Water management is an important practice that affects fruit size and quality.Effective implementation of irrigation scheduling requires knowledge of the appropriate indicators and thresholds,which are established man...Water management is an important practice that affects fruit size and quality.Effective implementation of irrigation scheduling requires knowledge of the appropriate indicators and thresholds,which are established manly based on the effects of water deficits on final fruit quality.Few studies have focused on the real-time effects of water status on fruit and shoot growth.To establish soil water potential (ψ_(soil)) thresholds to trigger irrigation of peach at pivotal fruit developmental stages,photogrammetry,^(13)C labelling,and other techniques were used in this study to investigate real-time changes in stem diameter,fruit projected area,net leaf photosynthetic rate (P_(n)),and allocation of photoassimilates to fruit under soil water potential conditions ranging from saturation to stress in 6-year-old Shimizu hakuto’peach.Stem growth,fruit growth,and P_n exhibited gradually decreasing sensitivity to water deficits during fruit developmental stages I,II,and III.Stem diameter growth was significantly inhibited whenψ_(soil)dropped to-8.5,-7.6,and-5.4 k Pa,respectively.Fruit growth rate was low,reaching zero when theψ_(soil)was-9.0 to-23.1,-14.9 to-21.4,and-16.5 to-23.3 k Pa,respectively,and P_ndecreased significantly when theψ_(soil)reached-24.2,-22.7,and-20.4 kPa,respectively.In addition,more photoassimilates were allocated to fruit under moderateψ_(soil)conditions (-10.1 to-17.0 k Pa) than under otherψ_(soil)values.Our results revealed threeψ_(soil)thresholds,-10.0,-15.0,and-15.0 kPa,suitable for triggering irrigation during stages I,II,and III,respectively.These thresholds can be helpful for controlling excessive tree vigor,maintaining rapid fruit growth and leaf photosynthesis,and promoting the allocation of more photoassimilates to fruit.展开更多
The present study investigated whether an irrigation system could be established to save water and increase grain yield to enhance water productivity by proper water management at the field level in irrigated lowland ...The present study investigated whether an irrigation system could be established to save water and increase grain yield to enhance water productivity by proper water management at the field level in irrigated lowland rice (Oryza sativa L.). Using two field-grown rice cultivars, two irrigation systems; conventional irrigation and water-saving irrigation, were conducted. In the water-saving irrigation system, limiting values of soil water potential related to specific growth stages were proposed as irrigation indices. Compared with conventional irrigation where drainage was in mid-season and flooded at other times, the water-saving irrigation increased grain yield by 7.4% to 11.3%, reduced irrigation water by 24.5% to 29.2%, and increased water productivity (grain yield per cubic meter of irrigation water) by 43.1% to 50.3%. The water-saving irrigation significantly increased harvest index, improved milling and appearance qualities, elevated zeatin-I-zeaUn riboside concentrations in root bleedings and enhanced activities of sucrose synthase, adenosine diphosphate glucose pyrophosphorylase, starch synthase and starch branching enzyme in grains. Our results indicate that water-saving irrigation by controlling limiting values of soil water potential related to specific growth stages can enhance physiological activities of roots and grains, reduce water input, and increase grain yield.展开更多
Water potential (φ w .) and net photosynthetic rate (Pn) of Larix olgensis and Pinns.sylvestris var. mongolica deercased with the deerease of soil water content φw and Pn of L.olgensis changed hardly during the fi...Water potential (φ w .) and net photosynthetic rate (Pn) of Larix olgensis and Pinns.sylvestris var. mongolica deercased with the deerease of soil water content φw and Pn of L.olgensis changed hardly during the first 9 davs after stopping watering, then deereased sharply at the 10th dav Pn of P sylvestris var mongolica deereased slightly during the lirst 8 days, then deereased sharply at the 9th day Their respiration rate, chlorophyll content and their a/b ratio changed hardly. The tollowing 3 conclusions were obtained and discussed exhaustively . (Ⅰ) φ w can be used to direct watering as a sensitive index of judging whether L. olgensis and P.sylvestris var. mongolica lacking water (2 )The deereasc of Pn of L. olgensis and P. sylvestris var. mongolica when drought had nothing to do with chlorophyll. (3) P. sylvestris var. mongolica had morphological drought resistance . while L,olgensis had physiological drought resistance, and their drought resistance was discnssed comparatively first time.展开更多
