The highly selective hydrogenation of 5-hydroxymethylfurfural to 2,5-dihydroxymethylfuran is an important reaction in the field of biomass hydrogenation,because it is a bridge between biomass resources and chemical in...The highly selective hydrogenation of 5-hydroxymethylfurfural to 2,5-dihydroxymethylfuran is an important reaction in the field of biomass hydrogenation,because it is a bridge between biomass resources and chemical industry.Here,we precisely constructed carbon nitride supported Pd-based catalysts by a simple impregnation-reduction method.By changing the reduction temperature,catalysts with different oxidation state could be precisely constructed.Moreover,the important correlation between the ratio of Pd^(0)/Pd^(2+)and catalytic activity is revealed during the selective hydrogenation of HMF.The Pd/g—C_(3)N_(4)—300 catalyst with a Pd^(0)/Pd^(2+)ratio of 3/2 showed the highest catalytic activity,which could get 96.9%5-hydroxymethylfurfural conversion and 90.3%2,5-dihydroxymethylfuran selectivity.Further density functional theory calculation revealed that the synergistic effect between Pd0and Pd2+in Pd/g—C_(3)N_(4)—300 system could boost the adsorption of the substrate and the dissociation of hydrogen.In this work,we highlight the important correlation between metal oxidation state and catalytic activity,which provides valuable insights for the rational design of precious metal catalysts for hydrogenation reactions.展开更多
The selective hydrogenation of polycyclic aromatic hydrocarbons(PAHs)from fluid catalytic cracking(FCC)slurry extract was conducted in a batch reactor over aγ-Al_(2)O_(3)-supported bimetallic Ni-W catalyst.For the Ni...The selective hydrogenation of polycyclic aromatic hydrocarbons(PAHs)from fluid catalytic cracking(FCC)slurry extract was conducted in a batch reactor over aγ-Al_(2)O_(3)-supported bimetallic Ni-W catalyst.For the Ni-W/γ-Al_(2)O_(3) catalyst,the experiment run was divided into three processes according to the reaction conditions used:(1)the absence of hydrogenation as both temperature and pressure increased;(2)the desulfurization of FCC slurry extract under a fixed pressure as the temperature increased;and(3)the selective hydrogenation of PAHs when both pressure and temperature remained constant.The hydrogen consumption could be accurately calculated from the Redlich–Kwong equation of state.The results for the removal of PAHs with hydrogenation displayed an excellent fit to the first-order kinetics.The apparent activation energy was determined to be 20.80 kJ/mol.展开更多
In this study,different loadings of x%Ni_(2)P/γ-Al_(2)O_(3)(x=6%,9%,12%,15%,18%)catalysts with aluminum oxide(Al_(2)O_(3))as the carrier,nickel chloride(NiCl2)as the nickel(Ni)source,and ammonium hypophosphite(NH_(4)...In this study,different loadings of x%Ni_(2)P/γ-Al_(2)O_(3)(x=6%,9%,12%,15%,18%)catalysts with aluminum oxide(Al_(2)O_(3))as the carrier,nickel chloride(NiCl2)as the nickel(Ni)source,and ammonium hypophosphite(NH_(4)H_(2)PO_(2))as the phosphorus(P)source were prepared by the equal volume impregnation method to investigate the effects of different loadings on the performance of the selective hydrogenation of diolefins and thiol etherification in LPG.The physicochemical properties of the catalysts were characterized by XRD,BET,SEM,TEM,H_(2)-TPR,and XPS,and the catalytic activity of the catalysts was evaluated in a fixed-bed microreactor.The results showed that a change in the loading affected the catalyst crystalline phase structure and size,specific surface area,P coverage,active phase dispersion,and catalytic activity.At 6%,9%,and 12%loadings the catalysts had an Ni phase but there was no obvious Ni_(2)P phase in the nickel phosphide;at 15%loading a single Ni_(2)P phase was obtained,and at 18%loading both Ni_(2)P and Ni1_(2)P_(5) phases appeared.There was a P enrichment on the catalyst surface,and the higher the loading the more P species were enriched on the surface,but some of the P was lost during the catalyst reduction process due to the production of phosphine(PH3)gas.The 15%Ni_(2)P/γ-Al_(2)O_(3) catalyst had the largest Ni/Al ratio and the best dispersion.The Ni_(2)P active phase size was small at about 4.25 nm and Ni_(2)P was uniformly dispersed on the catalyst surface without agglomeration.The 15%Ni_(2)P/γ-Al_(2)O_(3) catalyst had the best catalytic activity at a pressure of 2.0 MPa,a liquid hourly space velocity(LHSV)of 3.0 h-1,and a hydrogen to hydrocarbon ratio of 12.The 1,3-butadiene conversion was 97.45%and the methanethiol removal was 100%at a temperature of 140℃.展开更多
Pd/C catalysts were prepared by deposited Pd nanoparticles (NPs) on different carbon supports including activated carbon (AC), graphite oxide (GO), and reduced graphite oxide (rGO) using sol-immobilization met...Pd/C catalysts were prepared by deposited Pd nanoparticles (NPs) on different carbon supports including activated carbon (AC), graphite oxide (GO), and reduced graphite oxide (rGO) using sol-immobilization method. Through transmission electron microscopy, powder X-ray di raction, and X-ray photoelectron spectroscopy, the role of the carbon supports for the catalytic performances of Pd/C catalysts was examined in selective hydrogenation of acetylene. The results indicate that Pd/AC exhibited higher activity and selectivity than Pd/GO and Pd/rGO in the gas phase selective hydrogenation of acetylene. Thermal and chemical treatment of AC supports also have some effect on the catalytic performance of Pd/AC catalysts. The differences in the activity and selectivity of various Pd/C catalysts were partly attributed to the metal-support interaction.展开更多
