期刊文献+
共找到3,313篇文章
< 1 2 166 >
每页显示 20 50 100
Effects of temperature and time on three-dimensional microstructural evolution of semi-solid 2A14 aluminum alloy during short process preparation of semi-solid billets
1
作者 Ying-ze LIU Ju-fu JIANG +3 位作者 Guan-fei XIAO Ying ZHANG Min-jie HUANG Ying WANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2022年第7期2091-2109,共19页
To shorten the preparation process of semi-solid billets,semi-solid billets of 2A14 aluminum alloy were prepared by wrought aluminum directly semi-solid isothermal treatment(WADSSIT)process.Three-dimension(3D)combined... To shorten the preparation process of semi-solid billets,semi-solid billets of 2A14 aluminum alloy were prepared by wrought aluminum directly semi-solid isothermal treatment(WADSSIT)process.Three-dimension(3D)combined microstructure evolution,namely transverse direction(TD)surface,rolling direction(RD)surface,and normal direction(ND)surface,was studied.Effects of temperature and holding time on average grain size and average shape factor were investigated.The results showed that the optimum conditions for preparation of 2A14 semi-solid billets by this process were 615℃ and 20 min(average grain size of 124μm and shape factor of 0.81).Electron backscatter diffraction(EBSD)observations indicated that the microstructure was completely recrystallized when it was heated to 600℃.Grain size was increased with the increase of temperature and grew up slowly with the holding time prolonging.Roundness was increased with increase of holding time but was not sensitive to temperature. 展开更多
关键词 2A14 aluminum alloy three-dimensional microstructure semi-solid billet microstructure evolution
下载PDF
Preparation of semi-solid billet of magnesium alloy and its thixoforming 被引量:6
2
作者 姜巨福 罗守靖 《中国有色金属学会会刊:英文版》 EI CSCD 2007年第1期46-50,共5页
Preparation of semi-solid billet of magnesium alloy and thixoforming was investigated by applying equal channel angularextrusion to magnesium alloy.The results show that mechanical properties of AZ91D alloy at room te... Preparation of semi-solid billet of magnesium alloy and thixoforming was investigated by applying equal channel angularextrusion to magnesium alloy.The results show that mechanical properties of AZ91D alloy at room temperature,such as yieldstrength(YS),ultimate tensile strength(UTS)and elongation,are enhanced greatly by four-pass equal channel angularextrusion(ECAE)at 573 K and microstructure of AZ91D alloy is refined to the average grain size of 20μm.Through using ECAE asstrain induced step in SIMA and completing melt activated step by semi-solid isothermal treatment,semi-solid billet with finespheroidal grains of 25μm can be prepared successfully.Compared with common SIMA,thixoformed satellite angle framecomponents using semi-solid billet prepared by new SIMA have higher mechanical properties at room temperature and hightemperature of 373 K. 展开更多
关键词 镁合金 触变性 型坯 机械性能 微观结构
下载PDF
Preparation of AZ91D magnesium alloy semi-solid billet by new strain induced melt activated method 被引量:5
3
作者 姜巨福 罗守靖 邹经湘 《中国有色金属学会会刊:英文版》 EI CSCD 2006年第5期1080-1085,共6页
New strain induced melt activated (new SIMA) method for preparing AZ91D magnesium alloy semi-solid billet is introduced by applying equal channel angular extrusion into strain induced step in SIMA method, by which sem... New strain induced melt activated (new SIMA) method for preparing AZ91D magnesium alloy semi-solid billet is introduced by applying equal channel angular extrusion into strain induced step in SIMA method, by which semi-solid billet with fine spheroidal grains and average grain size of 18 μm can be prepared. Furthermore, average grain size of semi-solid billet is reduced with increasing extrusion pass of AZ91D magnesium alloy obtained in ECAE process. By using semi-solid billet prepared by new SIMA, thixoforged magazine plates component with high mechanical properties such as yield strength of 201.4 MPa, ultimate tensile strength of 321.8 MPa and elongation of 15.3%, can be obtained. 展开更多
关键词 等通道角挤压 半固体坯料 机械性能 镁合金
下载PDF
Microstructure of AZ91D magnesium alloy semi-solid billets prepared by SIMA method from chips 被引量:1
4
作者 许红雨 吉泽升 +1 位作者 胡茂良 王振宇 《中国有色金属学会会刊:英文版》 CSCD 2010年第S3期749-753,共5页
