patient via sural nerve biopsy appeared impaired(senescent)and that exposure of the patient’s Schwann cells to allogeneic Schwann cell-derived exosomal vesicles,cultured expanded from a cadaver donor improved their growth capacity in vitro.After a period of observation lasting 10 weeks,during which amyotrophic lateral sclerosis Functional Rating Scale-Revised and pulmonary function were regularly monitored,the patient received weekly consecutive infusions of 1.54×1012(×2),and then consecutive infusions of 7.5×1012(×6)allogeneic Schwann cell-derived exosomal vesicles diluted in 40 mL of Dulbecco’s phosphate-buffered saline.None of the infusions were associated with adverse events such as infusion reactions(allergic or otherwise)or changes in vital signs.Clinical lab serum neurofilament and cytokine levels measured prior to each infusion varied somewhat without a clear trend.A more sensitive in-house assay suggested possible inflammasome activation during the disease course.A trend for clinical stabilization was observed during the infusion period.Our study provides a novel approach to address impaired Schwann cells and possibly motor neuron function in patients with amyotrophic lateral sclerosis using allogeneic Schwann cell-derived exosomal vesicles.Initial findings suggest that this approach is safe.
基金supported by the National Natural Science Foundation of China,No.31870977(to HYS)the National Key Technologies Research and Development Program of China,No.2017YFA0104700(to FD)+2 种基金2022 Jiangsu Funding Program for Excellent Postdoctoral Talent(to MC)Priority Academic Program Development of Jiangsu Higher Education Institutions[PAPD]the Major Project of Basic Science(Natural Science)Research in Higher Education Institutions of Jiangsu Province,No.22KJA180001(to QRH)。
文摘Our previous study found that rat bone marrow–derived neural crest cells(acting as Schwann cell progenitors)have the potential to promote long-distance nerve repair.Cell-based therapy can enhance peripheral nerve repair and regeneration through paracrine bioactive factors and intercellular communication.Nevertheless,the complex contributions of various types of soluble cytokines and extracellular vesicle cargos to the secretome remain unclear.To investigate the role of the secretome and extracellular vesicles in repairing damaged peripheral nerves,we collected conditioned culture medium from hypoxia-pretreated neural crest cells,and found that it significantly promoted the repair of sensory neurons damaged by oxygen-glucose deprivation.The mRNA expression of trophic factors was highly expressed in hypoxia-pretreated neural crest cells.We performed RNA sequencing and bioinformatics analysis and found that miR-21-5p was enriched in hypoxia-pretreated extracellular vesicles of neural crest cells.Subsequently,to further clarify the role of hypoxia-pretreated neural crest cell extracellular vesicles rich in miR-21-5p in axonal growth and regeneration of sensory neurons,we used a microfluidic axonal dissociation model of sensory neurons in vitro,and found that hypoxia-pretreated neural crest cell extracellular vesicles promoted axonal growth and regeneration of sensory neurons,which was greatly dependent on loaded miR-21-5p.Finally,we constructed a miR-21-5p-loaded neural conduit to repair the sciatic nerve defect in rats and found that the motor and sensory functions of injured rat hind limb,as well as muscle tissue morphology of the hind limbs,were obviously restored.These findings suggest that hypoxia-pretreated neural crest extracellular vesicles are natural nanoparticles rich in miRNA-21-5p.miRNA-21-5p is one of the main contributors to promoting nerve regeneration by the neural crest cell secretome.This helps to explain the mechanism of action of the secretome and extracellular vesicles of neural crest cells in repairing damaged peripheral nerves,and also promotes the application of miR-21-5p in tissue engineering regeneration medicine.