A catalyst consisting of platinum nanoparticles on a ZIF-8 support(Pt@ZIF-8) was synthesized in a straightforward one-step procedure,by adding a nanostructured platinum sol during the formation of ZIF-8 at room temp...A catalyst consisting of platinum nanoparticles on a ZIF-8 support(Pt@ZIF-8) was synthesized in a straightforward one-step procedure,by adding a nanostructured platinum sol during the formation of ZIF-8 at room temperature.Pt@ZIF-8 was highly porous and well crystallized.The Pt nanoparticles were well dispersed within the ZIF-8 support.In the hydrogenation of 1,4-butynediol,Pt@ZIF-8 exhibited high activity,excellent selectivity for 1,4-butenediol of greater than 94%,and reusability.The Pt@ZIF-8 catalyst did not require further additives.The favorable catalytic performance was attributed primarily to the modification of the ZIF-8 support by the platinum nanoparticles.展开更多
The IB metal(Au,Ag and Cu)alloyed Pd single atom catalysts had been proved to be efficient in promoting the selectivity for hydrogenation of acetylene to ethylene.As a base metal in the same group as Pd,the Ni-based c...The IB metal(Au,Ag and Cu)alloyed Pd single atom catalysts had been proved to be efficient in promoting the selectivity for hydrogenation of acetylene to ethylene.As a base metal in the same group as Pd,the Ni-based catalysts are also active for hydrogenation reactions.Herein,the effects of the IB metals on the Ni/SiO2 catalyst for the selective hydrogenation of acetylene were systematically studied.Different from the Pd/SiO2 catalyst,the monometallic Ni/SiO2 catalyst is not active at low temperatures.The addition of the IB metals to the Ni/SiO2 catalysts can greatly enhance the activity.Besides,the catalytic activity of the AuNix/SiO2 and CuNix/SiO2 catalysts increase with the reduction temperature,while the AgNix/SiO2 catalysts are not sensitive to the pretreatment temperature.The origin of the effect of the different IB metals on the Ni-based catalysts for selective hydrogenation of acetylene is discussed based on the characterizations by XRD,TPR and microcalorimetric measurements.展开更多
The effect of La on the performance of a supported RuB amorphous alloy catalyst for benzene selective hydrogenation was studied by means of activity and selectivity tests, such as HRTEM, SAED, XPS, and XRD. The result...The effect of La on the performance of a supported RuB amorphous alloy catalyst for benzene selective hydrogenation was studied by means of activity and selectivity tests, such as HRTEM, SAED, XPS, and XRD. The results show that the addition of La to RuB amorphous alloy catalyst can evidently increase the activity and improve the thermal stability of RuB amorphous alloy to refrain its crystallization. The promoting effect of La on the activity of RuB amorphous alloy catalyst is because of the high dispersion of the active components.展开更多
A novel nanosized amorphous Ru-Fe-B/ZrO2 alloy catalyst for benzene selective hydrogenation to cyclohexene was investigated. The superior properties of this catalyst were attributed to the combination of the nanosize ...A novel nanosized amorphous Ru-Fe-B/ZrO2 alloy catalyst for benzene selective hydrogenation to cyclohexene was investigated. The superior properties of this catalyst were attributed to the combination of the nanosize and the amorphous character as well as to its textural character. In addition, the concentration of zinc ions, the content of ZrO2 in the slurry, and the pretreatment of the catalyst were found to be effective in improving the activity and the selectivity of the catalyst.展开更多
The selective hydrogenation of phenol to cyclohexanone is an important process in the chemical industry.However,achieving high selectivity at high conversion rates is highly challenging,particularly under continuous r...The selective hydrogenation of phenol to cyclohexanone is an important process in the chemical industry.However,achieving high selectivity at high conversion rates is highly challenging,particularly under continuous reaction conditions.Here,we found that the presence of Na alkaline additives(NaX,X=CO3^2–,HCO^3–,or OH^–)on Pd/Al2O3 not only promoted the phenol conversion from 8.3%to>99%but also increased the cyclohexanone selectivity from 89%to>97%during the continuous hydrogenation of phenol on a fixed bed reactor.After 1200 h of continuous reaction,no activity or selectivity attenuation was observed and the turnover number was approximately 2.9×10^5.Density functional theory calculations,spectroscopic,and dynamics studies demonstrated that the addition of NaX greatly promoted phenol adsorption and hydrogen activation,thereby improving catalytic activity.Simultaneously,the formation of a“-C=O-Na-”intermediate inhibited the excessive hydrogenation and intermolecular coupling of cyclohexanone,leading to high selectivity.展开更多
Ru-based catalysts promoted with Mn and Zn were prepared by a co-precipitation method. In liquid-phase hydrogenation of benzene, the Ru-Mn-Zn catalysts exhibited superior catalytic performance to the catalysts promote...Ru-based catalysts promoted with Mn and Zn were prepared by a co-precipitation method. In liquid-phase hydrogenation of benzene, the Ru-Mn-Zn catalysts exhibited superior catalytic performance to the catalysts promoted with Zn or Mn alone. The optimum Mn/Zn molar ratio was determined to be 0.3. With the addition of 0.5 g NaOH, the Ru-Mn-Zn-0.3 catalyst, which was reduced at 150 ? C, afforded a cyclohexene selectivity of 81.1% at a benzene conversion of 60.2% at 5 min and a maximum cyclohexene yield of 59.9% at 20 min. Based on characterizations, the excellent performance of Ru-Mn-Zn catalyst was ascribed to the suitable pore structure, the appropriate reducibility and the homogenous chemical environment of the catalyst.展开更多