Soil salt transformation plays an important role in the freeze-thawing process,which is also one of basic problems of cryopedology. The very special law is made up of the two time salt-moisture transfer under freeze-t...Soil salt transformation plays an important role in the freeze-thawing process,which is also one of basic problems of cryopedology. The very special law is made up of the two time salt-moisture transfer under freeze-thawing condition. Based on the latest research at home and abroad,through the investigation of soil moisture-salt change in the freeze-thawing process,the conclusion is made that the soil water potential gradient is the main driving force of soil salt movement and the factors are of quantities. The research shows that,when freezing,temperature drops,salt and moisture move towards frozen layer. All make the salinity content of the frozen layer increase significantly. In the thawing process,salinity and moisture in the soil move up again with evaporation and makes the salt second migration.展开更多
In order to utilize the wasted saline-sodic soils under shallow groundwater condition, a 3-year field study was carried in a field cropped with Lycium barbarum L. and irrigated by drip irrigation with saline groundwat...In order to utilize the wasted saline-sodic soils under shallow groundwater condition, a 3-year field study was carried in a field cropped with Lycium barbarum L. and irrigated by drip irrigation with saline groundwater under the water table depth of 30-40 cm in the northern Yinchuan Plain, China. Effects of cropping duration (one, two, and three years) on soil salinity, soil solution composition, and pH in three adjacent plots were investigated in 2008. Results showed that a high irrigation frequency maintained high soil water potential and subsequently facilitated infiltration and downward movement of water and salt in the crop root zone. Salt accumulated on the edges of the ridges, and soil saturated-paste electrical conductivity (ECe) was higher in the edge. Concentrations of Na^+, Ca^2+, Mg^2+, Cl^-, and SO24^- in the soil increased with the soil depth as did the ECe, while HCO3 and pH had a relative uniform distribution in soil profile. As planting year increased, the ECe and soil salts in the field had a decreasing tendency, while in the root zone they decreased immediately after irrigation and then remained relatively stable in the following growing seasons. HCO3 and pH had little change with the planting year. Results suggested that the application of drip irrigation with saline water could ameliorate saline-sodic soil and provide a relatively feasible soil environment for saline-sodic soils with shallow groundwater.展开更多
A field experiment was conducted for intercropped winter wheat (Triticum aestivum) in 2002/2003 to evaluate the effects of limited supplemental irrigation on photosynthetic characteristics of intercropped winter whe...A field experiment was conducted for intercropped winter wheat (Triticum aestivum) in 2002/2003 to evaluate the effects of limited supplemental irrigation on photosynthetic characteristics of intercropped winter wheat in semiarid environment. The result indicated that significances occurred in grain yield between the intercropped wheat treatments and sole wheat control (CKW), and in yield between the irrigated intercropped wheat plots (WC2W, WC3W, WC5W) and not irrigated (WC1W) except for WC4W plots with nearly the same yield as WC1W. In comparison with CKW, 11.8%, 18.5%, 23.6%, 11.5%, and 30.7% of yield increase in the intercropped wheat plots were obtained in WCIW, WC2W, WC3W, WC4W, and WC5W respectively. Compared to the intercropped wheat plots without irrigation, yields in WC2W, WC3W, and WC5W were improved by 5.9%, 10.5%, and 16.9%, respectively. The dynamics of CGR and NAR in both intercropped (WC1W-WC5W) and solely cropped wheat (CKW) showed a type of "single peak" curves, with both the maximum CGR and NAR occurred during jointing to heading (14/4-6/5) of wheat. In addition, soil water potential (SWP) fluctuated as a function of the precipitation and limited supplemental irrigation.展开更多
The capacity of soil and water conservation measures, defined as the maximum quantity of suitable soil and water conservation measures contained in a region, were determined for the Loess Plateau based on zones suitab...The capacity of soil and water conservation measures, defined as the maximum quantity of suitable soil and water conservation measures contained in a region, were determined for the Loess Plateau based on zones suitable for establishing terraced fields, forestland and grassland with the support of geographic information system(GIS) software. The minimum possible soil erosion modulus and actual soil erosion modulus in 2010 were calculated using the revised universal soil loss equation(RUSLE), and the ratio of the minimum possible soil erosion modulus under the capacity of soil and water conservation measures to the actual soil erosion modulus was defined as the soil erosion control degree. The control potential of soil erosion and water loss in the Loess Plateau was studied using this concept. Results showed that the actual soil erosion modulus was 3355 t·km^(–2)·a^(–1), the minimum possible soil erosion modulus was 1921 t·km^(–2)·a^(–1), and the soil erosion control degree was 0.57(medium level) in the Loess Plateau in 2010. In terms of zoning, the control degree was relatively high in the river valley-plain area, soil-rocky mountainous area, and windy-sandy area, but relatively low in the soil-rocky hilly-forested area, hilly-gully area and plateau-gully area. The rate of erosion areas with a soil erosion modulus of less than 1000 t·km^(–2)·a^(–1) increased from 50.48% to 57.71%, forest and grass coverage rose from 56.74% to 69.15%, rate of terraced fields increased from 4.36% to 19.03%, and per capita grain available rose from 418 kg·a^(–1) to 459 kg·a^(–1) under the capacity of soil and water conservation measures compared with actual conditions. These research results are of some guiding significance for soil and water loss control in the Loess Plateau.展开更多