基金supported by the National Natural Science Foundation of China,No.81870975(to SZ)。
文摘Exosomes exhibit complex biological functions and mediate a variety of biological processes,such as promoting axonal regeneration and functional recove ry after injury.Long non-coding RNAs(IncRNAs)have been reported to play a crucial role in axonal regeneration.Howeve r,the role of the IncRNA-microRNAmessenger RNA(mRNA)-competitive endogenous RNA(ceRNA)network in exosome-mediated axonal regeneration remains unclear.In this study,we performed RNA transcriptome sequencing analysis to assess mRNA expression patterns in exosomes produced by cultured fibroblasts(FC-EXOs)and Schwann cells(SCEXOs).Diffe rential gene expression analysis,Gene Ontology analysis,Kyoto Encyclopedia of Genes and Genomes analysis,and protein-protein intera ction network analysis were used to explo re the functions and related pathways of RNAs isolated from FC-EXOs and SC-EXOs.We found that the ribosome-related central gene Rps5 was enriched in FC-EXOs and SC-EXOs,which suggests that it may promote axonal regeneration.In addition,using the miRWalk and Starbase prediction databases,we constructed a regulatory network of ceRNAs targeting Rps5,including 27 microRNAs and five IncRNAs.The ceRNA regulatory network,which included Ftx and Miat,revealed that exsosome-derived Rps5 inhibits scar formation and promotes axonal regeneration and functional recovery after nerve injury.Our findings suggest that exosomes derived from fibro blast and Schwann cells could be used to treat injuries of peripheral nervous system.
基金The study was supported by Guangdong Natural Science Foundation(Grant Numbers 2020A1515010014,2022A1515012411)Science and Technology Key Project for People’s Livelihood of Guangzhou,China(Grant Number 202206010060)+1 种基金Guangzhou Science and Technology Bureau Basic Research Project(SL2024A03J01288)Innovative Project of Children’s Research Institute,Guangzhou Women and Children’s Medical Center,China(Grant Numbers Pre-NSFC-2019-002,NKE PRE-2019-015).
文摘Background:During Enterovirus type 71(EV71)infection,the structural viral protein 1(VP1)activates endoplasmic reticulum(ER)stress associated with peripheral myelin protein 22(PMP22)accumulation and induces autophagy.However,the specific mechanism behind this process remains elusive.Methods:In this research,we used the VP1-overexpressing mouse Schwann cells(SCs)models co-transfected with a PMP22 silencing or Autocrine motility factor receptor(AMFR/gp78)overexpressing vector to explore the regulation of gp78 on PMP22 and its relationship with autophagy and apoptosis.Results:The activity of gp78 could be influenced by EV71-VP1,leading to a decrease in the ubiquitination and degradation of PMP22,resulting in PMP22 accumulation in ER.In VP1-overexpressing mouse SCs,all three ER stress sensors,including pancreatic endoplasmic reticulum kinase(PERK),activating transcription factor 6(ATF6)and inositol-requiring enzyme 1(IRE1)and the related downstream signals(C/EBP-homologous protein(CHOP)and Caspase 12)were activated,as well as the ER-resident chaperone Glucose-regulated protein 78(GRP78).In addition,VP1 upregulated the autophagy marker Microtubule-associated protein 1 light chain 3 beta(LC3B),while PMP22 silencing or gp78 overexpression reversed the phenomenon.Meanwhile,PMP22 silencing or gp78 overexpression increased proliferation of EV71-VP1-transfected mouse SCs.Conclusion:Gp78 could regulate PMP22 accumulation through ubiquitination degradation and cause ER stress and autophagy in EV71-VP1-overexpressing mouse SCs.Therefore,the gp78/PMP22/ER stress axis might emerge as a promising therapeutic target for myelin and neuronal damage induced by EV71 infection.
基金supported by the National Natural Science Foundation of China,No.82104795 (to RH)。
文摘Runx2 is a major regulator of osteoblast differentiation and function;however,the role of Runx2 in peripheral nerve repair is unclea r.Here,we analyzed Runx2expression following injury and found that it was specifically up-regulated in Schwann cells.Furthermore,using Schwann cell-specific Runx2 knocko ut mice,we studied peripheral nerve development and regeneration and found that multiple steps in the regeneration process following sciatic nerve injury were Runx2-dependent.Changes observed in Runx2 knoc kout mice include increased prolife ration of Schwann cells,impaired Schwann cell migration and axonal regrowth,reduced re-myelination of axo ns,and a block in macrophage clearance in the late stage of regeneration.Taken together,our findings indicate that Runx2 is a key regulator of Schwann cell plasticity,and therefore peripheral nerve repair.Thus,our study shows that Runx2 plays a major role in Schwann cell migration,re-myelination,and peripheral nerve functional recovery following injury.
