BACKGROUND: Survivin is known to be overexpressed in various human malignancies, including pancreatic cancer, and mediates cancer cell proliferation and tumor growth, so the regulation of this molecule could be a new ...BACKGROUND: Survivin is known to be overexpressed in various human malignancies, including pancreatic cancer, and mediates cancer cell proliferation and tumor growth, so the regulation of this molecule could be a new strategy for treating pancreatic cancer. In this study, short hairpin RNAs (shRNAs) specific to survivin were introduced into human pancreatic cancer Patu8988 cells to investigate the inhibitory effects on survivin expression and cell proliferation in vitro and in vivo. METHODS: Three kinds of shRNA specific to the survivin gene were designed and cloned into eukaryotic expression plasmid pGenesil-1 vector. Subsequently the recombinant plasmids were transfected into human pancreatic cancer Patu8988 cells with lipfectamine (TM) 2000 reagent. The mRNA and protein expressions of survivin in the transiently transfected Patu8988 cells were determined by RT-PCR, flow cytometry, and Western blotting analysis. The proliferation inhibition rates of stably transfected Patu8988 cells were determined by MTT assay. The antitumor activities of the three kinds of survivin-shRNA plasmids were evaluated in BALB/c nude mice inoculated with Patu8988 cells and bearing human pancreatic cancer. RESULTS: The three survivin-shRNA plasmids named pGenesil-1-survivin-1, pGenesil-1-survivin-2 and pGenesil-1-survivin-1+2 (with double interfering RNA sites) were successfully constructed, and were confirmed by restriction enzyme cutting and sequencing. At 48 hours after transfection, the expression of survivin mRNA and protein was inhibited in Patu8988 cells transfected with pGenesil-1-survivin-1, pGenesil-1-survivin-2, and pGenesil-1-survivin-1+2 when compared with that of either pGenesil-1-NC (with scrambled small interfering RNA) transfected cells or control cells (P<0.05). The MTT results showed that the proliferation rates of Patu8988 cells stably transfected with survivin-shRNA plasmids were reduced when compared with that of either pGenesil-1-NC transfected cells or control cells (P<0.01). Furthermore, when Patu8988 cells stably transfected with survivin-shRNA were injected into BALB/c nude mice, tumor growth was dramatically lower and the tumor was smaller than that of either pGenesil-1-NC transfected cells or control cells (P<0.01). The inhibitory effect of pGenesil-1-survivin-1 was the best among the three kinds of survivin-shRNA plasmids, but no combination of inhibitory effects was found in pGenesil-1-survivin-1+2. CONCLUSIONS: shRNAs specific to survivin have gene silencing effects and inhibit pancreatic cancer cell proliferation. shRNA activity against survivin could be of potential value in gene therapy for pancreatic cancer. However, shRNAs with double combining sites did not significantly enhance the interference compared with single site shRNAs, therefore further studies on this are needed.展开更多
To investigate the influence of osteopontin (OPN) short hairpin RNA (shRNA) on the proliferation and activity of rat vascular smooth muscle cells (VSMCs), the expressing vector of shRNA targeting OPN was constru...To investigate the influence of osteopontin (OPN) short hairpin RNA (shRNA) on the proliferation and activity of rat vascular smooth muscle cells (VSMCs), the expressing vector of shRNA targeting OPN was constructed and transferred into the rat VSMCs. After amplification and purification, pGenesil-1/OPNshRNA1 (PG1), pGenesil-1/OPNshRNA2 (PG2) and pGenesil-1/OPNshRNAHK (PGH) were transfected into the cultured rat VSMC by LipofectamineTM 2000. Transfected cells were visualized by using an inverted fluorescent microscope. VSMCs transfected by optimal recombined plasmid was selected by culturing in G418 48 h later. Nude cells and cells transfected by PGH were used as control. The expression levels of OPN mRNA and protein were assayed by RT-PCR and Western blotting. The OPN of VSMCs was suppressed by transfection of optimal recombined plasmid, and the changes in cell proliferation, adhesion and motility were evaluated by MTT, adhesion test and transwell chamber test. Levels of type I and Ⅲ collagen were measured with ELISA kit. Our results showed that VSMCs stably transfected by OPN shRNA accounted for over 50% of total cells. OPN mRNA and protein were reduced by 81% and 67% (P〈0.01) by PG1, 73% and 52% (P〈0.01) by PG2, respectively while no change was found in PGH and non-treated VSMCs. PG1 significantly suppressed the proliferation, adhesion, mobility of VSMCs and reduced the amount of type Ⅰ and Ⅲ collagen. It is concluded that recombinant plasmid can be success-fully transfected into VSMCs by LipofectamineTM 2000 and inhibit the expression of OPN. The proliferation, adhesion and mobility of VSMCs can be inhibited by knocking down OPN expression. Moreover, the transferring capability of cells is attenuated, and the secretion of type Ⅰ and Ⅲ collagen is inhibited aftter knocking-down of OPN expression. The study provides experimental evidence for clinical prevention of restenosis after percutaneous coronary intervention (PCI) by RNA interference (RNAi) technology.展开更多