AZ91D magnesium alloy chips were adopted to prepare semi-solid billets.The chips were subjected to a series ofisothermal treatments for various holding times at 783?843 K after being compressed into billet at 523 K.Th... AZ91D magnesium alloy chips were adopted to prepare semi-solid billets.The chips were subjected to a series ofisothermal treatments for various holding times at 783?843 K after being compressed into billet at 523 K.The semi-solid microstructure of AZ91D magnesium alloy containing spherical solid particles was studied.The effects of reheating temperature and holding time on microstructures were investigated.And the semi-solid forming mechanism was discussed.The result shows that semi-solid billets with highly spheroidal and homogeneous grains can be prepared from chips by strain induced melt activation(SIMA) method.Meanwhile,it is found that increasing the heating temperature can accelerate the spheroidizing process and reduce the solid volume fraction.With the increase of the holding time,the solid particles become more globular,the grains grow slowly and the solid volume fraction slightly changes.At the same time,owing to the decrease ofinterfacial energy,the intragranular liquid phases form by the diffusion of solute atoms,the grain boundaries melt and grains separate from each other during the isothermal treatment.The grains gradually spheroidize and begin to merge with a further increase of the holding time.It is considered that the semi-solid forming process includes three stages:the recrystallization and the growth of grain stage,the semi-solid microstructure forming stage controlled by the diffusion of solute,and the spheroidization of solid particle stage controlled by the liquid-solid interface tension. 展开更多
关键词 AZ91D MAGNESIUM alloy chip strain induced MELT activation(SIMA) semi-solid MICROSTRUCTURE evolution mechanism
下载PDF
Direct preparation of semi-solid billets by the semi-solid isothermal heat treatment for commercial cold-rolled ZL104 aluminum alloy
5
作者 Yong-fei Wang Yi Guo +1 位作者 Sheng-dun Zhao Xiao-guang Fan 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2021年第7期1164-1173,共10页
Semi-solid isothermal heat treatment was proposed to directly process cold-rolled ZL104 aluminum alloys and obtain semi-solid bil-lets.The effects of two process parameters,namely,temperature and processing time,on th... Semi-solid isothermal heat treatment was proposed to directly process cold-rolled ZL104 aluminum alloys and obtain semi-solid bil-lets.The effects of two process parameters,namely,temperature and processing time,on the microstructure and hardness of the resulting bil-lets were also experimentally examined.Average grain size(AGS)increased and the shape factor(SF)of the grain improved as the process temperature increased.The SF of the grain also increased with increasing processing time,and the AGS was augmented when the processing time was prolonged from 5 to 20 min at 570℃.The hardness of the aluminum alloy decreased because of the increase in AGS with increasing temperature and processing time.The optimal temperature and time for the preparation of semi-solid ZL104 aluminum alloys were 570℃and 5 min,respectively.Under optimal process parameters,the AGS,SF,and hardness of the resulting alloy were 35.88μm,0.81,and 55.24 MPa,respectively.The Lifshitz-Slyozov-Wagner relationship was analyzed to determine the coarsening rate constant at 570℃,and a rate constant of 1357.2μm3/s was obtained. 展开更多
关键词 semi-solid aluminum alloy MICROSTRUCTURE HARDNESS semi-solid isothermal heat treatment
下载PDF
Microstructure evolution and formation mechanism of CoCrCu1.2FeNi high entropy alloy during the whole process of semi-solid billet preparation 被引量:1
6
作者 Jufu Jiang Minjie Huang +2 位作者 Ying Wang Yingze Liu Ying Zhang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第25期172-185,共14页
Dual face-centered cubic(FCC)CoCrCuFeNi semi-solid billets were prepared by semisolid isothermal treatment of wrought high entropy alloy(HEA)(SSITWH)method,and the microstructure evolution in the whole process of bill... Dual face-centered cubic(FCC)CoCrCuFeNi semi-solid billets were prepared by semisolid isothermal treatment of wrought high entropy alloy(HEA)(SSITWH)method,and the microstructure evolution in the whole process of billets preparation was systematically investigated by optical microscopy,scanning electron microscopy,electron backscatter diffraction and transmission electron microscopy.The hot deformed feedstock was mainly composed of deformation structure with preferred orientations and a small number of dynamically recrystallized grains of FCC1 phase.In the semi-solid stage,the effect of temperature and soaking time on semi-solid microstructure was studied in the range of 1130-1250℃and 5-120 min.The semi-solid microstructure was evaluated quantitatively.The average grain size