基金supported by the National Natural Science Foundation of China,Nos.31730031,32130060the National Natural Science Foundation of China,No.31971276(to JH)+1 种基金the Natural Science Foundation of Jiangsu Province,No.BK20202013(to XG)the Natural Science Foundation of Jiangsu Higher Education Institutions of China(Major Program),No.19KJA320005(to JH)。
文摘Schwann cells in peripheral nerves react to traumatic nerve injury by attempting to grow and regenerate.Howeve r,it is unclear what factors play a role in this process.In this study,we searched a GEO database and found that expression of platelet factor 4 was markedly up-regulated after sciatic nerve injury.Platelet factor is an important molecule in cell apoptosis,diffe rentiation,survival,and proliferation.Further,polymerase chain reaction and immunohistochemical staining confirmed the change in platelet factor 4 in the sciatic nerve at different time points after injury.Enzyme-linked immunosorbent assay confirmed that platelet factor 4 was secreted by Schwann cells.We also found that silencing platelet factor 4 decreased the proliferation and migration of primary cultured Schwann cells,while exogenously applied platelet factor 4 stimulated Schwann cell prolife ration and migration and neuronal axon growth.Furthermore,knocking out platelet factor 4 inhibited the prolife ration of Schwann cells in injured rat sciatic nerve.These findings suggest that Schwann cell-secreted platelet factor 4 may facilitate peripheral nerve repair and regeneration by regulating Schwann cell activation and axon growth.Thus,platelet factor 4 may be a potential therapeutic target for traumatic peripheral nerve injury.
基金This research is supported by grants from the Chinese Postdoctoral Foundation and the Beijing Young Scientist Culture Foundation.
文摘Objective To investigate the effect of rat Schwann cell secretion on the proliferation and differentiation of human embryonic neural stem cells (NSCs). Methods The samples were divided into three groups. In Group One, NSCs were cultured in DMED/F12 in which Schwann cells had grown for one day. In Group Two, NSCs and Schwann cells were co-cultured. In Group Three, NSCs were cultured in DMEM/F12. The morphology of NSCs was checked and β-tubulin, GalC, hoechst 33342 and GFAP labellings were detected. Results In Group One, all neural spheres were attached to the bottom and differentiated. The majority of them were p-tubulin positive while a few of cells were GFAP or GalC positive. In Group Two, neural spheres remained undifferentiatied and their proliferation was inhibited in places where Schwann cells were robust. In places where there were few Schwann cells, NSCs performed in a similar manner as in Group One. In Group Three, the cell growth state deteriorated day after day. On the 7th day, most NSCs died. Conclusion The secretion of rat Schwann cells has a growth supportive and differentiation-inducing effect on human NSCs.
基金This research was supported by the National Natural Science Foundation of China (No. 30371452).
文摘Objective To study the transplantation efficacy of neural stem cells (NSCs) and Schwann cells (SC) in a rat model of spinal cord contusion injury. Methods Multipotent neural stem cells (NSCs) and Schwann cells were harvested from the spinal cords of embryonic rats at 16 days post coitus and sciatic nerves of newborn rats, respectively. The differential characteristics of NSCs in vitro induced by either serum-based culture or co-culture with SC were analyzed by immunofluorescence. NSCs and SCs were co-transplanted into adult rats having undergone spinal cord contusion at T9 level. The animals were weekly monitored using the Basso-Beattie-Bresnahan locomotor rating system to evaluate functional recovery from contusion-induced spinal cord injury. Migration and differentiation of transplanted NSCs were studied in tissue sections using immunohistochemical staining. Results Embryonic spinal cord-derived NSCs differentiated into a large number of oligodendrocytes in serum-based culture upon the withdrawal of mitogens. In cocultures with SCs, NSCs differentiated into neuron more readily. Rats with spinal cord contusion injury which had undergone transplantation of NSCs and SCs into the intraspinal cavity demonstrated a moderate improvement in motor functions. Conclusions SC may contribute to neuronal differentiation of NSCs in vitro and in vivo. Transplantation of NSCs and SCs into the affected area may be a feasible approach to promoting motor recovery in patients after spinal cord injury.
