Accurate prediction of formation pore pressure is essential to predict fluid flow and manage hydrocarbon production in petroleum engineering.Recent deep learning technique has been receiving more interest due to the g...Accurate prediction of formation pore pressure is essential to predict fluid flow and manage hydrocarbon production in petroleum engineering.Recent deep learning technique has been receiving more interest due to the great potential to deal with pore pressure prediction.However,most of the traditional deep learning models are less efficient to address generalization problems.To fill this technical gap,in this work,we developed a new adaptive physics-informed deep learning model with high generalization capability to predict pore pressure values directly from seismic data.Specifically,the new model,named CGP-NN,consists of a novel parametric features extraction approach(1DCPP),a stacked multilayer gated recurrent model(multilayer GRU),and an adaptive physics-informed loss function.Through machine training,the developed model can automatically select the optimal physical model to constrain the results for each pore pressure prediction.The CGP-NN model has the best generalization when the physicsrelated metricλ=0.5.A hybrid approach combining Eaton and Bowers methods is also proposed to build machine-learnable labels for solving the problem of few labels.To validate the developed model and methodology,a case study on a complex reservoir in Tarim Basin was further performed to demonstrate the high accuracy on the pore pressure prediction of new wells along with the strong generalization ability.The adaptive physics-informed deep learning approach presented here has potential application in the prediction of pore pressures coupled with multiple genesis mechanisms using seismic data.展开更多
To solve the problems in restoring sedimentary facies and predicting reservoirs in loose gas-bearing sediment,based on seismic sedimentologic analysis of the first 9-component S-wave 3D seismic dataset of China,a four...To solve the problems in restoring sedimentary facies and predicting reservoirs in loose gas-bearing sediment,based on seismic sedimentologic analysis of the first 9-component S-wave 3D seismic dataset of China,a fourth-order isochronous stratigraphic framework was set up and then sedimentary facies and reservoirs in the Pleistocene Qigequan Formation in Taidong area of Qaidam Basin were studied by seismic geomorphology and seismic lithology.The study method and thought are as following.Firstly,techniques of phase rotation,frequency decomposition and fusion,and stratal slicing were applied to the 9-component S-wave seismic data to restore sedimentary facies of major marker beds based on sedimentary models reflected by satellite images.Then,techniques of seismic attribute extraction,principal component analysis,and random fitting were applied to calculate the reservoir thickness and physical parameters of a key sandbody,and the results are satisfactory and confirmed by blind testing wells.Study results reveal that the dominant sedimentary facies in the Qigequan Formation within the study area are delta front and shallow lake.The RGB fused slices indicate that there are two cycles with three sets of underwater distributary channel systems in one period.Among them,sandstones in the distributary channels of middle-low Qigequan Formation are thick and broad with superior physical properties,which are favorable reservoirs.The reservoir permeability is also affected by diagenesis.Distributary channel sandstone reservoirs extend further to the west of Sebei-1 gas field,which provides a basis to expand exploration to the western peripheral area.展开更多
Irregular seismic data causes problems with multi-trace processing algorithms and degrades processing quality. We introduce the Projection onto Convex Sets (POCS) based image restoration method into the seismic data...Irregular seismic data causes problems with multi-trace processing algorithms and degrades processing quality. We introduce the Projection onto Convex Sets (POCS) based image restoration method into the seismic data reconstruction field to interpolate irregularly missing traces. For entire dead traces, we transfer the POCS iteration reconstruction process from the time to frequency domain to save computational cost because forward and reverse Fourier time transforms are not needed. In each iteration, the selection threshold parameter is important for reconstruction efficiency. In this paper, we designed two types of threshold models to reconstruct irregularly missing seismic data. The experimental results show that an exponential threshold can greatly reduce iterations and improve reconstruction efficiency compared to a linear threshold for the same reconstruction result. We also analyze the anti- noise and anti-alias ability of the POCS reconstruction method. Finally, theoretical model tests and real data examples indicate that the proposed method is efficient and applicable.展开更多
In this paper, multi-scaled morphology is introduced into the digital processing domain for land seismic data. First, we describe the basic theory of multi-scaled morphology image decomposition of exploration seismic ...In this paper, multi-scaled morphology is introduced into the digital processing domain for land seismic data. First, we describe the basic theory of multi-scaled morphology image decomposition of exploration seismic waves; second, we illustrate how to use multi-scaled morphology for seismic data processing using two real examples. The first example demonstrates suppressing the surface waves in pre-stack seismic records using multi-scaled morphology decomposition and reconstitution and the other example demonstrates filtering different interference waves on the seismic record. Multi-scaled morphology filtering separates signal from noise by the detailed differences of the wave shapes. The successful applications suggest that multi-scaled morphology has a promising application in seismic data processing.展开更多
In multi-component seismic exploration, the horizontal and vertical components both contain P- and SV-waves. The P- and SV-wavefields in a seismic record can be separated by their horizontal and vertical displacements...In multi-component seismic exploration, the horizontal and vertical components both contain P- and SV-waves. The P- and SV-wavefields in a seismic record can be separated by their horizontal and vertical displacements when upgoing P- and SV-waves arrive at the sea floor. If the sea floor P wave velocity, S wave velocity, and density are known, the separation can be achieved in ther-p domain. The separated wavefields are then transformed to the time domain. A method of separating P- and SV-wavefields is presented in this paper and used to effectively separate P- and SV-wavefields in synthetic and real data. The application to real data shows that this method is feasible and effective. It also can be used for free surface data.展开更多