基金supported by the projects of China Agriculture Research System of MOF and MARA (Grant No.CARS-29-ZP-7)Outstanding Youth Science and Technology Fund of Henan Academy of Agricultural Sciences (Grant No.2022YQ08)。
文摘Water management is an important practice that affects fruit size and quality.Effective implementation of irrigation scheduling requires knowledge of the appropriate indicators and thresholds,which are established manly based on the effects of water deficits on final fruit quality.Few studies have focused on the real-time effects of water status on fruit and shoot growth.To establish soil water potential (ψ_(soil)) thresholds to trigger irrigation of peach at pivotal fruit developmental stages,photogrammetry,^(13)C labelling,and other techniques were used in this study to investigate real-time changes in stem diameter,fruit projected area,net leaf photosynthetic rate (P_(n)),and allocation of photoassimilates to fruit under soil water potential conditions ranging from saturation to stress in 6-year-old Shimizu hakuto’peach.Stem growth,fruit growth,and P_n exhibited gradually decreasing sensitivity to water deficits during fruit developmental stages I,II,and III.Stem diameter growth was significantly inhibited whenψ_(soil)dropped to-8.5,-7.6,and-5.4 k Pa,respectively.Fruit growth rate was low,reaching zero when theψ_(soil)was-9.0 to-23.1,-14.9 to-21.4,and-16.5 to-23.3 k Pa,respectively,and P_ndecreased significantly when theψ_(soil)reached-24.2,-22.7,and-20.4 kPa,respectively.In addition,more photoassimilates were allocated to fruit under moderateψ_(soil)conditions (-10.1 to-17.0 k Pa) than under otherψ_(soil)values.Our results revealed threeψ_(soil)thresholds,-10.0,-15.0,and-15.0 kPa,suitable for triggering irrigation during stages I,II,and III,respectively.These thresholds can be helpful for controlling excessive tree vigor,maintaining rapid fruit growth and leaf photosynthesis,and promoting the allocation of more photoassimilates to fruit.
基金Supported by the National Natural Science Foundation of China(30671225)the State Key Project(2004-BA520A12-5)+1 种基金the Natural Science Foundation of Jiangsu Province(BK2006069)Hong Kong Research Grants Council(Project HKBU 2465/05M).
文摘The present study investigated whether an irrigation system could be established to save water and increase grain yield to enhance water productivity by proper water management at the field level in irrigated lowland rice (Oryza sativa L.). Using two field-grown rice cultivars, two irrigation systems; conventional irrigation and water-saving irrigation, were conducted. In the water-saving irrigation system, limiting values of soil water potential related to specific growth stages were proposed as irrigation indices. Compared with conventional irrigation where drainage was in mid-season and flooded at other times, the water-saving irrigation increased grain yield by 7.4% to 11.3%, reduced irrigation water by 24.5% to 29.2%, and increased water productivity (grain yield per cubic meter of irrigation water) by 43.1% to 50.3%. The water-saving irrigation significantly increased harvest index, improved milling and appearance qualities, elevated zeatin-I-zeaUn riboside concentrations in root bleedings and enhanced activities of sucrose synthase, adenosine diphosphate glucose pyrophosphorylase, starch synthase and starch branching enzyme in grains. Our results indicate that water-saving irrigation by controlling limiting values of soil water potential related to specific growth stages can enhance physiological activities of roots and grains, reduce water input, and increase grain yield.
文摘Water potential (φ w .) and net photosynthetic rate (Pn) of Larix olgensis and Pinns.sylvestris var. mongolica deercased with the deerease of soil water content φw and Pn of L.olgensis changed hardly during the first 9 davs after stopping watering, then deereased sharply at the 10th dav Pn of P sylvestris var mongolica deereased slightly during the lirst 8 days, then deereased sharply at the 9th day Their respiration rate, chlorophyll content and their a/b ratio changed hardly. The tollowing 3 conclusions were obtained and discussed exhaustively . (Ⅰ) φ w can be used to direct watering as a sensitive index of judging whether L. olgensis and P.sylvestris var. mongolica lacking water (2 )The deereasc of Pn of L. olgensis and P. sylvestris var. mongolica when drought had nothing to do with chlorophyll. (3) P. sylvestris var. mongolica had morphological drought resistance . while L,olgensis had physiological drought resistance, and their drought resistance was discnssed comparatively first time.