Objective: Recurrent ovarian cancer is often resistant to drugs such as paclitaxel. Short hairpin RNA (shRNA) targeting MDRI, a gene involved in the process of drug resistance, may be a promising strategy to overco...Objective: Recurrent ovarian cancer is often resistant to drugs such as paclitaxel. Short hairpin RNA (shRNA) targeting MDRI, a gene involved in the process of drug resistance, may be a promising strategy to overcome drug resistance. Methods: Construction and identification of eukaryotic expression plasmid was transiently transfected into human ovarian cancer ce plasmid of shRNA targeting on MDR1 gene. The ne A2780/Taxol. Apoptosis was determined by flow cytometry using annexin V-FITC/PI double labeling. Expression of MDRI mRNA was detected by quantitative polymerase chain reaction (qPCR) and P-glycoprotein expression was detected using Western blot. Results The IC50 of paclitaxel in MDR1 shRNA-transfected group was significantly reduced (1.986±0.153)μmol/ml as compared with that in negative control (5.246±0.107)μmol/ml and empty vector-transfected group (5.212±0.075)μmol/ml (P〈0.05). The percent of the relative reverse sensitivity to paclitaxel on A2780/Taxol cells was 67.1%, and the apoptotic rate was significantly increased [(6.977±0.333)%] compared with control [(1.637±0.111)%] and empty vector-transfected group [(1.663±0.114)%] (P〈0.05). Expressions of MDR1 mRNA and P-glycoprotein were significantly reduced compared with control (P〈0.05). Conclusion: The present study demonstrated that the eukaryotic expression plasmid of shRNA targeting on MDRI inhibited the expression of MDRI effectively, thus enhance the sensitivity of A2780/Taxol cells to paclitaxel.展开更多
The influence of short hairpin RNA(shRNA)-mediated osteopontin(OPN)gene silencing on the proliferation and invasion of human renal cancer ACHN cells was investigated.Four types of OPN shRNA recombinant plasmids were c...The influence of short hairpin RNA(shRNA)-mediated osteopontin(OPN)gene silencing on the proliferation and invasion of human renal cancer ACHN cells was investigated.Four types of OPN shRNA recombinant plasmids were constructed and RT-PCR assays were used to screen the most highly functional shRNA recombinant plasmids,which were transferred into the cultured ACHN cells by LipofectamineTM 2000.The cells transfected by shRNA expression vectors(ACHN/OPN)were visualized under an inverted microscope and screened...展开更多
BACKGROUND Colorectal cancer(CRC)is one of the most common malignant tumors worldwide.The identification of novel diagnostic and prognostic biomarkers for CRC is a key research imperative.Immunohistochemical analysis ...BACKGROUND Colorectal cancer(CRC)is one of the most common malignant tumors worldwide.The identification of novel diagnostic and prognostic biomarkers for CRC is a key research imperative.Immunohistochemical analysis has revealed high expression of centromere protein K(CENPK)in CRC.However,the role of CENPK in the progression of CRC is not well characterized.AIM To evaluate the effects of knockdown of CENPK and overexpression of Cullin 4A(CUL4A)in RKO and HCT116 cells.METHODS Human colon cancer samples were collected and tested using a human gene expression chip.We identified CENPK as a potential oncogene for CRC based on bioinformatics analysis.In vitro experiments verified the function of this gene.We investigated the expression of CENPK in RKO and HCT116 cells using quantitative polymerase chain reaction(qPCR),western blot,and flow cytometry.The effect of short hairpin RNA(shRNA)virus-infected RKO cells on tumor growth was evaluated in vivo using quantitative analysis of fluorescence imaging.To evaluate the effects of knockdown of CENPK and overexpression of CUL4A in RKO and HCT116 cells,we performed a series of in vitro experiments,using qPCR,western blot,MTT assay,and flow cytometry.RESULTS We demonstrated overexpression of CENPK in human colon cancer samples.CENPK was an independent risk factor in patients with CRC.The downstream genes FBX32,CUL4A,and Yesassociated protein isoform 1 were examined to evaluate the regulatory action of CENPK in RKO cells.Significantly delayed xenograft tumor emergence,slower growth rate,and lower final tumor weight and volume were observed in the CENPK short hairpin RNA virus infected group compared with the CENPK negative control group.The CENPK gene interference inhibited the proliferation of RKO cells in vitro and in vivo.The lentivirus-mediated shRNA interference of CENPK inhibited the proliferation of RKO and HCT116 colon cancer cells,with overexpression of the CUL4A.CONCLUSION We indicated a potential role of CENPK in promoting tumor proliferation,and it may be a novel diagnostic and prognostic biomarker for CRC.展开更多
[ Objective] The aim was to explore novel method for treatment of Avian Reovirus. [ Method] According to the design principle of siRNA target sequences, siRNA templates were designed and synthesized and then cloned in...[ Objective] The aim was to explore novel method for treatment of Avian Reovirus. [ Method] According to the design principle of siRNA target sequences, siRNA templates were designed and synthesized and then cloned into the shRNA expression vector, namely, pSilencer-CMV 4.1 neo. Short hairpin RNA vector C1, C2, C3, which contain σC gene, and shRNA vector NS1, NS2, NS3, which contain aNS gene, were constructed separately. The constructed shRNA vectors and negative control were co-transfected into DF-1 cells with the eukaryotic expression vector pEG- FP-σC and pEGFP-σNS, respectively. [ Result] Observation through fluorescence microscope indicated that the constructed 6 shRNA could inhibit the expression of fusion protein to different degrees. In addition, results of Real-time PCR suggested that C3 and NS1 have the best interference effect to the viral duplication in vitro. [ Conclusionl Construction and selection of specific shRNA expression vectors inhibiting Avian Reovirus are significant for researching effects of σC and oNS proteins in infection and duplication of ARV, providing new idea for ARV antiviral therapy.展开更多