In this paper, a new concept called numerical structure of seismic data is introduced and the difference between numerical structure and numerical value of seismic data is explained. Our study shows that the numerical...In this paper, a new concept called numerical structure of seismic data is introduced and the difference between numerical structure and numerical value of seismic data is explained. Our study shows that the numerical seismic structure is closely related to oil and gas-bearing reservoir, so it is very useful for a geologist or a geophysicist to precisely interpret the oil-bearing layers from the seismic data. This technology can be applied to any exploration or production stage. The new method has been tested on a series of exploratory or development wells and proved to be reliable in China. Hydrocarbon-detection with this new method for 39 exploration wells on 25 structures indi- cates a success ratio of over 80 percent. The new method of hydrocarbon prediction can be applied for: (1) depositional environment of reservoirs with marine fades, delta, or non-marine fades (including fluvial facies, lacustrine fades); (2) sedimentary rocks of reservoirs that are non-marine clastic rocks and carbonate rock; and (3) burial depths range from 300 m to 7000 m, and the minimum thickness of these reservoirs is over 8 m (main frequency is about 50 Hz).展开更多
Seismic data structure characteristics means the waveform character arranged in the time sequence at discrete data points in each 2-D or 3-D seismic trace. Hydrocarbon prediction using seismic data structure character...Seismic data structure characteristics means the waveform character arranged in the time sequence at discrete data points in each 2-D or 3-D seismic trace. Hydrocarbon prediction using seismic data structure characteristics is a new reservoir prediction technique. When the main pay interval is in carbonate fracture and fissure-cavern type reservoirs with very strong inhomogeneity, there are some difficulties with hydrocarbon prediction. Because of the special geological conditions of the eighth zone in the Tahe oil field, we apply seismic data structure characteristics to hydrocarbon prediction for the Ordovician reservoir in this zone. We divide the area oil zone into favorable and unfavorable blocks. Eighteen well locations were proposed in the favorable oil block, drilled, and recovered higher output of oil and gas.展开更多
A new method is introduced to suppress the noise in seismic data processing. Based on the subtle difference in shape between the noise and the actual signal, we introduce morphologic filtering into seismic data proces...A new method is introduced to suppress the noise in seismic data processing. Based on the subtle difference in shape between the noise and the actual signal, we introduce morphologic filtering into seismic data processing. From the shape and the S/N we can see that the effect of morphologic filtering is superior to other methods like id-value filtering, neighbor average filtering, etc. The SNR of the signal after morphological filtering is comparatively great. In addition, the precision of the seismic data after morphological filtering is high. The characteristics of the actual signal, such as frequency and amplitude, are preserved. We give an example of the real seismic data processing using morphological filtering, in which the actual signal is retained, while the random high intensity noise was removed.展开更多
A novel time-domain identification technique is developed for the seismic response analysis of soil-structure interaction.A two-degree-of-freedom (2DOF) model with eight lumped parameters is adopted to model the frequ...A novel time-domain identification technique is developed for the seismic response analysis of soil-structure interaction.A two-degree-of-freedom (2DOF) model with eight lumped parameters is adopted to model the frequency- dependent behavior of soils.For layered soil,the equivalent eight parameters of the 2DOF model are identified by the extended Kalman filter (EKF) method using recorded seismic data.The polynomial approximations for derivation of state estimators are applied in the EKF procedure.A realistic identification example is given for the layered-soil of a building site in Anchorage,Alaska in the United States.Results of the example demonstrate the feasibility and practicality of the proposed identification technique.The 2DOF soil model and the identification technique can be used for nonlinear response analysis of soil-structure interaction in the time-domain for layered or complex soil conditions.The identified parameters can be stored in a database tor use in other similar soil conditions,lfa universal database that covers information related to most soil conditions is developed in the thture,engineers could conveniently perform time history analyses of soil-structural interaction.展开更多
Oil and gas seismic exploration have to adopt irregular seismic acquisition due to the increasingly complex exploration conditions to adapt to complex geological conditions and environments.However,the irregular seism...Oil and gas seismic exploration have to adopt irregular seismic acquisition due to the increasingly complex exploration conditions to adapt to complex geological conditions and environments.However,the irregular seismic acquisition is accompanied by the lack of acquisition data,which requires high-precision regularization.The sparse signal feature in the transform domain in compressed sensing theory is used in this paper to recover the missing signal,involving sparse transform base optimization and threshold modeling.First,this paper analyzes and compares the effects of six sparse transformation bases on the reconstruction accuracy and efficiency of irregular seismic data and establishes the quantitative relationship between sparse transformation and reconstruction accuracy and efficiency.Second,an adaptive threshold modeling method based on sparse coefficient is provided to improve the reconstruction accuracy.Test results show that the method has good adaptability to different seismic data and sparse transform bases.The f-x domain reconstruction method of effective frequency samples is studied to address the problem of low computational efficiency.The parallel computing strategy of curvelet transform combined with OpenMP is further proposed,which substantially improves the computational efficiency under the premise of ensuring the reconstruction accuracy.Finally,the actual acquisition data are used to verify the proposed method.The results indicate that the proposed method strategy can solve the regularization problem of irregular seismic data in production and improve the imaging quality of the target layer economically and efficiently.展开更多