文摘Soil salt transformation plays an important role in the freeze-thawing process,which is also one of basic problems of cryopedology. The very special law is made up of the two time salt-moisture transfer under freeze-thawing condition. Based on the latest research at home and abroad,through the investigation of soil moisture-salt change in the freeze-thawing process,the conclusion is made that the soil water potential gradient is the main driving force of soil salt movement and the factors are of quantities. The research shows that,when freezing,temperature drops,salt and moisture move towards frozen layer. All make the salinity content of the frozen layer increase significantly. In the thawing process,salinity and moisture in the soil move up again with evaporation and makes the salt second migration.
基金Supported by the Chinese Academy of Sciences Action Plan for the Development of Western China (No. KZCX2-XB2-13)the Chinese Academy of Sciences Knowledge Innovation Program (No. KSCX2-YW-N-003)the 100 Talents Program of Chinese Academy of Sciences
文摘In order to utilize the wasted saline-sodic soils under shallow groundwater condition, a 3-year field study was carried in a field cropped with Lycium barbarum L. and irrigated by drip irrigation with saline groundwater under the water table depth of 30-40 cm in the northern Yinchuan Plain, China. Effects of cropping duration (one, two, and three years) on soil salinity, soil solution composition, and pH in three adjacent plots were investigated in 2008. Results showed that a high irrigation frequency maintained high soil water potential and subsequently facilitated infiltration and downward movement of water and salt in the crop root zone. Salt accumulated on the edges of the ridges, and soil saturated-paste electrical conductivity (ECe) was higher in the edge. Concentrations of Na^+, Ca^2+, Mg^2+, Cl^-, and SO24^- in the soil increased with the soil depth as did the ECe, while HCO3 and pH had a relative uniform distribution in soil profile. As planting year increased, the ECe and soil salts in the field had a decreasing tendency, while in the root zone they decreased immediately after irrigation and then remained relatively stable in the following growing seasons. HCO3 and pH had little change with the planting year. Results suggested that the application of drip irrigation with saline water could ameliorate saline-sodic soil and provide a relatively feasible soil environment for saline-sodic soils with shallow groundwater.
文摘A field experiment was conducted for intercropped winter wheat (Triticum aestivum) in 2002/2003 to evaluate the effects of limited supplemental irrigation on photosynthetic characteristics of intercropped winter wheat in semiarid environment. The result indicated that significances occurred in grain yield between the intercropped wheat treatments and sole wheat control (CKW), and in yield between the irrigated intercropped wheat plots (WC2W, WC3W, WC5W) and not irrigated (WC1W) except for WC4W plots with nearly the same yield as WC1W. In comparison with CKW, 11.8%, 18.5%, 23.6%, 11.5%, and 30.7% of yield increase in the intercropped wheat plots were obtained in WCIW, WC2W, WC3W, WC4W, and WC5W respectively. Compared to the intercropped wheat plots without irrigation, yields in WC2W, WC3W, and WC5W were improved by 5.9%, 10.5%, and 16.9%, respectively. The dynamics of CGR and NAR in both intercropped (WC1W-WC5W) and solely cropped wheat (CKW) showed a type of "single peak" curves, with both the maximum CGR and NAR occurred during jointing to heading (14/4-6/5) of wheat. In addition, soil water potential (SWP) fluctuated as a function of the precipitation and limited supplemental irrigation.
基金National Natural Science Foundation of China,No.41401305,No.41330858The Open Foundation of State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau,No.K318009902-14
文摘The capacity of soil and water conservation measures, defined as the maximum quantity of suitable soil and water conservation measures contained in a region, were determined for the Loess Plateau based on zones suitable for establishing terraced fields, forestland and grassland with the support of geographic information system(GIS) software. The minimum possible soil erosion modulus and actual soil erosion modulus in 2010 were calculated using the revised universal soil loss equation(RUSLE), and the ratio of the minimum possible soil erosion modulus under the capacity of soil and water conservation measures to the actual soil erosion modulus was defined as the soil erosion control degree. The control potential of soil erosion and water loss in the Loess Plateau was studied using this concept. Results showed that the actual soil erosion modulus was 3355 t·km^(–2)·a^(–1), the minimum possible soil erosion modulus was 1921 t·km^(–2)·a^(–1), and the soil erosion control degree was 0.57(medium level) in the Loess Plateau in 2010. In terms of zoning, the control degree was relatively high in the river valley-plain area, soil-rocky mountainous area, and windy-sandy area, but relatively low in the soil-rocky hilly-forested area, hilly-gully area and plateau-gully area. The rate of erosion areas with a soil erosion modulus of less than 1000 t·km^(–2)·a^(–1) increased from 50.48% to 57.71%, forest and grass coverage rose from 56.74% to 69.15%, rate of terraced fields increased from 4.36% to 19.03%, and per capita grain available rose from 418 kg·a^(–1) to 459 kg·a^(–1) under the capacity of soil and water conservation measures compared with actual conditions. These research results are of some guiding significance for soil and water loss control in the Loess Plateau.