期刊文献+
共找到4,578篇文章
< 1 2 229 >
每页显示 20 50 100
Ion acoustic solitary waves in an adiabatic dusty plasma:Roles of superthermal electrons,ion loss and ionization
1
作者 饶强华 陈辉 +1 位作者 刘三秋 陈小昌 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第8期337-342,共6页
We investigate propagation of dust ion acoustic solitary wave(DIASW)in a multicomponent dusty plasma with adiabatic ions,superthermal electrons,and stationary dust.The reductive perturbation method is employed to deri... We investigate propagation of dust ion acoustic solitary wave(DIASW)in a multicomponent dusty plasma with adiabatic ions,superthermal electrons,and stationary dust.The reductive perturbation method is employed to derive the damped Korteweg-de Vries(DKdV)equation which describes DIASW.The result reveals that the adiabaticity of ions significantly modifies the basic features of the DIASW.The ionization effect makes the solitary wave grow,while collisions reduce the growth rate and even lead to the damping.With the increases in ionization cross sectionΔσ/σ_(0),ion-to-electron density ratioδ_(ie)and superthermal electrons parameterκ,the effect of ionization on DIASW enhances. 展开更多
关键词 dust ion acoustic wave solitary wave IONIZATION adiabatic process
下载PDF
Nonlinear interaction of head-on solitary waves in integrable and nonintegrable systems
2
作者 张树甜 刘世鲲 +3 位作者 矫滕菲 孙敏 胡凤兰 黄德财 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第5期480-487,共8页
This study numerically investigates the nonlinear interaction of head-on solitary waves in a granular chain(a nonintegrable system)and compares the simulation results with the theoretical results in fluid(an integrabl... This study numerically investigates the nonlinear interaction of head-on solitary waves in a granular chain(a nonintegrable system)and compares the simulation results with the theoretical results in fluid(an integrable system).Three stages(the pre-in-phase traveling stage,the central-collision stage,and the post-in-phase traveling stage)are identified to describe the nonlinear interaction processes in the granular chain.The nonlinear scattering effect occurs in the central-collision stage,which decreases the amplitude of the incident solitary waves.Compared with the leading-time phase in the incident and separation collision processes,the lagging-time phase in the separation collision process is smaller.This asymmetrical nonlinear collision results in an occurrence of leading phase shifts of time and space in the post-in-phase traveling stage.We next find that the solitary wave amplitude does not influence the immediate space-phase shift in the granular chain.The space-phase shift of the post-in-phase traveling stage is only determined by the measurement position rather than the wave amplitude.The results are reversed in the fluid.An increase in solitary wave amplitude leads to decreased attachment,detachment,and residence times for granular chains and fluid.For the immediate time-phase shift,leading and lagging phenomena appear in the granular chain and the fluid,respectively.These results offer new knowledge for designing mechanical metamaterials and energy-mitigating systems. 展开更多
关键词 integrable system nonintegrable system granular chain solitary wave
下载PDF
Localized wave solutions and interactions of the (2+1)-dimensional Hirota-Satsuma-Ito equation
3
作者 巩乾坤 王惠 王云虎 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第4期409-416,共8页
This paper studies the(2+1)-dimensional Hirota-Satsuma-Ito equation.Based on an associated Hirota bilinear form,lump-type solution,two types of interaction solutions,and breather wave solution of the(2+1)-dimensional ... This paper studies the(2+1)-dimensional Hirota-Satsuma-Ito equation.Based on an associated Hirota bilinear form,lump-type solution,two types of interaction solutions,and breather wave solution of the(2+1)-dimensional Hirota-Satsuma-Ito equation are obtained,which are all related to the seed solution of the equation.It is interesting that the rogue wave is aroused by the interaction between one-lump soliton and a pair of resonance stripe solitons,and the fusion and fission phenomena are also found in the interaction between lump solitons and one-stripe soliton.Furthermore,the breather wave solution is also obtained by reducing the two-soliton solutions.The trajectory and period of the one-order breather wave are analyzed.The corresponding dynamical characteristics are demonstrated by the graphs. 展开更多
关键词 lump solution rogue wave solution breather wave solution (2+1)-dimensional Hirota-Satsuma-Ito equation
下载PDF
Experimental Study on the Variation of Optical Imaging Characteristics with Zenith Angle due to Internal Solitary Waves in Sunglint
4