and average shape factor increased with the increase of soaking time and isothermal temperature.After isothermal heat treatment,the segregation of Cu in FCCphase reduced to a certain extent.Semi-solid coarsening kinetics analysis showed that the alloy had low coarsening coefficients.When the temperatures were1130℃,1175℃,1200℃,1225℃and 1250℃,the coarsening coefficients were 1.08μm~3/s,5.95μm~3/s,6.17μm~3/s,17.58μm~3/s,38.67μm~3/s,respectively.A coarsening kinetic equation describing solid grain growth was established.During heating up,FCCand FCCphase recrystallized successively.At higher temperature,FCCphase was spheroidized to a certain extent.When temperature was raised to semisolid range,the grains of FCCphase coalesced,grew up and spheroidized and the preferred orientations basically disappeared.The types of semi-solid melting characteristics of HEAs were summarized in this paper.The semi-solid melting behavior of alloys is essentially affected by phase structure,phase number,phase volume content and composition. 展开更多
关键词 High entropy alloy semi-solid billets MICROSTRUCTURE Grain coarsening Formation mechanism
原文传递
Multi-physical fields distribution in billet during helical electromagnetic stirring:A numerical simulation research
7
作者 Dong Pan Qing-tao Guo +3 位作者 Kai-lun Zhang Fu-zhi Yu Yu-ying Li Yu-bao Xiao 《China Foundry》 SCIE EI CAS CSCD 2024年第1期51-59,共9页
Electromagnetic stirring is one of the widely applied techniques to modify the quality of casting billets.Different from conventional rotate stirring,the helical stirring is more professional in assisting multi-dimens... Electromagnetic stirring is one of the widely applied techniques to modify the quality of casting billets.Different from conventional rotate stirring,the helical stirring is more professional in assisting multi-dimensional flow of molten metal and eliminating solidification defects.In this study,the single-winding helical stirring(SWHS)was introduced,offering advantages such as smaller volume and lower electromagnetic shielding compared to traditional helical stirring methods.Following a comprehensive numerical simulation,the stirring parameters of SWHS were adjusted to yoke inclination angle of 43°and frequency of 12 Hz.The higher electromagnetic force and flow velocity in drawing direction,as well as the lower temperature gradient induced by the SWHS,are positive factors for homogeneous solidification of billet.The experimental results on Al-8%Si alloy and 0.4%C-1.1%Mn steel demonstrate that compared to rotate stirring,the SWHS process can induce better billet quality and is more effective in accelerating the equiaxed expansion and reducing element segregation.The SWHS process can enhance the equiaxed ratio of the billet by 58.3%and reduce segregation degree of carbon element by 10.97%.Consequently,SWHS holds great promise as a potential approach for improving the quality of continuous casting billets. 展开更多
关键词 billet electromagnetic stirring HELICAL SOLIDIFICATION element segregation numerical simulation
下载PDF
To improve robustness of mechanical properties of semi-solid cast A356 alloy using taguchi design method
8
作者 Yi-wu Xu Hong-yi Zhan +4 位作者 Wei Tong Jin-ping Li Le-peng Zhang De-jiang Li Xiao-qin Zeng 《China Foundry》 SCIE EI CAS CSCD 2024年第2期175-184,共10页
Mechanical properties of semi-solid casting are dependent on multiple processing parameters,and improper processing parameters will not only reduce mean data but also increase variations.The present study investigated... Mechanical properties of semi-solid casting are dependent on multiple processing parameters,and improper processing parameters will not only reduce mean data but also increase variations.The present study investigated the impact of parameters in slurry preparation and heat treatment on the yield strength and ductility of T6 heat-treated A356 Al-Si alloy using rapid slurry forming(RSF)semi-solid casting.The focus was primarily on the robustness of mechanical properties based on Taguchi design method.By analyzing signal-to-noise ratio and minimum value calculated from-3S,the optimum slurry preparation parameters and heat treatment parameters were determined to be no quench,enthalpy exchange material(EEM)temperature of 140℃,EEM-to-melt ratio of 6mass%,stirring time of 18 s,solution heat treated at 520℃ for 2 h,and ageing heat treated at 190℃ for 6 h.In a small batch validation,the-3S yield strength and-3S elongation reach 256.1 MPa and 5.03% respectively,showing a satisfactory robustness.The hardness and microstructure of heat-treated samples with the best and worst properties were characterized to gain insight into the underlying mechanisms affecting the mean value and variations of mechanical properties. 展开更多