BACKGROUND Hepatocellular carcinoma(HCC) is one of the most common malignant tumors with high mortality-to-incidence ratios. Nuclear factor erythroid 2-like 3(NFE2 L3), also known as NRF3, is a member of the cap ‘n...BACKGROUND Hepatocellular carcinoma(HCC) is one of the most common malignant tumors with high mortality-to-incidence ratios. Nuclear factor erythroid 2-like 3(NFE2 L3), also known as NRF3, is a member of the cap ‘n' collar basic-region leucine zipper family of transcription factors. NFE2 L3 is involved in the regulation of various biological processes, whereas its role in HCC has not been elucidated.AIM To explore the expression and biological function of NFE2 L3 in HCC.METHODS We analyzed the expression of NFE2 L3 in HCC tissues and its correlation with clinicopathological parameters based on The Cancer Genome Atlas(TCGA) data portal. Short hairpin RNA(shRNA) interference technology was utilized to knock down NFE2 L3 in vitro. Cell apoptosis, clone formation, proliferation, migration,and invasion assays were used to identify the biological effects of NFE2 L3 in BEL-7404 and SMMC-7721 cells. The expression of epithelial-mesenchymal transition(EMT) markers was examined by Western blot analysis.RESULTS TCGA analysis showed that NFE2 L3 expression was significantly positively correlated with tumor grade, T stage, and pathologic stage. The qPCR and Western blot results showed that both the mRNA and protein levels of NFE2 L3 were significantly decreased after shRNA-mediated knockdown in BEL-7404 and SMMC-7721 cells. The shRNA-mediated knockdown of NFE2 L3 could induce apoptosis and inhibit the clone formation and cell proliferation of SMMC-7721 and BEL-7404 cells. NFE2 L3 knockdown also significantly suppressed the migration, invasion, and EMT of the two cell lines.CONCLUSION Our study showed that shRNA-mediated knockdown of NFE2 L3 exhibited tumor-suppressing effects in HCC cells.展开更多
AIM:To evaluate whether recombinant complement factor B(CFB)short hairpin RNA(sh RNA)reduces laserinduced choroidal neovascularization(CNV)in rats.METHODS:Laser-induced rat CNV model was established,and then the anima...AIM:To evaluate whether recombinant complement factor B(CFB)short hairpin RNA(sh RNA)reduces laserinduced choroidal neovascularization(CNV)in rats.METHODS:Laser-induced rat CNV model was established,and then the animals underwent fundus fluorescence angiography(FFA)and hematoxylin and eosin(HE)staining.On day 3 and 7 after photocoagulation,the expression of CFB and membrane attack complex(MAC)was detected by immunhischemistry.A recombinant CFBsh RNA plasmid was constructed.CFB and scrambled sh RNA plasmids were intravenous injected into rats via the tail vein on the day of laser treatment,respectively.On day 7,the incidence of CNV was determined by FFA,and the expression of CFB and vascular endothelial growth factor(VEGF)in retinal pigment epithelium(RPE)/choroidal tissues was detected by immunhischemistry,Western blot and/or semi-quantitative reverse transcription-polymerase chain reaction(RT-PCR)in CFB and scrambled sh RNA groups.The possible adverse effects of CFB-sh RNA injection were assessed by transmission electron microscopy and electroretinography.RESULTS:FFA and HE results indicated that a laserinduced rat CNV model was successfully established on day 7 after photocoagulation.The expression of CFB and MAC was extremely weak in normal retina and choroid,and increased on day 3 after photocoagulation.However,it started to reduce on day 7.CFB sh RNA plasmid was successfully constructed and induced CFB knockdown in the retinal and choroidal tissues.FFA showed CFB knockdown significantly inhibited incidence of CNV in rats.Moreover,CFB knockdown significantly inhibited the expression of VEGF in RPE/choroidal tissues.CFB sh RNA caused no obvious side effects in eyes.CONCLUSION:CFB knockdown significantly inhibits the formation and development of CNV in vivo through reducing the expression of VEGF,which is a potential therapy target.The alternative pathway of complement activation plays an important role in CNV formation.展开更多
Targeting the N gene of rabies virus (RV), four shRNA expression plasmids were designed and constructed based on the vector pRNATU6.3-Hygro that expresses fusion protein with GFP as a reporter gene. Four cell strains ...Targeting the N gene of rabies virus (RV), four shRNA expression plasmids were designed and constructed based on the vector pRNATU6.3-Hygro that expresses fusion protein with GFP as a reporter gene. Four cell strains (N1, N2, N3, N4) expressing the short hairpin RNAs (shRNA) were obtained after the plasmids were transfected into BHK-21 cells and screened under the pressure of Hygromycin B (300 μg/mL). These cell strains were infected with 100× the TCID 50 of rabies virus CVS-11 strain, and the viral replication was quantified at 24, 48, 72 and 96 hours by directed immunofluorescence assay (DFA), real-time PCR, and the 50% tissue culture infective dose (TCID 50 ). The results showed variable inhibition of viral replication, with BHK-N2 being the most effective strain (99% inhibition). There was close correspondence between results using the three methods of evaluation. The shRNA-mediated inhibition persisted to at least 96 hours after infection. Effective inhibition of replication of RV in BHK-21 cells was achieved by siRNA targeting the N gene, with N 2 , aimed at the region starting at position 701 of the gene, being the most potent.展开更多