Seismic data regularization is an important preprocessing step in seismic signal processing. Traditional seismic acquisition methods follow the Shannon–Nyquist sampling theorem, whereas compressive sensing(CS) prov...Seismic data regularization is an important preprocessing step in seismic signal processing. Traditional seismic acquisition methods follow the Shannon–Nyquist sampling theorem, whereas compressive sensing(CS) provides a fundamentally new paradigm to overcome limitations in data acquisition. Besides the sparse representation of seismic signal in some transform domain and the 1-norm reconstruction algorithm, the seismic data regularization quality of CS-based techniques strongly depends on random undersampling schemes. For 2D seismic data, discrete uniform-based methods have been investigated, where some seismic traces are randomly sampled with an equal probability. However, in theory and practice, some seismic traces with different probability are required to be sampled for satisfying the assumptions in CS. Therefore, designing new undersampling schemes is imperative. We propose a Bernoulli-based random undersampling scheme and its jittered version to determine the regular traces that are randomly sampled with different probability, while both schemes comply with the Bernoulli process distribution. We performed experiments using the Fourier and curvelet transforms and the spectral projected gradient reconstruction algorithm for 1-norm(SPGL1), and ten different random seeds. According to the signal-to-noise ratio(SNR) between the original and reconstructed seismic data, the detailed experimental results from 2D numerical and physical simulation data show that the proposed novel schemes perform overall better than the discrete uniform schemes.展开更多
In order to detect fault exactly and quickly, cusp catastrophe theory is used to interpret 3D coal seismic data in this paper. By establishing a cusp model, seismic signal is transformed into standard form of cusp cat...In order to detect fault exactly and quickly, cusp catastrophe theory is used to interpret 3D coal seismic data in this paper. By establishing a cusp model, seismic signal is transformed into standard form of cusp catastrophe and catastrophe parameters, including time-domain catastrophe potential, time-domain catastrophe time, frequency-domain catastrophe potential and frequency- domain degree, are calculated. Catastrophe theory is used in 3D seismic structural interpretation in coal mine. The results show that the position of abnormality of the catastrophe parameter profile or curve is related to the location of fault, and the cusp catastrophe theory is effective to automatically pick up geology information and improve the interpretation precision in 3D seismic data.展开更多
The South Yellow Sea basin is filled with Mesozoic-Cenozoic continental sediments overlying pre-Palaeozoic and Mesozoic-Palaeozoic marine sediments.Conventional multi-channel seismic data cannot describe the velocity ...The South Yellow Sea basin is filled with Mesozoic-Cenozoic continental sediments overlying pre-Palaeozoic and Mesozoic-Palaeozoic marine sediments.Conventional multi-channel seismic data cannot describe the velocity structure of the marine residual basin in detail,leading to the lack of a deeper understanding of the distribution and lithology owing to strong energy shielding on the top interface of marine sediments.In this study,we present seismic tomography data from ocean bottom seismographs that describe the NEE-trending velocity distributions of the basin.The results indicate that strong velocity variations occur at shallow crustal levels.Horizontal velocity bodies show good correlation with surface geological features,and multi-layer features exist in the vertical velocity framework(depth:0–10 km).The analyses of the velocity model,gravity data,magnetic data,multichannel seismic profiles,and drilling data showed that high-velocity anomalies(>6.5 km/s)of small(thickness:1–2 km)and large(thickness:>5 km)scales were caused by igneous complexes in the multi-layer structure,which were active during the Palaeogene.Possible locations of good Mesozoic and Palaeozoic marine strata are limited to the Central Uplift and the western part of the Northern Depression along the wide-angle ocean bottom seismograph array.Following the Indosinian movement,a strong compression existed in the Northern Depression during the extensional phase that caused the formation of folds in the middle of the survey line.This study is useful for reconstructing the regional tectonic evolution and delineating the distribution of the marine residual basin in the South Yellow Sea basin.展开更多
Seismic data typically contain random missing traces because of obstacles and economic restrictions,influencing subsequent processing and interpretation.Seismic data recovery can be expressed as a low-rank matrix appr...Seismic data typically contain random missing traces because of obstacles and economic restrictions,influencing subsequent processing and interpretation.Seismic data recovery can be expressed as a low-rank matrix approximation problem by assuming a low-rank structure for the complete seismic data in the frequency–space(f–x)domain.The nuclear norm minimization(NNM)(sum of singular values)approach treats singular values equally,yielding a solution deviating from the optimal.Further,the log-sum majorization–minimization(LSMM)approach uses the nonconvex log-sum function as a rank substitution for seismic data interpolation,which is highly accurate but time-consuming.Therefore,this study proposes an efficient nonconvex reconstruction model based on the nonconvex Geman function(the nonconvex Geman low-rank(NCGL)model),involving a tighter approximation of the original rank function.Without introducing additional parameters,the nonconvex problem is solved using the Karush–Kuhn–Tucker condition theory.Experiments using synthetic and field data demonstrate that the proposed NCGL approach achieves a higher signal-to-noise ratio than the singular value thresholding method based on NNM and the projection onto convex sets method based on the data-driven threshold model.The proposed approach achieves higher reconstruction efficiency than the singular value thresholding and LSMM methods.展开更多