基金supported by the High Education Development Foundation of Shandong Province,No.J11LF22
文摘Bone marrow mesenchymal stem cells were isolated from New Zealand white rabbits, culture-expanded and differentiated into Schwann cell-like cells. Autologous platelet-dch plasma and Schwann cell-like cells were mixed in suspension at a density of 1 x 106 cells/mL, prior to introduction into a poly (lactic-co-glycolic acid) conduit. Fabricated tissue-engineered nerves were implanted into rabbits to bridge 10 mm sciatic nerve defects (platelet-rich plasma group). Controls were established using fibrin as the seeding matrix for Schwann cell-like cells at identical density to construct tissue-engineered nerves (fibrin group). Twelve weeks after implantation, toluidine blue staining and scanning electron microscopy were used to demonstrate an increase in the number of regenerating nerve fibers and thickness of the myelin sheath in the platelet-rich plasma group compared with the fibrin group. Fluoro-gold retrograde labeling revealed that the number of Fluoro-gold-positive neurons in the dorsal root ganglion and the spinal cord anterior horn was greater in the platelet-rich plasma group than in the fibrin group. Electrophysiological examination confirmed that compound muscle action potential and nerve conduction velocity were superior in the platelet-rich plasma group compared with the fibrin group. These results indicate that autologous platelet-rich plasma gel can effectively serve as a seeding matrix for Schwann cell-like cells to construct tissue-engineered nerves to promote perJpheral nerve regeneration.
基金the Science and Technology Development Foundation of Jilin Province, No. 200505204, 200705129
文摘Schwann cells (SCs) are significantly better at promoting neural stem cell (NSCs) proliferation, differentiation and synaptic formation when cocultured with NSCs in vitro, compared with cultured in a single nerve growth factor. The present study transplanted NSCs and SCs into the brain of a rat model of Alzheimer's disease to investigate the effect of cotransplantation. Results show transplantation of both NSCs alone and NSCs + SCs significantly promoted learning and memory functions in Alzheimer's disease rats, decreased glial fibrillary acidic protein and calcium binding protein S100β expression, but increased expression of the cholinergic neuron marker choline acetyl transferase mRNA. The effect of NSCs + SCs cotransplantation was, however, more significant. NSCs and SCs cotransplantation significantly reduced the number of astrocytes and increased cholinergic neurons, facilitating the recovery of learning and memory function, compared with NSCs transplantation alone.
基金supported by the National Natural Science Foundation of China,No.81070855
文摘Hair follicle-derived neural crest stem cells can be induced to differentiate into Schwann cells in vivo and in vitro. However, the underlying regulatory mechanism during cell differentiation remains poorly understood. This study isolated neural crest stem cells from human hair folli-cles and induced them to differentiate into Schwann cells. Quantitative RT-PCR showed that microRNA (miR)-21 expression was gradually increased during the differentiation of neural crest stem cells into Schwann cells. After transfection with the miR-21 agonist (agomir-21), the differentiation capacity of neural crest stem cells was enhanced. By contrast, after transfection with the miR-21 antagonist (antagomir-21), the differentiation capacity was attenuated. Further study results showed that SOX-2 was an effective target of miR-21. Without compromising SOX2 mRNA expression, miR-21 can down-regulate SOX protein expression by binding to the 3′-UTR of miR-21 mRNA. Knocking out the SOX2 gene from the neural crest stem cells significantly reversed the antagomir-21 inhibition of neural crest stem cells differentiating into Schwann cells. The results suggest that miR-21 expression was increased during the differentiation of neural crest stem cells into Schwann cells and miR-21 promoted the differentiation through down-regu-lating SOX protein expression by binding to the 3′-UTR of SOX2 mRNA.