BACKGROUND:Adeno-associated virus(AAV)gene therapy has been proven to be reliable and safe for the treatment of osteoarthritis in recent years.However,given the complexity of osteoarthritis pathogenesis,single gene ma...BACKGROUND:Adeno-associated virus(AAV)gene therapy has been proven to be reliable and safe for the treatment of osteoarthritis in recent years.However,given the complexity of osteoarthritis pathogenesis,single gene manipulation for the treatment of osteoarthritis may not produce satisfactory results.Previous studies have shown that nuclear factorκB could promote the inflammatory pathway in osteoarthritic chondrocytes,and bone morphogenetic protein 4(BMP4)could promote cartilage regeneration.OBJECTIVE:To test whether combined application of AAV-p65shRNA and AAV-BMP4 will yield the synergistic effect on chondrocytes regeneration and osteoarthritis treatment.METHODS:Viral particles containing AAV-p65-shRNA and AAV-BMP4 were prepared.Their efficacy in inhibiting inflammation in chondrocytes and promoting chondrogenesis was assessed in vitro and in vivo by transfecting AAV-p65-shRNA or AAV-BMP4 into cells.The experiments were divided into five groups:PBS group;osteoarthritis group;AAV-BMP4 group;AAV-p65shRNA group;and BMP4-p65shRNA 1:1 group.Samples were collected at 4,12,and 24 weeks postoperatively.Tissue staining,including safranin O and Alcian blue,was applied after collecting articular tissue.Then,the optimal ratio between the two types of transfected viral particles was further investigated to improve the chondrogenic potential of mixed cells in vivo.RESULTS AND CONCLUSION:The combined application of AAV-p65shRNA and AAV-BMP4 together showed a synergistic effect on cartilage regeneration and osteoarthritis treatment.Mixed cells transfected with AAV-p65shRNA and AAV-BMP4 at a 1:1 ratio produced the most extracellular matrix synthesis(P<0.05).In vivo results also revealed that the combination of the two viruses had the highest regenerative potential for osteoarthritic cartilage(P<0.05).In the present study,we also discovered that the combined therapy had the maximum effect when the two viruses were administered in equal proportions.Decreasing either p65shRNA or BMP4 transfected cells resulted in less collagen II synthesis.This implies that inhibiting inflammation by p65shRNA and promoting regeneration by BMP4 are equally important for osteoarthritis treatment.These findings provide a new strategy for the treatment of early osteoarthritis by simultaneously inhibiting cartilage inflammation and promoting cartilage repair.展开更多
Background The relationship between signal transduction and tumors has become one of the loci in cancer research. Signal transducer and activator of the transcription 6 (STAT6) signaling pathway is found to be activ...Background The relationship between signal transduction and tumors has become one of the loci in cancer research. Signal transducer and activator of the transcription 6 (STAT6) signaling pathway is found to be activated in some cancer cells. But the function of the pathway in cancer cells is unknown. This study was undertaken to investigate the effect of the Stat6 signaling pathway on apoptosis in human colon cancer cells (HT-29 cells) and the possible mechanism of Stat6 by RNA interference techniques.展开更多
Background Over-expression of P-glycoprotein (P-gp), encoded by the MDR1 gene, confers multidrug resistance (MDR) in renal cell carcinoma (RCC) and is a major reason for unsuccessful chemotherapy. This study aim...Background Over-expression of P-glycoprotein (P-gp), encoded by the MDR1 gene, confers multidrug resistance (MDR) in renal cell carcinoma (RCC) and is a major reason for unsuccessful chemotherapy. This study aimed to determine the effct of RNA interference (RNAi) on the reversal of MDR in human RCC. Methods We designed and selected one short hairpin RNA (shRNA) targeting MDR1 gene, which is stably expressed from integrated plasmid and transfected by lentivirus fluid in human RCC A498 cell. Results The MDRl-targeted RNAi resulted in decreased MDR1 gene mRNA level (P 〈0.001), almost abolished P-gp expression and reversed MDR to different chemotherapy drugs in the RCC A498 cell line. Conclusion MDR could be reversed by RNAi in human RCC A498 cell line, which may be used for clinical application展开更多
Objective: To describe the characteristics of short interfering double stranded RNA (dsRNA) against hepatitis C virus (HCV) and to fred out the determining factors in design for desirable inhibitory efficacy. Met...Objective: To describe the characteristics of short interfering double stranded RNA (dsRNA) against hepatitis C virus (HCV) and to fred out the determining factors in design for desirable inhibitory efficacy. Methods: The data were collected and analyzed by retrieval of 229 published short dsRNAs designed for degradation ofHCV RNA. Results: Statistical analyses showed that the most frequently involved short dsRNAs were directing against 5'NTR/core and genotype lb, accounting for 64.2% and 69.9%, respectively. Inhibitory efficacy varied with the structural characteristics of short dsRNAs, of which the most potential were those directed against HCV core region with inhibitory efficacy of 70.2%. Moreover, the mean inhibitory efficacy of short dsRNAs with GC contents from 30% to 52% was higher than that of those with GC contents out of this range. Conclusion: Based on this pooled data in a relatively large sample, the present results provided clues to design for short dsRNAs with more potent inhibitory efficacy.展开更多