The low-pass fi ltering eff ect of the Earth results in the absorption and attenuation of the high-frequency components of seismic signals by the stratum during propagation.Hence,seismic data have low resolution.Consi...The low-pass fi ltering eff ect of the Earth results in the absorption and attenuation of the high-frequency components of seismic signals by the stratum during propagation.Hence,seismic data have low resolution.Considering the limitations of traditional high-frequency compensation methods,this paper presents a new method based on adaptive generalized S transform.This method is based on the study of frequency spectrum attenuation law of seismic signals,and the Gauss window function of adaptive generalized S transform is used to fi t the attenuation trend of seismic signals to seek the optimal Gauss window function.The amplitude spectrum compensation function constructed using the optimal Gauss window function is used to modify the time-frequency spectrum of the adaptive generalized S transform of seismic signals and reconstruct seismic signals to compensate for high-frequency attenuation.Practical data processing results show that the method can compensate for the high-frequency components that are absorbed and attenuated by the stratum,thereby eff ectively improving the resolution and quality of seismic data.展开更多
Compaction correction is a key part of paleogeomorphic recovery methods. Yet, the influence of lithology on the porosity evolution is not usually taken into account. Present methods merely classify the lithologies as ...Compaction correction is a key part of paleogeomorphic recovery methods. Yet, the influence of lithology on the porosity evolution is not usually taken into account. Present methods merely classify the lithologies as sandstone and mudstone to undertake separate porositydepth compaction modeling. However, using just two lithologies is an oversimplification that cannot represent the compaction history. In such schemes, the precision of the compaction recovery is inadequate. To improve the precision of compaction recovery, a depth compaction model has been proposed that involves both porosity and clay content. A clastic lithological compaction unit classification method, based on clay content, has been designed to identify lithological boundaries and establish sets of compaction units. Also, on the basis of the clastic compaction unit classification, two methods of compaction recovery that integrate well and seismic data are employed to extrapolate well-based compaction information outward along seismic lines and recover the paleo-topography of the clastic strata in the region. The examples presented here show that a better understanding of paleo-geomorphology can be gained by applying the proposed compaction recovery technology.展开更多
The Chaoshan depression,a Mesozoic basin in the Dongsha sea area,northern South China Sea,is characterized by well-preserved Mesozoic strata,being good conditions for oil-gas preservation,promising good prospects for ...The Chaoshan depression,a Mesozoic basin in the Dongsha sea area,northern South China Sea,is characterized by well-preserved Mesozoic strata,being good conditions for oil-gas preservation,promising good prospects for oil-gas exploration.However,breakthrough in oil-gas exploration in the Mesozoic strata has not been achieved due to less seismic surveys.New long-off set seismic data were processed that acquired with dense grid with single source and single cable.In addition,the data were processed with 3D imaging method and fi ner processing was performed to highlight the target strata.Combining the new imaging result and other geological information,we conducted integrated interpretation and proposed an exploratory well A-1-1 for potential hydrocarbon.The result provides a reliable basis for achieving breakthroughs in oil and gas exploration in the Mesozoic strata in the northern South China Sea.展开更多
This paper presents a new approach for attenuating coherent noise in 3D seismic data. An adaptive beamforming with generalized sidelobe canceller (GSC) design methodology is utilized here as a general form of linearly...This paper presents a new approach for attenuating coherent noise in 3D seismic data. An adaptive beamforming with generalized sidelobe canceller (GSC) design methodology is utilized here as a general form of linearly constrained adaptive beamforming structure. It consists of a fixed beamformer, and a signal-blocking matrix in front of an unconstrained adaptive beamformer.Considerationf of the complexity of the geometry for 3D seismic survey, the 3D beamforming with GSC technique is developed with two key points: (1) sorting along azimuth sections to simplify the relationship between traveltime and offset from 3D to 2D, and (2) dynamic binning scheme to avoid the possible poor folding in some azimuth sections. Both simulation result and real data example show that the newly developed 3D beamforming with GSC yields more credible results at a relative low cost, sufficient stability and good resolution.展开更多
Seismic data reconstruction is an essential and yet fundamental step in seismic data processing workflow,which is of profound significance to improve migration imaging quality,multiple suppression effect,and seismic i...Seismic data reconstruction is an essential and yet fundamental step in seismic data processing workflow,which is of profound significance to improve migration imaging quality,multiple suppression effect,and seismic inversion accuracy.Regularization methods play a central role in solving the underdetermined inverse problem of seismic data reconstruction.In this paper,a novel regularization approach is proposed,the low dimensional manifold model(LDMM),for reconstructing the missing seismic data.Our work relies on the fact that seismic patches always occupy a low dimensional manifold.Specifically,we exploit the dimension of the seismic patches manifold as a regularization term in the reconstruction problem,and reconstruct the missing seismic data by enforcing low dimensionality on this manifold.The crucial procedure of the proposed method is to solve the dimension of the patches manifold.Toward this,we adopt an efficient dimensionality calculation method based on low-rank approximation,which provides a reliable safeguard to enforce the constraints in the reconstruction process.Numerical experiments performed on synthetic and field seismic data demonstrate that,compared with the curvelet-based sparsity-promoting L1-norm minimization method and the multichannel singular spectrum analysis method,the proposed method obtains state-of-the-art reconstruction results.展开更多
A comprehensive study of the data profiles, including the 2D seismic data, single channel seismic data, shallow sections, etc., reveals that gas hydrates occur in the East China Sea. A series of special techniques are...A comprehensive study of the data profiles, including the 2D seismic data, single channel seismic data, shallow sections, etc., reveals that gas hydrates occur in the East China Sea. A series of special techniques are used in the processing of seismic data, which include enhancing the accuracy of velocity analysis and resolution, estimating the wavelet, suppressing the multiple, preserving the relative amplitude, using the DMO and AVO techniques and some special techniques in dealing with the wave impedance. The existence of gas hydrates is reflected in the subbottom profiles in the appearance of BSRs, amplitude anomalies, velocity anomalies and AVO anomalies, etc. Hence the gas hydrates can be identified and predicted. It is pointed out that the East China Sea is a favorable area of the gas hydrates resource, and the Okinawa Trough is a target area of gas hydrates reservoir.展开更多