关键词 semi-solid casting taguchi design method signal-to-noise ratio mechanical property MICROSTRUCTURE
下载PDF
Microstructure evolution of Ti_(48)Zr_(27)Cu_(6)Nb_(5)Be_(14)amorphous alloy after semi-solid isothermal treatment
9
作者 Xin-hua Huang Jing-wen Pu +1 位作者 Yong-xin Luo Yue-jun Ouyang 《China Foundry》 SCIE EI CAS CSCD 2024年第3期287-294,共8页
The as-cast amorphous Ti_(48)Zr_(27)Cu_(6)Nb_(5)Be_(14)composites,comprising in situ formedβ-Ti ductile crystalline precipitates,were prepared by water cooled copper mold suction casting.Then,the semi-solid composite... The as-cast amorphous Ti_(48)Zr_(27)Cu_(6)Nb_(5)Be_(14)composites,comprising in situ formedβ-Ti ductile crystalline precipitates,were prepared by water cooled copper mold suction casting.Then,the semi-solid composites were obtained after the as-cast composites were treated by semi-solid isothermal treatment.The microstructure evolution and kinetics of the composites were examined.Results show that the microstructures of both the as-cast and semi-solid composites comprise ofβ-Ti crystal phases and amorphous matrix phases.Before and after treatment,the crystals evolve from fine granular or fine dendritic crystals to coarse crystals.As the treatment temperature increasing or the time prolonging,the average crystal size gradually increases and the surface morphology of the crystals gradually becomes regular.By studying the microstructural evolution and dynamics during the isothermal treatment process,it is found that the final morphology ofβ-Ti crystals is influenced by the isothermal treatment temperature and time(t),and theβ-Ti evolution rate increases with an increase in treatment temperature.In addition,a linear relationship was observed between the size of cubicβ-Ti crystals(D^(3))and t;the growth kinetics factor K is 3.8μm^(3)·s^(-1).As the K value closes to 4μm^(3)·s^(-1),it is inferred the morphology evolution ofβ-Ti crystals is a coarsening behavior controlled by the diffusion of solute elements. 展开更多
关键词 Ti_(48)Zr_(27)Cu_(6)Nb_(5)Be_(14) amorphous matrix composites semi-solid as-cast microstructure
下载PDF
Microstructures and mechanical properties of semi-solid squeeze casting ZL104 connecting rod 被引量:10
10
作者 王永飞 赵升吨 张晨阳 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2018年第2期235-243,共9页
Semi-solid squeeze casting(SSSC) and liquid squeeze casting(LSC) processes were used to fabricate a ZL104 connecting rod, and the influences of the process parameters on the microstructures and mechanical properti... Semi-solid squeeze casting(SSSC) and liquid squeeze casting(LSC) processes were used to fabricate a ZL104 connecting rod, and the influences of the process parameters on the microstructures and mechanical properties were investigated. Results showed that the tensile strength and elongation of the SSSC-fabricated rod were improved by 22% and 17%, respectively, compared with those of the LSC-fabricated rod. For SSSC, the average particle size(APS) and the shape factor(SF) increased with the increase of re-melting temperature(Tr), whereas the tensile strength and elongation increased first and then decreased. The APS increased with increasing the mold temperature(Tm), whereas the SF increased initially and then decreased, which caused the tensile strength and elongation to increase initially and then decrease. The APS decreased and the SF increased as squeezing pressure(ps) increased, and the mechanical properties were enhanced. Moreover, the optimal Tr, ps and Tm are 848 K, 100 MPa and 523 K, respectively. 展开更多
关键词 aluminum alloy semi-solid squeeze casting semi-solid microstructure tensile strength ELONGATION connecting rod
下载PDF
Microstructure and mechanical properties of AZ61 magnesium alloy parts achieved by thixo-extruding semisolid billets prepared by new SIMA 被引量:13
11
作者 姜巨福 王迎 +3 位作者 柳君 曲建俊 杜之明 罗守靖 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第3期576-585,共10页