基金supported by grants from the Social Bureau Foundation of Suzhou (SZD0614)the Foundation of Health Bureau of Jiangsu Province (Z200622)
文摘BACKGROUND: Survivin is known to be overexpressed in various human malignancies, including pancreatic cancer, and mediates cancer cell proliferation and tumor growth, so the regulation of this molecule could be a new strategy for treating pancreatic cancer. In this study, short hairpin RNAs (shRNAs) specific to survivin were introduced into human pancreatic cancer Patu8988 cells to investigate the inhibitory effects on survivin expression and cell proliferation in vitro and in vivo. METHODS: Three kinds of shRNA specific to the survivin gene were designed and cloned into eukaryotic expression plasmid pGenesil-1 vector. Subsequently the recombinant plasmids were transfected into human pancreatic cancer Patu8988 cells with lipfectamine (TM) 2000 reagent. The mRNA and protein expressions of survivin in the transiently transfected Patu8988 cells were determined by RT-PCR, flow cytometry, and Western blotting analysis. The proliferation inhibition rates of stably transfected Patu8988 cells were determined by MTT assay. The antitumor activities of the three kinds of survivin-shRNA plasmids were evaluated in BALB/c nude mice inoculated with Patu8988 cells and bearing human pancreatic cancer. RESULTS: The three survivin-shRNA plasmids named pGenesil-1-survivin-1, pGenesil-1-survivin-2 and pGenesil-1-survivin-1+2 (with double interfering RNA sites) were successfully constructed, and were confirmed by restriction enzyme cutting and sequencing. At 48 hours after transfection, the expression of survivin mRNA and protein was inhibited in Patu8988 cells transfected with pGenesil-1-survivin-1, pGenesil-1-survivin-2, and pGenesil-1-survivin-1+2 when compared with that of either pGenesil-1-NC (with scrambled small interfering RNA) transfected cells or control cells (P<0.05). The MTT results showed that the proliferation rates of Patu8988 cells stably transfected with survivin-shRNA plasmids were reduced when compared with that of either pGenesil-1-NC transfected cells or control cells (P<0.01). Furthermore, when Patu8988 cells stably transfected with survivin-shRNA were injected into BALB/c nude mice, tumor growth was dramatically lower and the tumor was smaller than that of either pGenesil-1-NC transfected cells or control cells (P<0.01). The inhibitory effect of pGenesil-1-survivin-1 was the best among the three kinds of survivin-shRNA plasmids, but no combination of inhibitory effects was found in pGenesil-1-survivin-1+2. CONCLUSIONS: shRNAs specific to survivin have gene silencing effects and inhibit pancreatic cancer cell proliferation. shRNA activity against survivin could be of potential value in gene therapy for pancreatic cancer. However, shRNAs with double combining sites did not significantly enhance the interference compared with single site shRNAs, therefore further studies on this are needed.
基金supported by a grant from the Science and Technology Foundation of Hubei Province (No.2006AA-301C18)
文摘To investigate the influence of osteopontin (OPN) short hairpin RNA (shRNA) on the proliferation and activity of rat vascular smooth muscle cells (VSMCs), the expressing vector of shRNA targeting OPN was constructed and transferred into the rat VSMCs. After amplification and purification, pGenesil-1/OPNshRNA1 (PG1), pGenesil-1/OPNshRNA2 (PG2) and pGenesil-1/OPNshRNAHK (PGH) were transfected into the cultured rat VSMC by LipofectamineTM 2000. Transfected cells were visualized by using an inverted fluorescent microscope. VSMCs transfected by optimal recombined plasmid was selected by culturing in G418 48 h later. Nude cells and cells transfected by PGH were used as control. The expression levels of OPN mRNA and protein were assayed by RT-PCR and Western blotting. The OPN of VSMCs was suppressed by transfection of optimal recombined plasmid, and the changes in cell proliferation, adhesion and motility were evaluated by MTT, adhesion test and transwell chamber test. Levels of type I and Ⅲ collagen were measured with ELISA kit. Our results showed that VSMCs stably transfected by OPN shRNA accounted for over 50% of total cells. OPN mRNA and protein were reduced by 81% and 67% (P〈0.01) by PG1, 73% and 52% (P〈0.01) by PG2, respectively while no change was found in PGH and non-treated VSMCs. PG1 significantly suppressed the proliferation, adhesion, mobility of VSMCs and reduced the amount of type Ⅰ and Ⅲ collagen. It is concluded that recombinant plasmid can be success-fully transfected into VSMCs by LipofectamineTM 2000 and inhibit the expression of OPN. The proliferation, adhesion and mobility of VSMCs can be inhibited by knocking down OPN expression. Moreover, the transferring capability of cells is attenuated, and the secretion of type Ⅰ and Ⅲ collagen is inhibited aftter knocking-down of OPN expression. The study provides experimental evidence for clinical prevention of restenosis after percutaneous coronary intervention (PCI) by RNA interference (RNAi) technology.