基金funded by the National Natural Science Foundation of China(General Program:No.52074314,No.U19B6003-05)National Key Research and Development Program of China(2019YFA0708303-05)。
文摘Accurate prediction of formation pore pressure is essential to predict fluid flow and manage hydrocarbon production in petroleum engineering.Recent deep learning technique has been receiving more interest due to the great potential to deal with pore pressure prediction.However,most of the traditional deep learning models are less efficient to address generalization problems.To fill this technical gap,in this work,we developed a new adaptive physics-informed deep learning model with high generalization capability to predict pore pressure values directly from seismic data.Specifically,the new model,named CGP-NN,consists of a novel parametric features extraction approach(1DCPP),a stacked multilayer gated recurrent model(multilayer GRU),and an adaptive physics-informed loss function.Through machine training,the developed model can automatically select the optimal physical model to constrain the results for each pore pressure prediction.The CGP-NN model has the best generalization when the physicsrelated metricλ=0.5.A hybrid approach combining Eaton and Bowers methods is also proposed to build machine-learnable labels for solving the problem of few labels.To validate the developed model and methodology,a case study on a complex reservoir in Tarim Basin was further performed to demonstrate the high accuracy on the pore pressure prediction of new wells along with the strong generalization ability.The adaptive physics-informed deep learning approach presented here has potential application in the prediction of pore pressures coupled with multiple genesis mechanisms using seismic data.
基金Supported by the CNPC Science and Technology Projects(2022-N/G-47808,2023-N/G-67014)RIPED International Cooperation Project(19HTY5000008).
文摘To solve the problems in restoring sedimentary facies and predicting reservoirs in loose gas-bearing sediment,based on seismic sedimentologic analysis of the first 9-component S-wave 3D seismic dataset of China,a fourth-order isochronous stratigraphic framework was set up and then sedimentary facies and reservoirs in the Pleistocene Qigequan Formation in Taidong area of Qaidam Basin were studied by seismic geomorphology and seismic lithology.The study method and thought are as following.Firstly,techniques of phase rotation,frequency decomposition and fusion,and stratal slicing were applied to the 9-component S-wave seismic data to restore sedimentary facies of major marker beds based on sedimentary models reflected by satellite images.Then,techniques of seismic attribute extraction,principal component analysis,and random fitting were applied to calculate the reservoir thickness and physical parameters of a key sandbody,and the results are satisfactory and confirmed by blind testing wells.Study results reveal that the dominant sedimentary facies in the Qigequan Formation within the study area are delta front and shallow lake.The RGB fused slices indicate that there are two cycles with three sets of underwater distributary channel systems in one period.Among them,sandstones in the distributary channels of middle-low Qigequan Formation are thick and broad with superior physical properties,which are favorable reservoirs.The reservoir permeability is also affected by diagenesis.Distributary channel sandstone reservoirs extend further to the west of Sebei-1 gas field,which provides a basis to expand exploration to the western peripheral area.
基金financially supported by National 863 Program (Grants No.2006AA 09A 102-09)National Science and Technology of Major Projects ( Grants No.2008ZX0 5025-001-001)
文摘Irregular seismic data causes problems with multi-trace processing algorithms and degrades processing quality. We introduce the Projection onto Convex Sets (POCS) based image restoration method into the seismic data reconstruction field to interpolate irregularly missing traces. For entire dead traces, we transfer the POCS iteration reconstruction process from the time to frequency domain to save computational cost because forward and reverse Fourier time transforms are not needed. In each iteration, the selection threshold parameter is important for reconstruction efficiency. In this paper, we designed two types of threshold models to reconstruct irregularly missing seismic data. The experimental results show that an exponential threshold can greatly reduce iterations and improve reconstruction efficiency compared to a linear threshold for the same reconstruction result. We also analyze the anti- noise and anti-alias ability of the POCS reconstruction method. Finally, theoretical model tests and real data examples indicate that the proposed method is efficient and applicable.
文摘In this paper, multi-scaled morphology is introduced into the digital processing domain for land seismic data. First, we describe the basic theory of multi-scaled morphology image decomposition of exploration seismic waves; second, we illustrate how to use multi-scaled morphology for seismic data processing using two real examples. The first example demonstrates suppressing the surface waves in pre-stack seismic records using multi-scaled morphology decomposition and reconstitution and the other example demonstrates filtering different interference waves on the seismic record. Multi-scaled morphology filtering separates signal from noise by the detailed differences of the wave shapes. The successful applications suggest that multi-scaled morphology has a promising application in seismic data processing.
基金This research is sponsored by National Natural Science Foundation of China (No. 40272041) and Innovative Foundation of CNPC (N0. 04E702).
文摘In multi-component seismic exploration, the horizontal and vertical components both contain P- and SV-waves. The P- and SV-wavefields in a seismic record can be separated by their horizontal and vertical displacements when upgoing P- and SV-waves arrive at the sea floor. If the sea floor P wave velocity, S wave velocity, and density are known, the separation can be achieved in ther-p domain. The separated wavefields are then transformed to the time domain. A method of separating P- and SV-wavefields is presented in this paper and used to effectively separate P- and SV-wavefields in synthetic and real data. The application to real data shows that this method is feasible and effective. It also can be used for free surface data.