New strain induced melt activation(new SIMA) method was employed to prepare high-quality semisolid billet of AZ61 magnesium alloy.Optical microscopy and tensile test were used to study the microstructure and mechani... New strain induced melt activation(new SIMA) method was employed to prepare high-quality semisolid billet of AZ61 magnesium alloy.Optical microscopy and tensile test were used to study the microstructure and mechanical properties of the thixo-extruded component.The results showed that the optimal process parameters for achieving the complete filling status involved the applied pressure of 784 MPa,the pressure holding time of 90 s and the die temperature of 450 ℃.Compared to semisolid isothermal treatment,high mechanical properties such as the tensile strength of 300.5 MPa and elongation of 22% and fine microstructure were obtained in the thixo-extruded parts.With increasing the isothermal temperature and holding time,the tensile strength and elongation were increased firstly and then decreased.When the press pass was increased from 1 to 4,the tensile strength and elongation of the thixo-extruded parts were greatly enhanced and microstructure was refined obviously. 展开更多
关键词 AZ61 magnesium alloy semisolid billets new strain induced melt activation THIXO-EXTRUSION
下载PDF
Microstructure evolution and grain growth behavior of Ti14 alloy during semi-solid isothermal process 被引量:6
12
作者 陈永楠 魏建锋 +1 位作者 赵永庆 郑晶 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第5期1018-1022,共5页
Microstructure evolution of Ti14 (α+Ti2Cu) alloy during semi-solid isothermal process at different temperatures was investigated. The results reveal that both the temperature and holding time have effect on the gr... Microstructure evolution of Ti14 (α+Ti2Cu) alloy during semi-solid isothermal process at different temperatures was investigated. The results reveal that both the temperature and holding time have effect on the grain growth behavior. The grains grow obviously and the degree of globularity increases with the increase of holding time. According to the statistic analysis of experimental data, the grain growth indices are 0.88 and 0.97 at 1 000 ℃ and 1 050 ℃, respectively, which indicates that increasing isothermal temperature would accelerate microstructural evolution. 展开更多
关键词 titanium alloy Ti14 alloy semi-solid microstructure grain growth index
下载PDF
Effect of cooling condition on microstructure of semi-solid AZ91 slurry produced via ultrasonic vibration process 被引量:10
13
作者 张亮 吴国华 +1 位作者 王少华 丁文江 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第10期2357-2363,共7页
The effects of cooling conditions on the microstructure of semi-solid AZ91 slurry produced via ultrasonic vibration process were investigated. AZ91 melts were subjected to ultrasonic vibration in different temperature... The effects of cooling conditions on the microstructure of semi-solid AZ91 slurry produced via ultrasonic vibration process were investigated. AZ91 melts were subjected to ultrasonic vibration in different temperature ranges under different cooling rates. The results show that fine and spherical α-Mg particles are obtained under ultrasonic vibration at the nucleation stage, which is mainly attributed to the cavitation and acoustic streaming induced by the ultrasonic vibration. The reduction of lower limit of ultrasonic vibration temperature between the liquidus and solidus increases the solid volume fraction and average particle size. Increasing cooling rate increases the solid volume fraction and reduces the average shape factor of particles. The appropriate temperature range for ultrasonic vibration is from 605 °C to 595 °C or 590 °C, and the suitable cooling rate is 2-3 °C/min. 展开更多
关键词 AZ91 alloy semi-solid ultrasonic vibration MICROSTRUCTURE cooling condition
下载PDF
Preparation of semi-solid 7075 aluminum alloy slurry by serpentine pouring channel 被引量:15
14
作者 朱文志 毛卫民 涂琴 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第4期954-960,共7页
The semi-solid slurry of 7075 aluminum alloy was prepared by a serpentine pouring channel (SCP). Influences of pouring temperature and the number of turns on the microstructure of semi-solid 7075 alloy slurry were i... The semi-solid slurry of 7075 aluminum alloy was prepared by a serpentine pouring channel (SCP). Influences of pouring temperature and the number of turns on the microstructure of semi-solid 7075 alloy slurry were investigated. The results demonstrated that the semi-solid 7075 aluminum alloy slurry with satisfied quality could be generated by a serpentine pouring channel when the pouring temperature was in the range of 680-700 ℃. At a given pouring temperature, the equivalent size of the primaryα(Al) grains decreased and the shape factor increased with the increase of the number of turns. During the slurry preparation of semi-solid 7075 aluminum alloy, the flow direction of alloy melt changed many times when it flowed in a curved and closed serpentine channel. With the effect of“stirring”in it , the primary nuclei gradually evolved into spherical and near-spherical grains. 展开更多