基金support from laboratory of the second hospital and medical college of Shandong university
文摘Objective: Recurrent ovarian cancer is often resistant to drugs such as paclitaxel. Short hairpin RNA (shRNA) targeting MDRI, a gene involved in the process of drug resistance, may be a promising strategy to overcome drug resistance. Methods: Construction and identification of eukaryotic expression plasmid was transiently transfected into human ovarian cancer ce plasmid of shRNA targeting on MDR1 gene. The ne A2780/Taxol. Apoptosis was determined by flow cytometry using annexin V-FITC/PI double labeling. Expression of MDRI mRNA was detected by quantitative polymerase chain reaction (qPCR) and P-glycoprotein expression was detected using Western blot. Results The IC50 of paclitaxel in MDR1 shRNA-transfected group was significantly reduced (1.986±0.153)μmol/ml as compared with that in negative control (5.246±0.107)μmol/ml and empty vector-transfected group (5.212±0.075)μmol/ml (P〈0.05). The percent of the relative reverse sensitivity to paclitaxel on A2780/Taxol cells was 67.1%, and the apoptotic rate was significantly increased [(6.977±0.333)%] compared with control [(1.637±0.111)%] and empty vector-transfected group [(1.663±0.114)%] (P〈0.05). Expressions of MDR1 mRNA and P-glycoprotein were significantly reduced compared with control (P〈0.05). Conclusion: The present study demonstrated that the eukaryotic expression plasmid of shRNA targeting on MDRI inhibited the expression of MDRI effectively, thus enhance the sensitivity of A2780/Taxol cells to paclitaxel.
基金supported by a grant from the Major State Basic Research Development Program of China(973 Program)(No.2002CB513100)
文摘The influence of short hairpin RNA(shRNA)-mediated osteopontin(OPN)gene silencing on the proliferation and invasion of human renal cancer ACHN cells was investigated.Four types of OPN shRNA recombinant plasmids were constructed and RT-PCR assays were used to screen the most highly functional shRNA recombinant plasmids,which were transferred into the cultured ACHN cells by LipofectamineTM 2000.The cells transfected by shRNA expression vectors(ACHN/OPN)were visualized under an inverted microscope and screened...
基金the National Natural Science Foundation of China,No.81860416 and No.22168028Inner Mongolia Autonomous Region Grassland Talent Innovation Talent Team Fund,No.2019Inner Mongolia Natural Science Fund,No.2021MS02005.
文摘BACKGROUND Colorectal cancer(CRC)is one of the most common malignant tumors worldwide.The identification of novel diagnostic and prognostic biomarkers for CRC is a key research imperative.Immunohistochemical analysis has revealed high expression of centromere protein K(CENPK)in CRC.However,the role of CENPK in the progression of CRC is not well characterized.AIM To evaluate the effects of knockdown of CENPK and overexpression of Cullin 4A(CUL4A)in RKO and HCT116 cells.METHODS Human colon cancer samples were collected and tested using a human gene expression chip.We identified CENPK as a potential oncogene for CRC based on bioinformatics analysis.In vitro experiments verified the function of this gene.We investigated the expression of CENPK in RKO and HCT116 cells using quantitative polymerase chain reaction(qPCR),western blot,and flow cytometry.The effect of short hairpin RNA(shRNA)virus-infected RKO cells on tumor growth was evaluated in vivo using quantitative analysis of fluorescence imaging.To evaluate the effects of knockdown of CENPK and overexpression of CUL4A in RKO and HCT116 cells,we performed a series of in vitro experiments,using qPCR,western blot,MTT assay,and flow cytometry.RESULTS We demonstrated overexpression of CENPK in human colon cancer samples.CENPK was an independent risk factor in patients with CRC.The downstream genes FBX32,CUL4A,and Yesassociated protein isoform 1 were examined to evaluate the regulatory action of CENPK in RKO cells.Significantly delayed xenograft tumor emergence,slower growth rate,and lower final tumor weight and volume were observed in the CENPK short hairpin RNA virus infected group compared with the CENPK negative control group.The CENPK gene interference inhibited the proliferation of RKO cells in vitro and in vivo.The lentivirus-mediated shRNA interference of CENPK inhibited the proliferation of RKO and HCT116 colon cancer cells,with overexpression of the CUL4A.CONCLUSION We indicated a potential role of CENPK in promoting tumor proliferation,and it may be a novel diagnostic and prognostic biomarker for CRC.