The catalytic activity of metal catalysts can be modulated by confinement within the channels of carbon nanotubes(CNTs).Here,we show that the product distribution of cinnamaldehyde hydrogenation can be modified by con...The catalytic activity of metal catalysts can be modulated by confinement within the channels of carbon nanotubes(CNTs).Here,we show that the product distribution of cinnamaldehyde hydrogenation can be modified by confinement of Ru nanoparticles in CNTs.A catalyst composed of Ru nanoparticles dispersed on the exterior walls of CNTs gave hydrocinnamaldehyde as product.In contrast,confinement of the Ru nanoparticles within CNT channels facilitated hydrogenation of C=O bonds and complete hydrogenation,and both cinnamyl alcohol and hydrocinnamyl alcohol formed in addition to hydrocinnamaldehyde.High‐resolution transmission electron microscopy,Raman spectroscopy,hydrogen temperature‐programmed reduction,and hydrogen temperature‐programmed desorption were used to investigate the characteristics of the catalysts.The results indicate that the different interactions between the confined Ru nanoparticles and the exterior and interior walls of the CNTs,as well as spatial restriction and enrichment within the narrow channels likely play important roles in modulation of the product distribution.展开更多
Ru-Ce catalysts were prepared by a co-precipitation method.The effects of Ce precursors with different valences and Ce contents on the catalytic performance of Ru-Ce catalysts were investigated in the presence of ZnSO...Ru-Ce catalysts were prepared by a co-precipitation method.The effects of Ce precursors with different valences and Ce contents on the catalytic performance of Ru-Ce catalysts were investigated in the presence of ZnSO4.The Ce species in the catalysts prepared with different valences of the Ce precursors all exist as CeO2 on the Ru surface.The promoter CeO2alone could not improve the selectivity to cyclohexene of Ru catalysts.However,almost all the CeO2 in the catalysts could react with the reaction modifier ZnSO4 to form(Zn(OH)2)3(ZnSO4)(H2O)3 salt.The amount of the chemisorbed salt increased with the CeO2 loading,resulting in the decrease of the activity and the increase of the selectivity to cyclohexene of Ru catalyst.The Ru-Ce catalyst with the optimum Ce/Ru molar ratio of 0.19 gave a maximum cyclohexene yield of 57.4%.Moreover,this catalyst had good stability and excellent reusability.展开更多
Conversion of alkynes to alkenes by photocatalysis has inspired extensive interest but it is still challenging to obtain both high conversion and selectivity.Here we first demonstrate the photocatalytic conversion of ...Conversion of alkynes to alkenes by photocatalysis has inspired extensive interest but it is still challenging to obtain both high conversion and selectivity.Here we first demonstrate the photocatalytic conversion of phenylacetylene(PLE)to styrene(STE)with both high conversion and selectivity by using the titania(TiO2)supported platinum(Pt)as photocatalyst under 385 nm monochromatic light irradiation.It is demonstrated that the conversion rate of PLE is strongly dependent on the content of Pt cocatalyst loaded on the surface of TiO2.Based on our optimization,the conversion of PLE and the selectivity towards STE on the 1 wt%Pt/TiO2 photocatalyst can unexpectedly reach as high as 92.4%and 91.3%,respectively.The highly selective photocatalytic hydrogenation can well be extended to the conversion of other typical alkynes to alkenes,demonstrating the generality of selective hydrogenation of C≡C over the Pt/TiO2 photocatalyst.展开更多
Supported Ir catalysts were prepared using layered double hydrotalcite‐like materials,such as Mg3Al1-xFex,containing Fe and Al species in varying amounts as supports.These Ir catalysts were applied for the selective ...Supported Ir catalysts were prepared using layered double hydrotalcite‐like materials,such as Mg3Al1-xFex,containing Fe and Al species in varying amounts as supports.These Ir catalysts were applied for the selective hydrogenation of cinnamaldehyde(CAL).When x was changed from 0(Ir/Mg3Al)to 1(Ir/Mg3Fe),the rate of CAL hydrogenation reached a maximum at approximately x=0.25,while the selectivity to unsaturated alcohol,i.e.,cinnamyl alcohol,monotonously increased from 44.9%to 80.3%.Meanwhile,the size of the supported Ir particles did not change significantly with x,remaining at 1.7-0.2 nm,as determined by transmission electron microscopy.The chemical state of Ir and Fe species in the Ir/Mg3Al1-xFex catalysts was examined by temperature programmed reduction by H2 and X‐ray photoelectron spectroscopy.The surface of the supported Ir particles was also examined through the in‐situ diffuse reflectance infrared Fourier‐transform of a probe molecule of CO.On the basis of these characterization results,the effects of Fe doping to Mg3Al on the structural and catalytic properties of Ir particles in selective CAL hydrogenation were discussed.The significant factors are the electron transfer from Fe2+in the Mg3Al1–xFex support to the dispersed Ir particles and the surface geometry.展开更多
An efficient heterogeneous catalyst,Pd@MIL‐101(Cr)‐NH2,is prepared through a direct pathway of anionic exchange followed by hydrogen reduction with amino‐containing MIL‐101as the host matrix.The composite is therm...An efficient heterogeneous catalyst,Pd@MIL‐101(Cr)‐NH2,is prepared through a direct pathway of anionic exchange followed by hydrogen reduction with amino‐containing MIL‐101as the host matrix.The composite is thermally stable up to350°C and the Pd nanoparticles uniformly disperse on the matal organic framework(MOF)support,which are attributed to the presence of the amino groups in the frameworks of MIL‐101(Cr)‐NH2.The selective hydrogenation of biomass‐based furfural to tetrahydrofurfuryl alcohol is investigated by using this multifunctional catalyst Pd@MIL‐101(Cr)‐NH2in water media.A complete hydrogenation of furfural is achieved at a low temperature of40°C with the selectivity of tetrahydrofurfuryl alcohol close to100%.The amine‐functionalized MOF improves the hydrogen bonding interactions between the intermediate furfuryl alcohol and the support,which is conducive for the further hydrogenation of furfuryl alcohol to tetrahydrofurfuryl alcohol in good coordination with the metal sites.展开更多