基金supported by a grant from the Application Basis and Front Technology Projects of Tianjin(Science and Technology Foundation of Tianjin),No.12JCYBJC18000
文摘Because the inhibition of Nogo proteins can promote neurite growth and nerve cell differentiation, a cell-scaffold complex seeded with Nogo receptor (NgR)-silenced neural stem cells and Schwann cells may be able to improve the microenvironment for spinal cord injury repair. Previous studies have found that mild hypothermia helps to attenuate secondary damage in the spinal cord and exerts a neuroprotective effect. Here, we constructed a cell-scaffold complex consisting of a poly(D,L-lactide-co-glycolic acid) (PLGA) scaffold seeded with NgR-silenced neural stem cells and Schwann cells, and determined the effects of mild hypothermia combined with the cell-scaffold complexes on the spinal cord hemi-transection injury in the T9 segment in rats. Compared with the PLGA group and the NgR-silencing cells + PLGA group, hindlimb motor function and nerve electrophysiological function were dearly improved, pathological changes in the injured spinal cord were attenuated, and the number of surviving cells and nerve fibers were increased in the group treated with the NgR-silenced cell scaffold + mild hypothermia at 34℃ for 6 hours. Furthermore, fewer pathological changes to the injured spinal cord and more surviving cells and nerve fibers were found after mild hypothermia therapy than in injuries not treated with mild hypothermia. These experimental results indicate that mild hypothermia combined with NgR gene-silenced cells in a PLGA scaffold may be an effective therapy for treating spinal cord injury.
基金This work was also supported by the National Natural Science Foundation of China,No.81901365(to WRQ)Jilin Science and Technology Agency Funds in China,Nos.20180101118JC(to RL),20180520115JH(to BPC)and 20190103076JH(to WRQ).
文摘Peripheral nerve injury(PNI)is common and,unlike damage to the central nervous system injured nerves can effectively regenerate depending on the location and severity of injury.Peripheral myelinating glia,Schwann cells(SCs),interact with various cells in and around the injury site and are important for debris elimination,repair,and nerve regeneration.Following PNI,Wallerian degeneration of the distal stump is rapidly initiated by degeneration of damaged axons followed by morphologic changes in SCs and the recruitment of circulating macrophages.Interaction with fibroblasts from the injured nerve microenvironment also plays a role in nerve repair.The replication and migration of injury-induced dedifferentiated SCs are also important in repairing the nerve.In particular,SC migration stimulates axonal regeneration and subsequent myelination of regenerated nerve fibers.This mobility increases SC interactions with other cells in the nerve and the exogenous environment,which influence SC behavior post-injury.Following PNI,SCs directly and indirectly interact with other SCs,fibroblasts,and macrophages.In addition,the inter-and intracellular mechanisms that underlie morphological and functional changes in SCs following PNI still require further research to explain known phenomena and less understood cell-specific roles in the repair of the injured peripheral nerve.This review provides a basic assessment of SC function post-PNI,as well as a more comprehensive evaluation of the literature concerning the SC interactions with macrophages and fibroblasts that can influence SC behavior and,ultimately,repair of the injured nerve.
基金supported by the National Natural Science Foundation of China, No. 30973354
文摘Oxidative stress may be the unifying factor for the injury caused by hyperglycemia in diabetic peripheral neuropathy. Puerarin is the major isoflavonoid derived from Radix puerariae and has been shown to be effective in increasing superoxide dismutase activity. This study sought to investigate the neuroprotective effect of puerarin on high glucose-induced oxidative stress and Schwann cell apoptosis in vitro. Intracellular reactive oxygen radicals and mitochondrial transmembrane potential were detected by flow cytometry analysis. Apoptosis was confirmed by TUNEL and oxidative stress was monitored using an enzyme-linked immunosorbent assay for the DNA marker 8-hydroxy-2-deoxyguanosine. The expression levels of bax and bcl-2 were analyzed by quantitative real-time reverse transcriptase-PCR, while protein expression of cleaved caspase-3 and -9 were analyzed by means of western blotting. Results suggested that puerarin treatment inhibited high glucose-induced oxidative stress, mitochondrial depolarization and apoptosis in a dose-dependent manner. Furthermore, puerarin treatment downregulated Bax expression, upregulated bcl-2 expression and attenuated the activation of caspase-3 and -9. Overall, our results indicated that puerarin antagonized high glucose-induced oxidative stress and apoptosis in Schwann cells.