关键词 7075 aluminum alloy semi-solid slurry serpentine channel primary α(Al)
下载PDF
Inhomogeneity of density and mechanical properties of A357 aluminum alloy backward extruded in semi-solid state 被引量:6
15
作者 杜之明 陈刚 +1 位作者 程远胜 谢水生 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第10期2285-2293,共9页
The inhomogeneity of density and mechanical properties of A357 aluminum alloy in the semi-solid state were investigated.Numerical simulation and backward extrusion were adopted to study the preparation of cup shells.T... The inhomogeneity of density and mechanical properties of A357 aluminum alloy in the semi-solid state were investigated.Numerical simulation and backward extrusion were adopted to study the preparation of cup shells.The results show that the relative density of the wall is the lowest in samples,and that of the base is the highest.With increasing the billet height,more time is needed for relative density of the corner to reach the maximum value,and the relative densities in every region improve evidently with increasing the pressure.The tensile stress was simulated to be the largest at the corner,and the hot tearings were forecasted to mainly appear at the corner too.By employing proper billet height and pressure,the extruded samples consisted of fine and uniform microstructures,and can obtain excellent mechanical properties and Brinell hardness. 展开更多
关键词 A357 aluminum alloy INHOMOGENEITY semi-solid state backward extrusion numerical simulation
下载PDF
Microstructure evolution of semi-solid 7075 Al alloy slurry during temperature homogenization treatment 被引量:7
16
作者 杨斌 毛卫民 宋晓俊 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第12期3592-3597,共6页
Semi-solid 7075 Al slurry was prepared by inverted cone-shaped pouring channel process (ICSPC) and temperature homogenization (TH) treatment was combined to make the slurry uniform and have a controllable solid fr... Semi-solid 7075 Al slurry was prepared by inverted cone-shaped pouring channel process (ICSPC) and temperature homogenization (TH) treatment was combined to make the slurry uniform and have a controllable solid fraction suitable for the follow-up rheocasting. The influence of cooling rate on the microstructure evolution of primary α(Al) during TH treatment was investigated. The results show that as the cooling rate of the slurry after being prepared reduces, the growth of primaryα(Al) in the slurry tends to be nearly spherical and the uniformity of the organization is also enhanced. This may be due to the fact that lower cooling rate plays an important role in achieving the uniformity of temperature and composition in the remaining liquid, which is crucial to the formation of the spherical and homogeneous microstructure. However, a too low cooling rate will lead to a significant increase in grain growth time, which makes too coarse grains and more particles coalesce, so a certain abnormal growth of grain appears and the shape factor decreases slightly. 展开更多
关键词 semi-solid slurry 7075 Al alloy MICROSTRUCTURE primaryα(Al)
下载PDF
Application of cyclic upsetting-extrusion to semi-solid processing of AZ91D magnesium alloy 被引量:3
17
作者 陶健全 姜巨福 +5 位作者 陈红 肖远伦 张荣朝 胡庆华 赵军 赵强 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第4期909-915,共7页
The microstructural evolution of AZ91D magnesium alloy prepared by means of the cyclic upsetting-extrusion and partial remelting was investigated. The effects of remelting temperature and holding time on microstructur... The microstructural evolution of AZ91D magnesium alloy prepared by means of the cyclic upsetting-extrusion and partial remelting was investigated. The effects of remelting temperature and holding time on microstructure of semi-solid AZ91D magnesium alloy were studied. Furthermore, tensile properties of thixoextruded AZ91D magnesium alloy components were determined. The results show that the cyclic upsetting-extrusion followed by partial remelting is effective in producing semi-solid AZ91D magnesium alloy for thixofonning. During the partial remelting, with the increase of remelting temperature and holding time, the solid grain size increases and the degree of spheroidization tends to be improved. The tensile mechanical properties of thixoextruded AZ91D magnesium alloy components produced by cyclic upsetting-extrusion and partial remelting are better than those of the same alloy produced by casting. 展开更多
关键词 AZ91D magnesium alloy semi-solid processing cyclic upsetting-extrusion mechanical properties MICROSTRUCTURE