Anatase TiO_(2)nanospindles containing 89%exposed{101}facets(TIO_(2)-101)and nanosheets with 77%exposed{001}facets(TiO_(2)-001)were hydrothermally synthesized and used as supports for Pd catalysts.The effects of the T...Anatase TiO_(2)nanospindles containing 89%exposed{101}facets(TIO_(2)-101)and nanosheets with 77%exposed{001}facets(TiO_(2)-001)were hydrothermally synthesized and used as supports for Pd catalysts.The effects of the TiO_(2)materials on the catalytic performance of Pd/TiO_(2)-101 and Pd/TiO_(2)-001 catalysts were investigated in the selective hydrogenation of acetylene to polymer-grade ethylene.The PdfTiO_(2)-101 catalyst exhibited enhanced performance in terms of acetylene conversion and ethylene yield.To understand these effects,the catalysts were characterized by H_(2)temperature-programmed desorption(H_(2)-TPD),H_(2)temperature-programmed reduction(H=-TPR),transmission electron microscopy(TEM),pulse CO chemisorption,X-ray photoelectron spectroscopy(XPS),and thermogravimetric analysis(TGA).The TEM and CO chemisorption results confirmed that Pd nanoparticles(NPs)on the TiO_(2)-101 support had a smaller average particle size(1.53 nm)and a higher dispersion(15.95%)than those on the TiO_(2)-001 support(average particle size of 4.36 nm and dispersion of 9.06%).The smaller particle size and higher dispersion of Pd on the Pd/TiO_(2)-101 catalyst provided more reaction active sites,which contributed to the improved catalytic activity of this supported catalyst.展开更多
In this study,nanosheet g-C_(3)N_(4)-H_(2) was prepared by thermal exfoliation of bulk g-C_(3)N_(4) under hydrogen.A series of Ru/g-C_(3)N_(4)-H_(2) catalysts with Ru species supported on the nanosheet g-C_(3)N_(4)-H_...In this study,nanosheet g-C_(3)N_(4)-H_(2) was prepared by thermal exfoliation of bulk g-C_(3)N_(4) under hydrogen.A series of Ru/g-C_(3)N_(4)-H_(2) catalysts with Ru species supported on the nanosheet g-C_(3)N_(4)-H_(2) were synthesized via ultrasonic assisted impregnation-deposition method.Ultrafine Ru nanoparticles(<2 nm)were highly dispersed on nanosheet g-C_(3)N_(4)-H_(2).Strong interaction due to Ru-Nx coordination facilitated the uniform distribution of Ru species.Meanwhile,the involvement of surface basicity derived from abundant nitrogen sites was favourable for enhancing the selective hydrogenation performance of bi-benzene ring,i.e.,almost complete 4,40-diaminodiphenylmethane(MDA)conversion and>99%4,40-diaminodicyclohexylmethane selectivity,corresponding to a reaction activity of 35.7 mol_(MDA) mol_(Ru)^(-1) h^(-1).Moreover,the reaction activity of catalyst in the fifth run was 36.5 mol_(MDA) mol_(Ru)^(-1) h^(-1),which was comparable with that of the fresh one.The computational results showed that g-C_(3)N_(4) as support was favorable for adsorption and dissociation of H_(2) molecules.Moreover,the substrate scope can be successfully expanded to a variety of other aromatic diamines.Therefore,this work provides an efficient and green catalyst system for selective hydrogenation of aromatic diamines.展开更多
Copper based catalysts have high potential for the substituent of noble-metal based catalysts as their high selectivity and moderate activity for selective hydrogenation reaction;however,achieving further high catalyt...Copper based catalysts have high potential for the substituent of noble-metal based catalysts as their high selectivity and moderate activity for selective hydrogenation reaction;however,achieving further high catalytic stability is very difficult.In this work,the carbonization process of Cu-based organic frameworks was explored for the synthesis of highly-dispersed Cu supported by hierarchically porous carbon with high catalytic performance for selective hydrogenation of 1,3-butadiene.The porous hierarchy of carbon support and the dispersion of copper nanoparticles can be precisely tuned by controlling the carbonization process.The resultant catalyst carbonized at 600°C exhibits a rather low reaction temperature at 75°C for 100%butadiene conversion with 100%selectivity to butenes,due to its reasonable porous hierarchy and highly-dispersed copper sites.More importantly,unprecedentedly stability of the corresponding Cu catalyst was firstly observed for selective 1,3-butadiene hydrogenation,with both 100%butadiene conversion and 100%butenes selectivity over 120 h of reaction at 75°C.This study verifies that a simply control the carbonization process of metal organic frameworks can be an effective way to obtain Cu-based catalysts with superior catalytic performance for selective hydrogenation reaction.展开更多
A Ru-La/ZrO2 catalyst was prepared by the precipitation method, in which Ru was an active component, La was a promoter and ZrO2 was a dispersant. Comparing with the catalyst prepared by the chemical reduction method, ...A Ru-La/ZrO2 catalyst was prepared by the precipitation method, in which Ru was an active component, La was a promoter and ZrO2 was a dispersant. Comparing with the catalyst prepared by the chemical reduction method, the Ru-La/ZrO2 exhibited higher activity and better selectivity. At 140 ℃ and hydrogen pressure of 5 MPa, the C6H10 selectivity reached 70% at a C6H6 conversion of 35% for a reaction time was 5 min and the total La/Ru loading was 10%. Textural parameters of the catalyst were obtained by physical adsorption, BET surface area and specific pore volume measurements. The catalyst sample gave a BET area of 41 m2/g and a specific pore volume of 1.1 cm^3/g, and the most probable pore distribution was located at 5 to 10 nm. H2-TPR measurements showed that ruthenium oxide could be reduced to its metallic state at about 403 K. XRD determinations indicated that ruthenium and lanthanum were highly dispersed on the zirconia. A significant advantage of the Ru-La/ZrO2 catalyst is that it can be used directly in its unreduced state for the selective hydrogenation of benzene.展开更多