基金supported by National Natural Science Foundation (31160512)Funds for Special Expert of Guangxi Province (2011B020)Guangxi Science and Techology Research Projects (0991222)
文摘[ Objective] The aim was to explore novel method for treatment of Avian Reovirus. [ Method] According to the design principle of siRNA target sequences, siRNA templates were designed and synthesized and then cloned into the shRNA expression vector, namely, pSilencer-CMV 4.1 neo. Short hairpin RNA vector C1, C2, C3, which contain σC gene, and shRNA vector NS1, NS2, NS3, which contain aNS gene, were constructed separately. The constructed shRNA vectors and negative control were co-transfected into DF-1 cells with the eukaryotic expression vector pEG- FP-σC and pEGFP-σNS, respectively. [ Result] Observation through fluorescence microscope indicated that the constructed 6 shRNA could inhibit the expression of fusion protein to different degrees. In addition, results of Real-time PCR suggested that C3 and NS1 have the best interference effect to the viral duplication in vitro. [ Conclusionl Construction and selection of specific shRNA expression vectors inhibiting Avian Reovirus are significant for researching effects of σC and oNS proteins in infection and duplication of ARV, providing new idea for ARV antiviral therapy.
基金the Changzhou High-Level Medical Talents Training Project,No.2016ZCLJ002
文摘BACKGROUND Hepatocellular carcinoma(HCC) is one of the most common malignant tumors with high mortality-to-incidence ratios. Nuclear factor erythroid 2-like 3(NFE2 L3), also known as NRF3, is a member of the cap ‘n' collar basic-region leucine zipper family of transcription factors. NFE2 L3 is involved in the regulation of various biological processes, whereas its role in HCC has not been elucidated.AIM To explore the expression and biological function of NFE2 L3 in HCC.METHODS We analyzed the expression of NFE2 L3 in HCC tissues and its correlation with clinicopathological parameters based on The Cancer Genome Atlas(TCGA) data portal. Short hairpin RNA(shRNA) interference technology was utilized to knock down NFE2 L3 in vitro. Cell apoptosis, clone formation, proliferation, migration,and invasion assays were used to identify the biological effects of NFE2 L3 in BEL-7404 and SMMC-7721 cells. The expression of epithelial-mesenchymal transition(EMT) markers was examined by Western blot analysis.RESULTS TCGA analysis showed that NFE2 L3 expression was significantly positively correlated with tumor grade, T stage, and pathologic stage. The qPCR and Western blot results showed that both the mRNA and protein levels of NFE2 L3 were significantly decreased after shRNA-mediated knockdown in BEL-7404 and SMMC-7721 cells. The shRNA-mediated knockdown of NFE2 L3 could induce apoptosis and inhibit the clone formation and cell proliferation of SMMC-7721 and BEL-7404 cells. NFE2 L3 knockdown also significantly suppressed the migration, invasion, and EMT of the two cell lines.CONCLUSION Our study showed that shRNA-mediated knockdown of NFE2 L3 exhibited tumor-suppressing effects in HCC cells.
文摘AIM:To evaluate whether recombinant complement factor B(CFB)short hairpin RNA(sh RNA)reduces laserinduced choroidal neovascularization(CNV)in rats.METHODS:Laser-induced rat CNV model was established,and then the animals underwent fundus fluorescence angiography(FFA)and hematoxylin and eosin(HE)staining.On day 3 and 7 after photocoagulation,the expression of CFB and membrane attack complex(MAC)was detected by immunhischemistry.A recombinant CFBsh RNA plasmid was constructed.CFB and scrambled sh RNA plasmids were intravenous injected into rats via the tail vein on the day of laser treatment,respectively.On day 7,the incidence of CNV was determined by FFA,and the expression of CFB and vascular endothelial growth factor(VEGF)in retinal pigment epithelium(RPE)/choroidal tissues was detected by immunhischemistry,Western blot and/or semi-quantitative reverse transcription-polymerase chain reaction(RT-PCR)in CFB and scrambled sh RNA groups.The possible adverse effects of CFB-sh RNA injection were assessed by transmission electron microscopy and electroretinography.RESULTS:FFA and HE results indicated that a laserinduced rat CNV model was successfully established on day 7 after photocoagulation.The expression of CFB and MAC was extremely weak in normal retina and choroid,and increased on day 3 after photocoagulation.However,it started to reduce on day 7.CFB sh RNA plasmid was successfully constructed and induced CFB knockdown in the retinal and choroidal tissues.FFA showed CFB knockdown significantly inhibited incidence of CNV in rats.Moreover,CFB knockdown significantly inhibited the expression of VEGF in RPE/choroidal tissues.CFB sh RNA caused no obvious side effects in eyes.CONCLUSION:CFB knockdown significantly inhibits the formation and development of CNV in vivo through reducing the expression of VEGF,which is a potential therapy target.The alternative pathway of complement activation plays an important role in CNV formation.
文摘Targeting the N gene of rabies virus (RV), four shRNA expression plasmids were designed and constructed based on the vector pRNATU6.3-Hygro that expresses fusion protein with GFP as a reporter gene. Four cell strains (N1, N2, N3, N4) expressing the short hairpin RNAs (shRNA) were obtained after the plasmids were transfected into BHK-21 cells and screened under the pressure of Hygromycin B (300 μg/mL). These cell strains were infected with 100× the TCID 50 of rabies virus CVS-11 strain, and the viral replication was quantified at 24, 48, 72 and 96 hours by directed immunofluorescence assay (DFA), real-time PCR, and the 50% tissue culture infective dose (TCID 50 ). The results showed variable inhibition of viral replication, with BHK-N2 being the most effective strain (99% inhibition). There was close correspondence between results using the three methods of evaluation. The shRNA-mediated inhibition persisted to at least 96 hours after infection. Effective inhibition of replication of RV in BHK-21 cells was achieved by siRNA targeting the N gene, with N 2 , aimed at the region starting at position 701 of the gene, being the most potent.