基金Research in the Xu laboratory is supported by NIH 1R01100531,1R01 NS103481Merit Review Award I01 BX002356,I01 BX003705,I01 RX002687 from the U.S.Department of Veterans AffairsMari Hulman George Endowment Funds.
文摘Biomaterial bridging provides physical substrates to guide axonal growth across the lesion.To achieve efficient directional guidance,combinatory strategies using permissive matrix,cells and trophic factors are necessary.In the present study,we evaluated permissive effect of poly(acrylonitrile-co-vinyl chloride)guidance channels filled by different densities of laminin-precoated unidirectional polypropylene filaments combined with Schwann cells,and glial cell line-derived neurotrophic factor for axonal regeneration through a T10 hemisected spinal cord gap in adult rats.We found that channels with filaments significantly reduced the lesion cavity,astrocytic gliosis,and inflammatory responses at the graft-host boundaries.The laminin coated low density filament provided the most favorable directional guidance for axonal regeneration which was enhanced by co-grafting of Schwann cells and glial cell line-derived neurotrophic factor.These results demonstrate that the combinatorial strategy of filament-filled guiding scaffold,adhesive molecular laminin,Schwann cells,and glial cell line-derived neurotrophic factor,provides optimal topographical cues in stimulating directional axonal regeneration following spinal cord injury.This study was approved by Indiana University Institutional Animal Care and Use Committees(IACUC#:11011)on October 29,2015.
基金supported by the National Natural Science Foundation of China,No.81970820(to HX)
文摘Schwann cell proliferation,migration and remyelination of regenerating axons contribute to regeneration after peripheral nervous system injury.Lithium promotes remyelination by Schwann cells and improves peripheral nerve regeneration.However,whether lithium modulates other phenotypes of Schwann cells,especially their proliferation and migration remains elusive.In the current study,primary Schwann cells from rat sciatic nerve stumps were cultured and exposed to 0,5,10,15,or 30 mM lithium chloride(LiCl)for 24 hours.The effects of LiCl on Schwann cell proliferation and migration were examined using the Cell Counting Kit-8,5-ethynyl-2′-deoxyuridine,Transwell and wound healing assays.Cell Counting Kit-8 and 5-ethynyl-2′-deoxyuridine assays showed that 5,10,15,and 30 mM LiCl significantly increased the viability and proliferation rate of Schwann cells.Transwell-based migration assays and wound healing assays showed that 10,15,and 30 mM LiCl suppressed the migratory ability of Schwann cells.Furthermore,the effects of LiCl on the proliferation and migration phenotypes of Schwann cells were mostly dose-dependent.These data indicate that lithium treatment significantly promotes the proliferation and inhibits the migratory ability of Schwann cells.This conclusion will inform strategies to promote the repair and regeneration of peripheral nerves.All of the animal experiments in this study were ethically approved by the Administration Committee of Experimental Animal Center of Nantong University,China(approval No.20170320-017)on March 2,2017.