In order to investigate the hydrofining process of LCO for producing aromatics and gasoline,the selective hydrogenation of polycyclic aromatic hydrocarbons(PAHs),a major component of light cycle oil(LCO),was studied u...In order to investigate the hydrofining process of LCO for producing aromatics and gasoline,the selective hydrogenation of polycyclic aromatic hydrocarbons(PAHs),a major component of light cycle oil(LCO),was studied using a NiMoW/Al_(2)O_(3)catalyst.Based on the study of the reversible hydrogenation reaction,PAHs in the selective hydrogenation process could be effectively simulated by the modeled CH and CH_(2) groups,and the hydrodesulfurization and hydrodenitrogenation kinetic models could be further established in this process.The results showed that the kinetic models developed could fit the experimental data effectively and predict the content of S,N,and aromatics in the selective hydrogenation products of LCO.展开更多
基金supported by the National Key Research and Development Program of China(2021YFA1500500)。
文摘The highly selective hydrogenation of 5-hydroxymethylfurfural to 2,5-dihydroxymethylfuran is an important reaction in the field of biomass hydrogenation,because it is a bridge between biomass resources and chemical industry.Here,we precisely constructed carbon nitride supported Pd-based catalysts by a simple impregnation-reduction method.By changing the reduction temperature,catalysts with different oxidation state could be precisely constructed.Moreover,the important correlation between the ratio of Pd^(0)/Pd^(2+)and catalytic activity is revealed during the selective hydrogenation of HMF.The Pd/g—C_(3)N_(4)—300 catalyst with a Pd^(0)/Pd^(2+)ratio of 3/2 showed the highest catalytic activity,which could get 96.9%5-hydroxymethylfurfural conversion and 90.3%2,5-dihydroxymethylfuran selectivity.Further density functional theory calculation revealed that the synergistic effect between Pd0and Pd2+in Pd/g—C_(3)N_(4)—300 system could boost the adsorption of the substrate and the dissociation of hydrogen.In this work,we highlight the important correlation between metal oxidation state and catalytic activity,which provides valuable insights for the rational design of precious metal catalysts for hydrogenation reactions.
基金financially supported by the Natural Science Foundation of Jiangsu Province (Grant number:BK20140260)the Joint Project of Industry-UniversityResearch of Jiangsu Province (Grant number:BY2018158 and BY2021590)+1 种基金the CNPC-CZU Innovation Alliance,the Jiangsu Province Key Laboratory of Fine Petrochemical Engineering (Grant number:KF2302)the State Key Laboratory of Heavy Oil Processing。
文摘The selective hydrogenation of polycyclic aromatic hydrocarbons(PAHs)from fluid catalytic cracking(FCC)slurry extract was conducted in a batch reactor over aγ-Al_(2)O_(3)-supported bimetallic Ni-W catalyst.For the Ni-W/γ-Al_(2)O_(3) catalyst,the experiment run was divided into three processes according to the reaction conditions used:(1)the absence of hydrogenation as both temperature and pressure increased;(2)the desulfurization of FCC slurry extract under a fixed pressure as the temperature increased;and(3)the selective hydrogenation of PAHs when both pressure and temperature remained constant.The hydrogen consumption could be accurately calculated from the Redlich–Kwong equation of state.The results for the removal of PAHs with hydrogenation displayed an excellent fit to the first-order kinetics.The apparent activation energy was determined to be 20.80 kJ/mol.
文摘In this study,different loadings of x%Ni_(2)P/γ-Al_(2)O_(3)(x=6%,9%,12%,15%,18%)catalysts with aluminum oxide(Al_(2)O_(3))as the carrier,nickel chloride(NiCl2)as the nickel(Ni)source,and ammonium hypophosphite(NH_(4)H_(2)PO_(2))as the phosphorus(P)source were prepared by the equal volume impregnation method to investigate the effects of different loadings on the performance of the selective hydrogenation of diolefins and thiol etherification in LPG.The physicochemical properties of the catalysts were characterized by XRD,BET,SEM,TEM,H_(2)-TPR,and XPS,and the catalytic activity of the catalysts was evaluated in a fixed-bed microreactor.The results showed that a change in the loading affected the catalyst crystalline phase structure and size,specific surface area,P coverage,active phase dispersion,and catalytic activity.At 6%,9%,and 12%loadings the catalysts had an Ni phase but there was no obvious Ni_(2)P phase in the nickel phosphide;at 15%loading a single Ni_(2)P phase was obtained,and at 18%loading both Ni_(2)P and Ni1_(2)P_(5) phases appeared.There was a P enrichment on the catalyst surface,and the higher the loading the more P species were enriched on the surface,but some of the P was lost during the catalyst reduction process due to the production of phosphine(PH3)gas.The 15%Ni_(2)P/γ-Al_(2)O_(3) catalyst had the largest Ni/Al ratio and the best dispersion.The Ni_(2)P active phase size was small at about 4.25 nm and Ni_(2)P was uniformly dispersed on the catalyst surface without agglomeration.The 15%Ni_(2)P/γ-Al_(2)O_(3) catalyst had the best catalytic activity at a pressure of 2.0 MPa,a liquid hourly space velocity(LHSV)of 3.0 h-1,and a hydrogen to hydrocarbon ratio of 12.The 1,3-butadiene conversion was 97.45%and the methanethiol removal was 100%at a temperature of 140℃.