基金Mainly presented at the 6-th international meeting of acoustics in Aug. 2003, and The 1999 SPE Asia Pacific Oil and GasConference and Exhibition held in Jakarta, Indonesia, 20-22 April 1999, SPE 54274.
文摘In this paper, a new concept called numerical structure of seismic data is introduced and the difference between numerical structure and numerical value of seismic data is explained. Our study shows that the numerical seismic structure is closely related to oil and gas-bearing reservoir, so it is very useful for a geologist or a geophysicist to precisely interpret the oil-bearing layers from the seismic data. This technology can be applied to any exploration or production stage. The new method has been tested on a series of exploratory or development wells and proved to be reliable in China. Hydrocarbon-detection with this new method for 39 exploration wells on 25 structures indi- cates a success ratio of over 80 percent. The new method of hydrocarbon prediction can be applied for: (1) depositional environment of reservoirs with marine fades, delta, or non-marine fades (including fluvial facies, lacustrine fades); (2) sedimentary rocks of reservoirs that are non-marine clastic rocks and carbonate rock; and (3) burial depths range from 300 m to 7000 m, and the minimum thickness of these reservoirs is over 8 m (main frequency is about 50 Hz).
基金This reservoir research is sponsored by the National 973 Subject Project (No. 2001CB209).
文摘Seismic data structure characteristics means the waveform character arranged in the time sequence at discrete data points in each 2-D or 3-D seismic trace. Hydrocarbon prediction using seismic data structure characteristics is a new reservoir prediction technique. When the main pay interval is in carbonate fracture and fissure-cavern type reservoirs with very strong inhomogeneity, there are some difficulties with hydrocarbon prediction. Because of the special geological conditions of the eighth zone in the Tahe oil field, we apply seismic data structure characteristics to hydrocarbon prediction for the Ordovician reservoir in this zone. We divide the area oil zone into favorable and unfavorable blocks. Eighteen well locations were proposed in the favorable oil block, drilled, and recovered higher output of oil and gas.
文摘A new method is introduced to suppress the noise in seismic data processing. Based on the subtle difference in shape between the noise and the actual signal, we introduce morphologic filtering into seismic data processing. From the shape and the S/N we can see that the effect of morphologic filtering is superior to other methods like id-value filtering, neighbor average filtering, etc. The SNR of the signal after morphological filtering is comparatively great. In addition, the precision of the seismic data after morphological filtering is high. The characteristics of the actual signal, such as frequency and amplitude, are preserved. We give an example of the real seismic data processing using morphological filtering, in which the actual signal is retained, while the random high intensity noise was removed.
文摘A novel time-domain identification technique is developed for the seismic response analysis of soil-structure interaction.A two-degree-of-freedom (2DOF) model with eight lumped parameters is adopted to model the frequency- dependent behavior of soils.For layered soil,the equivalent eight parameters of the 2DOF model are identified by the extended Kalman filter (EKF) method using recorded seismic data.The polynomial approximations for derivation of state estimators are applied in the EKF procedure.A realistic identification example is given for the layered-soil of a building site in Anchorage,Alaska in the United States.Results of the example demonstrate the feasibility and practicality of the proposed identification technique.The 2DOF soil model and the identification technique can be used for nonlinear response analysis of soil-structure interaction in the time-domain for layered or complex soil conditions.The identified parameters can be stored in a database tor use in other similar soil conditions,lfa universal database that covers information related to most soil conditions is developed in the thture,engineers could conveniently perform time history analyses of soil-structural interaction.
基金supported by the National Science and Technology Major project(No.2016ZX05024001003)the Innovation Consortium Project of China Petroleum,and the Southwest Petroleum University(No.2020CX010201).
文摘Oil and gas seismic exploration have to adopt irregular seismic acquisition due to the increasingly complex exploration conditions to adapt to complex geological conditions and environments.However,the irregular seismic acquisition is accompanied by the lack of acquisition data,which requires high-precision regularization.The sparse signal feature in the transform domain in compressed sensing theory is used in this paper to recover the missing signal,involving sparse transform base optimization and threshold modeling.First,this paper analyzes and compares the effects of six sparse transformation bases on the reconstruction accuracy and efficiency of irregular seismic data and establishes the quantitative relationship between sparse transformation and reconstruction accuracy and efficiency.Second,an adaptive threshold modeling method based on sparse coefficient is provided to improve the reconstruction accuracy.Test results show that the method has good adaptability to different seismic data and sparse transform bases.The f-x domain reconstruction method of effective frequency samples is studied to address the problem of low computational efficiency.The parallel computing strategy of curvelet transform combined with OpenMP is further proposed,which substantially improves the computational efficiency under the premise of ensuring the reconstruction accuracy.Finally,the actual acquisition data are used to verify the proposed method.The results indicate that the proposed method strategy can solve the regularization problem of irregular seismic data in production and improve the imaging quality of the target layer economically and efficiently.