文摘Aim Given the well-known properties of Schwann cells in promoting nerve regeneration, transplanting Schwann cells into implant sockets might be an effective method to promote sensory responses of osseointegrated implants. The aim of this study was to evaluate the interaction between Schwann cells and osteoblasts. Methodology Schwann cells derived from the sciatic nerves of neonatal rat were co-culured with osteoblasts using Transwell inserts. The proliferation of Schwann cells in the co-culture system was evaluated using methylthiazol tetrazolium (MTT) colorimetric method. Moreover, the secretions and mRNA levels of brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) were measured by enzyme-linked immunosorbent assay (ELISA) and quantitative real-time PCR, respectively. In order to test the effect of Schwann cells on osteoblasts, alkaline phosphatase (ALP) staining and Alizerin red staining were performed as well. Results Schwann cells, which were co-cultured with the osteoblasts, showed an intact proliferation during the observation period. Moreover, the gene expression and synthesis of BDNF and NGF were not impaired by the osteoblasts. Meanwhile, co-cultured osteoblasts exhibited a significant increase in the proliferation on day 3 and 6 (P〈 0.05). Co-culture of these two types of cells also led to a more intense staining of ALP and an elevated number of calcified nodules. Conclusion These findings demonstrate that, in the in vitro indirect co-culture environment, Schwann cells can maintain their normal ability to synthesize neurotrophins, which then enhance the proliferation and differentiation of osteoblasts.
基金the Tianjin Science and Technology Commission Key Project,No.07JCZDJC08000the Natural Science Foundation of China, No.30772193,30571876National High-Tech R&D Program of China (863 Program),No.2007AA04Z235
文摘Transplantation of activated transgenic Schwann cells or a fetal spinal cord cell suspension has been widely used to treat spinal cord injury. However, little is known regarding the effects of co-transplantation. In the present study, autologous Schwann cells in combination with a fetal spinal cord cell suspension were transplanted into adult Wistar rats with spinal cord injury, and newly generated axonal connections were observed ultrastructurally. Transmission electron microscopic observations showed that the neuroblast first presented cytoplasmic processes, followed by pre- and postsynaptic membranes with low electron density forming a dense projection. The number and types of synaptic vesicles were increased. Synaptic connections developed from single cell body-dendritic synapses into multiple cell body-dendritic and dendrite-dendritic synapses. In addition, the cell organs of the transplanted neuroblast, oligodendroblast and astroblast matured gradually. The blood-brain barrier appeared subsequently. Moreover, neurofilament, histamine, calcitonin-gene-related peptides, and glial fibrillary acidic protein positive fibers were observed in the transplant region. These findings demonstrate that fetal spinal cord cells in the presence of autologous activated Schwann cells can develop into mature synapses in the cavity of injured spinal cords, suggesting the possibility of information exchange through the reconstructed synapse between fetal spinal cord cells and the host.
基金supported by a grant from the Science and Technology Development Plan Program of Jilin Province of China,No.2011084
文摘Transfection of the human telomerase reverse transcriptase(h TERT)gene has been shown to increase cell proliferation and enhance tissue repair.In the present study,h TERT was transfected into rat Schwann cells.A rat model of acute spinal cord injury was established by the modified free-falling method.Retrovirus PLXSN was injected at the site of spinal cord injury as a vector to mediate h TERT gene-transfected Schwann cells(1×10^(10)/L;10μL)or Schwann cells(1×10^(10)/L;10μL)without h TERT gene transfection.Between 1 and 4 weeks after model establishment,motor function of the lower limb improved in the h TERT-transfected group compared with the group with non-transfected Schwann cells.Terminal deoxynucleotidyl transferase-mediated d UTP nick-end labeling and reverse transcription-polymerase chain reaction results revealed that the number of apoptotic cells,and gene expression of aquaporin 4/9 and matrix metalloproteinase 9/2decreased at the site of injury in both groups;however,the effect improved in the h TERT-transfected group compared with the Schwann cells without h TERT transfection group.Hematoxylin and eosin staining,PKH26 fluorescent labeling,and electrophysiological testing demonstrated that compared with the non-transfected group,spinal cord cavity and motor and sensory evoked potential latencies were reduced,while the number of PKH26-positive cells and the motor and sensory evoked potential amplitude increased at the site of injury in the h TERT-transfected group.These findings suggest that transplantation of h TERT gene-transfected Schwann cells repairs the structure and function of the injured spinal cord.