文摘Pd/C catalysts were prepared by deposited Pd nanoparticles (NPs) on different carbon supports including activated carbon (AC), graphite oxide (GO), and reduced graphite oxide (rGO) using sol-immobilization method. Through transmission electron microscopy, powder X-ray di raction, and X-ray photoelectron spectroscopy, the role of the carbon supports for the catalytic performances of Pd/C catalysts was examined in selective hydrogenation of acetylene. The results indicate that Pd/AC exhibited higher activity and selectivity than Pd/GO and Pd/rGO in the gas phase selective hydrogenation of acetylene. Thermal and chemical treatment of AC supports also have some effect on the catalytic performance of Pd/AC catalysts. The differences in the activity and selectivity of various Pd/C catalysts were partly attributed to the metal-support interaction.
基金supported by the National Natural Science Foundation of China(21573031 and 21428301)the Fundamental Research Funds for the Central Universities(DUT15ZD106 and DUT15RC(4)09)~~
文摘A catalyst consisting of platinum nanoparticles on a ZIF-8 support(Pt@ZIF-8) was synthesized in a straightforward one-step procedure,by adding a nanostructured platinum sol during the formation of ZIF-8 at room temperature.Pt@ZIF-8 was highly porous and well crystallized.The Pt nanoparticles were well dispersed within the ZIF-8 support.In the hydrogenation of 1,4-butynediol,Pt@ZIF-8 exhibited high activity,excellent selectivity for 1,4-butenediol of greater than 94%,and reusability.The Pt@ZIF-8 catalyst did not require further additives.The favorable catalytic performance was attributed primarily to the modification of the ZIF-8 support by the platinum nanoparticles.
文摘The IB metal(Au,Ag and Cu)alloyed Pd single atom catalysts had been proved to be efficient in promoting the selectivity for hydrogenation of acetylene to ethylene.As a base metal in the same group as Pd,the Ni-based catalysts are also active for hydrogenation reactions.Herein,the effects of the IB metals on the Ni/SiO2 catalyst for the selective hydrogenation of acetylene were systematically studied.Different from the Pd/SiO2 catalyst,the monometallic Ni/SiO2 catalyst is not active at low temperatures.The addition of the IB metals to the Ni/SiO2 catalysts can greatly enhance the activity.Besides,the catalytic activity of the AuNix/SiO2 and CuNix/SiO2 catalysts increase with the reduction temperature,while the AgNix/SiO2 catalysts are not sensitive to the pretreatment temperature.The origin of the effect of the different IB metals on the Ni-based catalysts for selective hydrogenation of acetylene is discussed based on the characterizations by XRD,TPR and microcalorimetric measurements.
文摘The effect of La on the performance of a supported RuB amorphous alloy catalyst for benzene selective hydrogenation was studied by means of activity and selectivity tests, such as HRTEM, SAED, XPS, and XRD. The results show that the addition of La to RuB amorphous alloy catalyst can evidently increase the activity and improve the thermal stability of RuB amorphous alloy to refrain its crystallization. The promoting effect of La on the activity of RuB amorphous alloy catalyst is because of the high dispersion of the active components.
文摘A novel nanosized amorphous Ru-Fe-B/ZrO2 alloy catalyst for benzene selective hydrogenation to cyclohexene was investigated. The superior properties of this catalyst were attributed to the combination of the nanosize and the amorphous character as well as to its textural character. In addition, the concentration of zinc ions, the content of ZrO2 in the slurry, and the pretreatment of the catalyst were found to be effective in improving the activity and the selectivity of the catalyst.
基金supported by the National Natural Science Foundation of China (21622308)Key Program Supported by the Natural Science Foundation of Zhejiang Province, China (LZ18B060002)the Fundamental Research Funds for the Central Universities (2017XZZX002-16)~~
文摘The selective hydrogenation of phenol to cyclohexanone is an important process in the chemical industry.However,achieving high selectivity at high conversion rates is highly challenging,particularly under continuous reaction conditions.Here,we found that the presence of Na alkaline additives(NaX,X=CO3^2–,HCO^3–,or OH^–)on Pd/Al2O3 not only promoted the phenol conversion from 8.3%to>99%but also increased the cyclohexanone selectivity from 89%to>97%during the continuous hydrogenation of phenol on a fixed bed reactor.After 1200 h of continuous reaction,no activity or selectivity attenuation was observed and the turnover number was approximately 2.9×10^5.Density functional theory calculations,spectroscopic,and dynamics studies demonstrated that the addition of NaX greatly promoted phenol adsorption and hydrogen activation,thereby improving catalytic activity.Simultaneously,the formation of a“-C=O-Na-”intermediate inhibited the excessive hydrogenation and intermolecular coupling of cyclohexanone,leading to high selectivity.
文摘Ru-based catalysts promoted with Mn and Zn were prepared by a co-precipitation method. In liquid-phase hydrogenation of benzene, the Ru-Mn-Zn catalysts exhibited superior catalytic performance to the catalysts promoted with Zn or Mn alone. The optimum Mn/Zn molar ratio was determined to be 0.3. With the addition of 0.5 g NaOH, the Ru-Mn-Zn-0.3 catalyst, which was reduced at 150 ? C, afforded a cyclohexene selectivity of 81.1% at a benzene conversion of 60.2% at 5 min and a maximum cyclohexene yield of 59.9% at 20 min. Based on characterizations, the excellent performance of Ru-Mn-Zn catalyst was ascribed to the suitable pore structure, the appropriate reducibility and the homogenous chemical environment of the catalyst.