基金financially supported by The 2011 Prospective Research Project of SINOPEC(P11096)
文摘Seismic data regularization is an important preprocessing step in seismic signal processing. Traditional seismic acquisition methods follow the Shannon–Nyquist sampling theorem, whereas compressive sensing(CS) provides a fundamentally new paradigm to overcome limitations in data acquisition. Besides the sparse representation of seismic signal in some transform domain and the 1-norm reconstruction algorithm, the seismic data regularization quality of CS-based techniques strongly depends on random undersampling schemes. For 2D seismic data, discrete uniform-based methods have been investigated, where some seismic traces are randomly sampled with an equal probability. However, in theory and practice, some seismic traces with different probability are required to be sampled for satisfying the assumptions in CS. Therefore, designing new undersampling schemes is imperative. We propose a Bernoulli-based random undersampling scheme and its jittered version to determine the regular traces that are randomly sampled with different probability, while both schemes comply with the Bernoulli process distribution. We performed experiments using the Fourier and curvelet transforms and the spectral projected gradient reconstruction algorithm for 1-norm(SPGL1), and ten different random seeds. According to the signal-to-noise ratio(SNR) between the original and reconstructed seismic data, the detailed experimental results from 2D numerical and physical simulation data show that the proposed novel schemes perform overall better than the discrete uniform schemes.
文摘In order to detect fault exactly and quickly, cusp catastrophe theory is used to interpret 3D coal seismic data in this paper. By establishing a cusp model, seismic signal is transformed into standard form of cusp catastrophe and catastrophe parameters, including time-domain catastrophe potential, time-domain catastrophe time, frequency-domain catastrophe potential and frequency- domain degree, are calculated. Catastrophe theory is used in 3D seismic structural interpretation in coal mine. The results show that the position of abnormality of the catastrophe parameter profile or curve is related to the location of fault, and the cusp catastrophe theory is effective to automatically pick up geology information and improve the interpretation precision in 3D seismic data.
基金The National Natural Science Foundation of China under contract No.41806048the Open Fund of the Hubei Key Laboratory of Marine Geological Resources under contract No.MGR202009+2 种基金the Fund from the Key Laboratory of Deep-Earth Dynamics of Ministry of Natural Resource,Institute of Geology,Chinese Academy of Geological Sciences under contract No.J1901-16the Aoshan Science and Technology Innovation Project of Pilot National Laboratory for Marine Science and Technology(Qingdao)under contract No.2015ASKJ03-Seabed Resourcesthe Fund from the Korea Institute of Ocean Science and Technology(KIOST)under contract No.PE99741.
文摘The South Yellow Sea basin is filled with Mesozoic-Cenozoic continental sediments overlying pre-Palaeozoic and Mesozoic-Palaeozoic marine sediments.Conventional multi-channel seismic data cannot describe the velocity structure of the marine residual basin in detail,leading to the lack of a deeper understanding of the distribution and lithology owing to strong energy shielding on the top interface of marine sediments.In this study,we present seismic tomography data from ocean bottom seismographs that describe the NEE-trending velocity distributions of the basin.The results indicate that strong velocity variations occur at shallow crustal levels.Horizontal velocity bodies show good correlation with surface geological features,and multi-layer features exist in the vertical velocity framework(depth:0–10 km).The analyses of the velocity model,gravity data,magnetic data,multichannel seismic profiles,and drilling data showed that high-velocity anomalies(>6.5 km/s)of small(thickness:1–2 km)and large(thickness:>5 km)scales were caused by igneous complexes in the multi-layer structure,which were active during the Palaeogene.Possible locations of good Mesozoic and Palaeozoic marine strata are limited to the Central Uplift and the western part of the Northern Depression along the wide-angle ocean bottom seismograph array.Following the Indosinian movement,a strong compression existed in the Northern Depression during the extensional phase that caused the formation of folds in the middle of the survey line.This study is useful for reconstructing the regional tectonic evolution and delineating the distribution of the marine residual basin in the South Yellow Sea basin.
基金financially supported by the National Key R&D Program of China(No.2018YFC1503705)the Science and Technology Research Project of Hubei Provincial Department of Education(No.B2017597)+1 种基金the Hubei Subsurface Multiscale Imaging Key Laboratory(China University of Geosciences)(No.SMIL-2018-06)the Fundamental Research Funds for the Central Universities(No.CCNU19TS020).
文摘Seismic data typically contain random missing traces because of obstacles and economic restrictions,influencing subsequent processing and interpretation.Seismic data recovery can be expressed as a low-rank matrix approximation problem by assuming a low-rank structure for the complete seismic data in the frequency–space(f–x)domain.The nuclear norm minimization(NNM)(sum of singular values)approach treats singular values equally,yielding a solution deviating from the optimal.Further,the log-sum majorization–minimization(LSMM)approach uses the nonconvex log-sum function as a rank substitution for seismic data interpolation,which is highly accurate but time-consuming.Therefore,this study proposes an efficient nonconvex reconstruction model based on the nonconvex Geman function(the nonconvex Geman low-rank(NCGL)model),involving a tighter approximation of the original rank function.Without introducing additional parameters,the nonconvex problem is solved using the Karush–Kuhn–Tucker condition theory.Experiments using synthetic and field data demonstrate that the proposed NCGL approach achieves a higher signal-to-noise ratio than the singular value thresholding method based on NNM and the projection onto convex sets method based on the data-driven threshold model.The proposed approach achieves higher reconstruction efficiency than the singular value thresholding and LSMM methods.
基金This research is supported by the National Science and Technology Major Project of China(No.2011ZX05024-001-03)the Natural Science Basic Research Plan in Shaanxi Province of China(No.2021JQ-588)Innovation Fund for graduate students of Xi’an Shiyou University(No.YCS17111017).