文摘BACKGROUND:Adeno-associated virus(AAV)gene therapy has been proven to be reliable and safe for the treatment of osteoarthritis in recent years.However,given the complexity of osteoarthritis pathogenesis,single gene manipulation for the treatment of osteoarthritis may not produce satisfactory results.Previous studies have shown that nuclear factorκB could promote the inflammatory pathway in osteoarthritic chondrocytes,and bone morphogenetic protein 4(BMP4)could promote cartilage regeneration.OBJECTIVE:To test whether combined application of AAV-p65shRNA and AAV-BMP4 will yield the synergistic effect on chondrocytes regeneration and osteoarthritis treatment.METHODS:Viral particles containing AAV-p65-shRNA and AAV-BMP4 were prepared.Their efficacy in inhibiting inflammation in chondrocytes and promoting chondrogenesis was assessed in vitro and in vivo by transfecting AAV-p65-shRNA or AAV-BMP4 into cells.The experiments were divided into five groups:PBS group;osteoarthritis group;AAV-BMP4 group;AAV-p65shRNA group;and BMP4-p65shRNA 1:1 group.Samples were collected at 4,12,and 24 weeks postoperatively.Tissue staining,including safranin O and Alcian blue,was applied after collecting articular tissue.Then,the optimal ratio between the two types of transfected viral particles was further investigated to improve the chondrogenic potential of mixed cells in vivo.RESULTS AND CONCLUSION:The combined application of AAV-p65shRNA and AAV-BMP4 together showed a synergistic effect on cartilage regeneration and osteoarthritis treatment.Mixed cells transfected with AAV-p65shRNA and AAV-BMP4 at a 1:1 ratio produced the most extracellular matrix synthesis(P<0.05).In vivo results also revealed that the combination of the two viruses had the highest regenerative potential for osteoarthritic cartilage(P<0.05).In the present study,we also discovered that the combined therapy had the maximum effect when the two viruses were administered in equal proportions.Decreasing either p65shRNA or BMP4 transfected cells resulted in less collagen II synthesis.This implies that inhibiting inflammation by p65shRNA and promoting regeneration by BMP4 are equally important for osteoarthritis treatment.These findings provide a new strategy for the treatment of early osteoarthritis by simultaneously inhibiting cartilage inflammation and promoting cartilage repair.
基金This study was supported by grants from the National Science Foundation of China (No. 30470981) and the National Science Foundation of Hubei Province (No. 2005ABA103).
文摘Background The relationship between signal transduction and tumors has become one of the loci in cancer research. Signal transducer and activator of the transcription 6 (STAT6) signaling pathway is found to be activated in some cancer cells. But the function of the pathway in cancer cells is unknown. This study was undertaken to investigate the effect of the Stat6 signaling pathway on apoptosis in human colon cancer cells (HT-29 cells) and the possible mechanism of Stat6 by RNA interference techniques.
文摘Background Over-expression of P-glycoprotein (P-gp), encoded by the MDR1 gene, confers multidrug resistance (MDR) in renal cell carcinoma (RCC) and is a major reason for unsuccessful chemotherapy. This study aimed to determine the effct of RNA interference (RNAi) on the reversal of MDR in human RCC. Methods We designed and selected one short hairpin RNA (shRNA) targeting MDR1 gene, which is stably expressed from integrated plasmid and transfected by lentivirus fluid in human RCC A498 cell. Results The MDRl-targeted RNAi resulted in decreased MDR1 gene mRNA level (P 〈0.001), almost abolished P-gp expression and reversed MDR to different chemotherapy drugs in the RCC A498 cell line. Conclusion MDR could be reversed by RNAi in human RCC A498 cell line, which may be used for clinical application
基金Supported by Grants from the Committee of Science and Technology of Shanghai, China (No.10ZR1413100, and No.114119a1400)
文摘Objective: To describe the characteristics of short interfering double stranded RNA (dsRNA) against hepatitis C virus (HCV) and to fred out the determining factors in design for desirable inhibitory efficacy. Methods: The data were collected and analyzed by retrieval of 229 published short dsRNAs designed for degradation ofHCV RNA. Results: Statistical analyses showed that the most frequently involved short dsRNAs were directing against 5'NTR/core and genotype lb, accounting for 64.2% and 69.9%, respectively. Inhibitory efficacy varied with the structural characteristics of short dsRNAs, of which the most potential were those directed against HCV core region with inhibitory efficacy of 70.2%. Moreover, the mean inhibitory efficacy of short dsRNAs with GC contents from 30% to 52% was higher than that of those with GC contents out of this range. Conclusion: Based on this pooled data in a relatively large sample, the present results provided clues to design for short dsRNAs with more potent inhibitory efficacy.