基金supported by the National Natural Science Foundation of China (21621063,21425312)~~
文摘The catalytic activity of metal catalysts can be modulated by confinement within the channels of carbon nanotubes(CNTs).Here,we show that the product distribution of cinnamaldehyde hydrogenation can be modified by confinement of Ru nanoparticles in CNTs.A catalyst composed of Ru nanoparticles dispersed on the exterior walls of CNTs gave hydrocinnamaldehyde as product.In contrast,confinement of the Ru nanoparticles within CNT channels facilitated hydrogenation of C=O bonds and complete hydrogenation,and both cinnamyl alcohol and hydrocinnamyl alcohol formed in addition to hydrocinnamaldehyde.High‐resolution transmission electron microscopy,Raman spectroscopy,hydrogen temperature‐programmed reduction,and hydrogen temperature‐programmed desorption were used to investigate the characteristics of the catalysts.The results indicate that the different interactions between the confined Ru nanoparticles and the exterior and interior walls of the CNTs,as well as spatial restriction and enrichment within the narrow channels likely play important roles in modulation of the product distribution.
基金supported by the National Nature Science Foundation of China(21273205)the Innovation Found for Technology Based Firms of China(10C26214104505)+1 种基金the Chinese Post-doctorate Science Fund 51th batch of surface subsidizes(2012M511125)the Scientific Research Foundation of Graduate School of Zhengzhou University
文摘Ru-Ce catalysts were prepared by a co-precipitation method.The effects of Ce precursors with different valences and Ce contents on the catalytic performance of Ru-Ce catalysts were investigated in the presence of ZnSO4.The Ce species in the catalysts prepared with different valences of the Ce precursors all exist as CeO2 on the Ru surface.The promoter CeO2alone could not improve the selectivity to cyclohexene of Ru catalysts.However,almost all the CeO2 in the catalysts could react with the reaction modifier ZnSO4 to form(Zn(OH)2)3(ZnSO4)(H2O)3 salt.The amount of the chemisorbed salt increased with the CeO2 loading,resulting in the decrease of the activity and the increase of the selectivity to cyclohexene of Ru catalyst.The Ru-Ce catalyst with the optimum Ce/Ru molar ratio of 0.19 gave a maximum cyclohexene yield of 57.4%.Moreover,this catalyst had good stability and excellent reusability.
基金supported by the National Natural Science Foundation of China(21633009)Dalian Science Foundation for Distinguished Young Scholars(2017RJ02)the Liaoning Revitalization Talents Program(XLYC1807241)~~
文摘Conversion of alkynes to alkenes by photocatalysis has inspired extensive interest but it is still challenging to obtain both high conversion and selectivity.Here we first demonstrate the photocatalytic conversion of phenylacetylene(PLE)to styrene(STE)with both high conversion and selectivity by using the titania(TiO2)supported platinum(Pt)as photocatalyst under 385 nm monochromatic light irradiation.It is demonstrated that the conversion rate of PLE is strongly dependent on the content of Pt cocatalyst loaded on the surface of TiO2.Based on our optimization,the conversion of PLE and the selectivity towards STE on the 1 wt%Pt/TiO2 photocatalyst can unexpectedly reach as high as 92.4%and 91.3%,respectively.The highly selective photocatalytic hydrogenation can well be extended to the conversion of other typical alkynes to alkenes,demonstrating the generality of selective hydrogenation of C≡C over the Pt/TiO2 photocatalyst.
文摘Supported Ir catalysts were prepared using layered double hydrotalcite‐like materials,such as Mg3Al1-xFex,containing Fe and Al species in varying amounts as supports.These Ir catalysts were applied for the selective hydrogenation of cinnamaldehyde(CAL).When x was changed from 0(Ir/Mg3Al)to 1(Ir/Mg3Fe),the rate of CAL hydrogenation reached a maximum at approximately x=0.25,while the selectivity to unsaturated alcohol,i.e.,cinnamyl alcohol,monotonously increased from 44.9%to 80.3%.Meanwhile,the size of the supported Ir particles did not change significantly with x,remaining at 1.7-0.2 nm,as determined by transmission electron microscopy.The chemical state of Ir and Fe species in the Ir/Mg3Al1-xFex catalysts was examined by temperature programmed reduction by H2 and X‐ray photoelectron spectroscopy.The surface of the supported Ir particles was also examined through the in‐situ diffuse reflectance infrared Fourier‐transform of a probe molecule of CO.On the basis of these characterization results,the effects of Fe doping to Mg3Al on the structural and catalytic properties of Ir particles in selective CAL hydrogenation were discussed.The significant factors are the electron transfer from Fe2+in the Mg3Al1–xFex support to the dispersed Ir particles and the surface geometry.
文摘An efficient heterogeneous catalyst,Pd@MIL‐101(Cr)‐NH2,is prepared through a direct pathway of anionic exchange followed by hydrogen reduction with amino‐containing MIL‐101as the host matrix.The composite is thermally stable up to350°C and the Pd nanoparticles uniformly disperse on the matal organic framework(MOF)support,which are attributed to the presence of the amino groups in the frameworks of MIL‐101(Cr)‐NH2.The selective hydrogenation of biomass‐based furfural to tetrahydrofurfuryl alcohol is investigated by using this multifunctional catalyst Pd@MIL‐101(Cr)‐NH2in water media.A complete hydrogenation of furfural is achieved at a low temperature of40°C with the selectivity of tetrahydrofurfuryl alcohol close to100%.The amine‐functionalized MOF improves the hydrogen bonding interactions between the intermediate furfuryl alcohol and the support,which is conducive for the further hydrogenation of furfuryl alcohol to tetrahydrofurfuryl alcohol in good coordination with the metal sites.