下载PDF
Influence of serpentine channel pouring process parameters on semi-solid A356 aluminum alloy slurry 被引量:7
18
作者 陈正周 毛卫民 吴宗闯 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第5期985-990,共6页
Semi-solid A356 aluminum alloy slurry was prepared by using serpentine channel pouring process, and the influences of the channel diameters and pouring temperatures on the semi-solid A356 aluminum alloy slurry were in... Semi-solid A356 aluminum alloy slurry was prepared by using serpentine channel pouring process, and the influences of the channel diameters and pouring temperatures on the semi-solid A356 aluminum alloy slurry were investigated. The experimental results show that when the channel diameter is 20 and 25 mm, respectively, and the pouring temperature is 640-680 ℃, the average diameter of primary α(Al) grains in the prepared A356 aluminum alloy slurry is 50-75 and 55-78 μm, respectively, and the average shape factor of primary α(Al) grains is 0.89-0.76 and 0.86-0.72, respectively. With the decline in the pouring temperature, the microstructure of semi-solid A356 aluminum alloy slurry is more desirable and a serpentine channel with smaller diameter is also advantageous to the microstructure imProvement. During the preparation of semi-solid A356 aluminum alloy slurry, a large number of nuclei can be produced by the chilling effect of the serpentine channel, and owing to the combined effect of the chilled nuclei separation and melt self-stirring, primary α(Al) nuclei can be multiplied and spheroidized finally. 展开更多
关键词 semi-solid A356 aluminum alloy serpentine channel primary α(Al)
下载PDF
Microstructure and properties of electronic packaging box with high silicon aluminum-base alloy by semi-solid thixoforming 被引量:10
19
作者 贾琪瑾 刘俊友 +1 位作者 李艳霞 王文韶 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第1期80-85,共6页
The electronic packaging box with high silicon aluminum-base alloy was prepared by semi-solid thixoforming technique.The flow characteristic of the Si phase was analyzed.The microstructures of different parts of the b... The electronic packaging box with high silicon aluminum-base alloy was prepared by semi-solid thixoforming technique.The flow characteristic of the Si phase was analyzed.The microstructures of different parts of the box were observed by optical microscopy and scanning electron microscopy,and the thermophysical and mechanical properties of the box were tested.The results show that there exists the segregation phenomenon between the primary Si phase and the liquid phase during thixoforming,the liquid phase flows from the box,and the primary Si phase accumulates at the bottom of the box.The volume fraction of primary Si phase decreases gradually from the bottom to the walls.Accordingly,the thermal conductivities of bottom center and walls are 107.6 and 131.5 W/(m·K),the coefficients of thermal expansion(CTE) are 7.9×10-6 and 10.6×10-6 K-1,respectively.The flexural strength increases slightly from 167 to 180 MPa.The microstructures and properties of the box show gradient distribution overall. 展开更多
关键词 high silicon aluminum-base alloy electronic packaging semi-solid thixoforming thermal conductivity coefficient of thermal expansion
下载PDF
Preparation of semi-solid A380 aluminum alloy slurry by serpentine channel 被引量:8
20
作者 刘志勇 毛卫民 +1 位作者 王伟番 郑志凯 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第5期1419-1426,共8页
The semi-solid slurry of A380 aluminum alloy was prepared by the serpentine channel. The effects of pouring temperature, curve number and curve diameter of the serpentine channel on the microstructure of the semi-soli... The semi-solid slurry of A380 aluminum alloy was prepared by the serpentine channel. The effects of pouring temperature, curve number and curve diameter of the serpentine channel on the microstructure of the semi-solid A380 aluminum alloy slurry were investigated. The results show that the satisfactory semi-solid A380 aluminum alloy slurry could be obtained when the pouring temperature ranged from 630 to 650 °C. Under the same conditions, increasing the curve number or reducing the curve diameter of the serpentine channel would decrease the average diameter and increase the shape factor of the primary α(Al) grains. The "self-stirring" of the alloy melt in the serpentine channel was beneficial to the ripening of the dendrites and the spheroidizing of the primary α(Al) grains. 展开更多
关键词 A380 aluminum alloy semi-solid slurry serpentine channel primary α(Al)
下载PDF
上一页 1 2 166 下一页 到第
使用帮助 返回顶部