文摘The low-pass fi ltering eff ect of the Earth results in the absorption and attenuation of the high-frequency components of seismic signals by the stratum during propagation.Hence,seismic data have low resolution.Considering the limitations of traditional high-frequency compensation methods,this paper presents a new method based on adaptive generalized S transform.This method is based on the study of frequency spectrum attenuation law of seismic signals,and the Gauss window function of adaptive generalized S transform is used to fi t the attenuation trend of seismic signals to seek the optimal Gauss window function.The amplitude spectrum compensation function constructed using the optimal Gauss window function is used to modify the time-frequency spectrum of the adaptive generalized S transform of seismic signals and reconstruct seismic signals to compensate for high-frequency attenuation.Practical data processing results show that the method can compensate for the high-frequency components that are absorbed and attenuated by the stratum,thereby eff ectively improving the resolution and quality of seismic data.
文摘Compaction correction is a key part of paleogeomorphic recovery methods. Yet, the influence of lithology on the porosity evolution is not usually taken into account. Present methods merely classify the lithologies as sandstone and mudstone to undertake separate porositydepth compaction modeling. However, using just two lithologies is an oversimplification that cannot represent the compaction history. In such schemes, the precision of the compaction recovery is inadequate. To improve the precision of compaction recovery, a depth compaction model has been proposed that involves both porosity and clay content. A clastic lithological compaction unit classification method, based on clay content, has been designed to identify lithological boundaries and establish sets of compaction units. Also, on the basis of the clastic compaction unit classification, two methods of compaction recovery that integrate well and seismic data are employed to extrapolate well-based compaction information outward along seismic lines and recover the paleo-topography of the clastic strata in the region. The examples presented here show that a better understanding of paleo-geomorphology can be gained by applying the proposed compaction recovery technology.
基金Supported by the Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory(Guangzhou)(No.GML2019ZD0208)the National Natural Science Foundation of China(No.41606030)+1 种基金the Science and Technology Program of Guangzhou(No.202102080363)the China Geological Survey projects(Nos.DD20190212,DD20190216)。
文摘The Chaoshan depression,a Mesozoic basin in the Dongsha sea area,northern South China Sea,is characterized by well-preserved Mesozoic strata,being good conditions for oil-gas preservation,promising good prospects for oil-gas exploration.However,breakthrough in oil-gas exploration in the Mesozoic strata has not been achieved due to less seismic surveys.New long-off set seismic data were processed that acquired with dense grid with single source and single cable.In addition,the data were processed with 3D imaging method and fi ner processing was performed to highlight the target strata.Combining the new imaging result and other geological information,we conducted integrated interpretation and proposed an exploratory well A-1-1 for potential hydrocarbon.The result provides a reliable basis for achieving breakthroughs in oil and gas exploration in the Mesozoic strata in the northern South China Sea.
基金This research is sponsored by by China Natural Science Foundation (40274041), China National Petroleum Corporation (CNPC)Innovation Fund (2002CXKF-3)
文摘This paper presents a new approach for attenuating coherent noise in 3D seismic data. An adaptive beamforming with generalized sidelobe canceller (GSC) design methodology is utilized here as a general form of linearly constrained adaptive beamforming structure. It consists of a fixed beamformer, and a signal-blocking matrix in front of an unconstrained adaptive beamformer.Considerationf of the complexity of the geometry for 3D seismic survey, the 3D beamforming with GSC technique is developed with two key points: (1) sorting along azimuth sections to simplify the relationship between traveltime and offset from 3D to 2D, and (2) dynamic binning scheme to avoid the possible poor folding in some azimuth sections. Both simulation result and real data example show that the newly developed 3D beamforming with GSC yields more credible results at a relative low cost, sufficient stability and good resolution.
基金supported by National Natural Science Foundation of China(Grant No.41874146 and No.42030103)Postgraduate Innovation Project of China University of Petroleum(East China)(No.YCX2021012)
文摘Seismic data reconstruction is an essential and yet fundamental step in seismic data processing workflow,which is of profound significance to improve migration imaging quality,multiple suppression effect,and seismic inversion accuracy.Regularization methods play a central role in solving the underdetermined inverse problem of seismic data reconstruction.In this paper,a novel regularization approach is proposed,the low dimensional manifold model(LDMM),for reconstructing the missing seismic data.Our work relies on the fact that seismic patches always occupy a low dimensional manifold.Specifically,we exploit the dimension of the seismic patches manifold as a regularization term in the reconstruction problem,and reconstruct the missing seismic data by enforcing low dimensionality on this manifold.The crucial procedure of the proposed method is to solve the dimension of the patches manifold.Toward this,we adopt an efficient dimensionality calculation method based on low-rank approximation,which provides a reliable safeguard to enforce the constraints in the reconstruction process.Numerical experiments performed on synthetic and field seismic data demonstrate that,compared with the curvelet-based sparsity-promoting L1-norm minimization method and the multichannel singular spectrum analysis method,the proposed method obtains state-of-the-art reconstruction results.
文摘A comprehensive study of the data profiles, including the 2D seismic data, single channel seismic data, shallow sections, etc., reveals that gas hydrates occur in the East China Sea. A series of special techniques are used in the processing of seismic data, which include enhancing the accuracy of velocity analysis and resolution, estimating the wavelet, suppressing the multiple, preserving the relative amplitude, using the DMO and AVO techniques and some special techniques in dealing with the wave impedance. The existence of gas hydrates is reflected in the subbottom profiles in the appearance of BSRs, amplitude anomalies, velocity anomalies and AVO anomalies, etc. Hence the gas hydrates can be identified and predicted. It is pointed out that the East China Sea is a favorable area of the gas hydrates resource, and the Okinawa Trough is a target area of gas hydrates reservoir.