The problem of soft-input so,output ( SISO ) detection for time-varying frequency-selec- tive fading channels is considered. Based on a suitably-designed factor graph and the sum-product al- gorithm, a low-complexit...The problem of soft-input so,output ( SISO ) detection for time-varying frequency-selec- tive fading channels is considered. Based on a suitably-designed factor graph and the sum-product al- gorithm, a low-complexity iterative message passing scheme is proposed for joint channel estima- tion, equalization and decoding. Two kinds of schedules (parallel and serial) are adopted in message updates to produce two algorithms with different latency. The computational complexity per iteration of the proposed algorithms grows only linearly with the channel length, which is a significantly de- crease compared to the optimal maximum a posteriori (MAP) detection with the exponential com- plexity. Computer simulations demonstrate the effectiveness of the proposed schemes in terms of bit error rate performance.展开更多
基金Supported by the National Natural Science Foundation of China(61201181)Specialized Research Fund for the Doctoral Program of Higher Education(20121101120020)the Co-innovation Laboratory of Aerospace Broadband Network Technology
文摘The problem of soft-input so,output ( SISO ) detection for time-varying frequency-selec- tive fading channels is considered. Based on a suitably-designed factor graph and the sum-product al- gorithm, a low-complexity iterative message passing scheme is proposed for joint channel estima- tion, equalization and decoding. Two kinds of schedules (parallel and serial) are adopted in message updates to produce two algorithms with different latency. The computational complexity per iteration of the proposed algorithms grows only linearly with the channel length, which is a significantly de- crease compared to the optimal maximum a posteriori (MAP) detection with the exponential com- plexity. Computer simulations demonstrate the effectiveness of the proposed schemes in terms of bit error rate performance.