文摘Anatase TiO_(2)nanospindles containing 89%exposed{101}facets(TIO_(2)-101)and nanosheets with 77%exposed{001}facets(TiO_(2)-001)were hydrothermally synthesized and used as supports for Pd catalysts.The effects of the TiO_(2)materials on the catalytic performance of Pd/TiO_(2)-101 and Pd/TiO_(2)-001 catalysts were investigated in the selective hydrogenation of acetylene to polymer-grade ethylene.The PdfTiO_(2)-101 catalyst exhibited enhanced performance in terms of acetylene conversion and ethylene yield.To understand these effects,the catalysts were characterized by H_(2)temperature-programmed desorption(H_(2)-TPD),H_(2)temperature-programmed reduction(H=-TPR),transmission electron microscopy(TEM),pulse CO chemisorption,X-ray photoelectron spectroscopy(XPS),and thermogravimetric analysis(TGA).The TEM and CO chemisorption results confirmed that Pd nanoparticles(NPs)on the TiO_(2)-101 support had a smaller average particle size(1.53 nm)and a higher dispersion(15.95%)than those on the TiO_(2)-001 support(average particle size of 4.36 nm and dispersion of 9.06%).The smaller particle size and higher dispersion of Pd on the Pd/TiO_(2)-101 catalyst provided more reaction active sites,which contributed to the improved catalytic activity of this supported catalyst.
基金financially supported by the National Nature Science Foundation of China(21576272)“Transformational Technologies for Clean Energy and Demonstration”,Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA 21030600)Science and Technology Service Network Initiative,Chinese Academy of Sciences(KFJ-STS-QYZD-138).
文摘In this study,nanosheet g-C_(3)N_(4)-H_(2) was prepared by thermal exfoliation of bulk g-C_(3)N_(4) under hydrogen.A series of Ru/g-C_(3)N_(4)-H_(2) catalysts with Ru species supported on the nanosheet g-C_(3)N_(4)-H_(2) were synthesized via ultrasonic assisted impregnation-deposition method.Ultrafine Ru nanoparticles(<2 nm)were highly dispersed on nanosheet g-C_(3)N_(4)-H_(2).Strong interaction due to Ru-Nx coordination facilitated the uniform distribution of Ru species.Meanwhile,the involvement of surface basicity derived from abundant nitrogen sites was favourable for enhancing the selective hydrogenation performance of bi-benzene ring,i.e.,almost complete 4,40-diaminodiphenylmethane(MDA)conversion and>99%4,40-diaminodicyclohexylmethane selectivity,corresponding to a reaction activity of 35.7 mol_(MDA) mol_(Ru)^(-1) h^(-1).Moreover,the reaction activity of catalyst in the fifth run was 36.5 mol_(MDA) mol_(Ru)^(-1) h^(-1),which was comparable with that of the fresh one.The computational results showed that g-C_(3)N_(4) as support was favorable for adsorption and dissociation of H_(2) molecules.Moreover,the substrate scope can be successfully expanded to a variety of other aromatic diamines.Therefore,this work provides an efficient and green catalyst system for selective hydrogenation of aromatic diamines.
文摘Copper based catalysts have high potential for the substituent of noble-metal based catalysts as their high selectivity and moderate activity for selective hydrogenation reaction;however,achieving further high catalytic stability is very difficult.In this work,the carbonization process of Cu-based organic frameworks was explored for the synthesis of highly-dispersed Cu supported by hierarchically porous carbon with high catalytic performance for selective hydrogenation of 1,3-butadiene.The porous hierarchy of carbon support and the dispersion of copper nanoparticles can be precisely tuned by controlling the carbonization process.The resultant catalyst carbonized at 600°C exhibits a rather low reaction temperature at 75°C for 100%butadiene conversion with 100%selectivity to butenes,due to its reasonable porous hierarchy and highly-dispersed copper sites.More importantly,unprecedentedly stability of the corresponding Cu catalyst was firstly observed for selective 1,3-butadiene hydrogenation,with both 100%butadiene conversion and 100%butenes selectivity over 120 h of reaction at 75°C.This study verifies that a simply control the carbonization process of metal organic frameworks can be an effective way to obtain Cu-based catalysts with superior catalytic performance for selective hydrogenation reaction.
文摘A Ru-La/ZrO2 catalyst was prepared by the precipitation method, in which Ru was an active component, La was a promoter and ZrO2 was a dispersant. Comparing with the catalyst prepared by the chemical reduction method, the Ru-La/ZrO2 exhibited higher activity and better selectivity. At 140 ℃ and hydrogen pressure of 5 MPa, the C6H10 selectivity reached 70% at a C6H6 conversion of 35% for a reaction time was 5 min and the total La/Ru loading was 10%. Textural parameters of the catalyst were obtained by physical adsorption, BET surface area and specific pore volume measurements. The catalyst sample gave a BET area of 41 m2/g and a specific pore volume of 1.1 cm^3/g, and the most probable pore distribution was located at 5 to 10 nm. H2-TPR measurements showed that ruthenium oxide could be reduced to its metallic state at about 403 K. XRD determinations indicated that ruthenium and lanthanum were highly dispersed on the zirconia. A significant advantage of the Ru-La/ZrO2 catalyst is that it can be used directly in its unreduced state for the selective hydrogenation of benzene.
基金financially supported by the SINOPEC Research and Develepment Project (No.120051-1)
文摘In order to investigate the hydrofining process of LCO for producing aromatics and gasoline,the selective hydrogenation of polycyclic aromatic hydrocarbons(PAHs),a major component of light cycle oil(LCO),was studied using a NiMoW/Al_(2)O_(3)catalyst.Based on the study of the reversible hydrogenation reaction,PAHs in the selective hydrogenation process could be effectively simulated by the modeled CH and CH_(2) groups,and the hydrodesulfurization and hydrodenitrogenation kinetic models could be further established in this process.The results showed that the kinetic models developed could fit the experimental data effectively and predict the content of S,N,and aromatics in the selective hydrogenation products of LCO.