作者 LIU Tengfei SUN Lina +4 位作者 CHANG Zhe ZHANG Meng LIANG Keda MENG Junmin WANG Jing 《Journal of Ocean University of China》 SCIE CAS CSCD 2024年第4期943-952,共10页
Internal solitary waves(ISWs)change the roughness of the sea surface,thus producing dark and bright bands in optical images.However,reasons for changes in imaging characteristics with the solar zenith angle remain unc... Internal solitary waves(ISWs)change the roughness of the sea surface,thus producing dark and bright bands in optical images.However,reasons for changes in imaging characteristics with the solar zenith angle remain unclear.In this paper,the optical imaging pattern of ISWs in sunglint under different zenith angles of the light source is investigated by collecting optical images of ISWs through physical simulation.The experiment involves setting 10 zenith angles of the light source,which are divided into area a the optical images of ISWs in the three areas show dark-bright mode,single bright band,and bright-dark mode,which are consistent with those observed by optical remote sensing.In addition,this study analyzed the percentage of the dark and bright areas of the bands and the change in the relative gray difference and found changes in both areas under different zenith angles of the light source.The MODIS and ASAR images display a similar brightness-darkness distance of the same ISWs.Therefore,the relationship between the brightness-darkness distance and the characteristic half-width of ISWs is determined in accordance with the eKdV theory and the imaging mechanism of ISWs of the SAR image.Overall,the relationship between them in the experiment is almost consistent with the theoretical result. 展开更多
关键词 internal solitary waves optical imaging characteristic laboratory simulation zenith angle sunglint
下载PDF
Loads and Dynamic Response Characteristic on FPSO Under Internal Solitary Waves
5
作者 ZHANG Rui-rui LI Cui +2 位作者 PU Chun-rong LIU Qian YOU Yun-xiang 《China Ocean Engineering》 SCIE EI CSCD 2024年第5期785-796,共12页
According to the established prediction model of internal solitary wave loads on FPSO in the previous work,the lumped mass model and the movement equations of finite displacement in time domain,the dynamic response mo... According to the established prediction model of internal solitary wave loads on FPSO in the previous work,the lumped mass model and the movement equations of finite displacement in time domain,the dynamic response model of interaction between internal solitary waves and FPSO with mooring lines were established.Through calculations and analysis,time histories of dynamic loads of FPSO exerted by internal solitary waves,FPSO’s motion and dynamic tension of mooring line were obtained.The effects of the horizontal pretension of mooring line,the amplitude of internal solitary wave and layer fluid depth on dynamic response behavior of FPSO were mastered.It was shown that the internal solitary waves had significant influence on FPSO,such as the large magnitude horizontal drift and a sudden tension increment.With internal solitary wave of −170 m amplitude in the ocean with upper and lower layer fluid depth ratio being 60:550,the dynamic loads reached 991.132 kN(horizontal force),18067.3 kN(vertical force)and−5042.92 kN·m(pitching moment).Maximum of FPSO’s horizontal drift was 117.56 m.Tension increment of upstream mooring line approached 401.48 kN and that of backflow mooring line was−140 kN.Moreover,the loads remained nearly constant with different pretension but increased obviously with the changing amplitude and layer fluid depth ratio.Tension increments of mooring lines also changed little with the pretension but increased rapidly when amplitude and layer fluid depth ratio increased.However,FPSO’s motion increased quickly with not only the horizontal pretension but also the amplitude of internal solitary wave and layer fluid depth ratio. 展开更多
关键词 internal solitary wave(ISW) dynamic response FPSO dynamic loads tension increment
下载PDF
Study on the Load Characteristics of Submerged Body Under Internal Solitary Waves on the Continental Shelf and Slope
6
作者 LIU Qian CUI Jian +5 位作者 MEI Huan GAO Jun-liang WU Xiang-bai ZHANG Dai-yu ZHANG Rui-rui SHANG Xiao-dong 《China Ocean Engineering》 SCIE EI CSCD 2024年第5期809-820,共12页
Based on the high-quality observation data and the numerical simulation,the evolution characteristics of internal solitary waves(ISWs)and the load on the suspend submerged body are studied on the continental shelf and... Based on the high-quality observation data and the numerical simulation,the evolution characteristics of internal solitary waves(ISWs)and the load on the suspend submerged body are studied on the continental shelf and slope separately.The observed ISWs exhibit the first mode depression ISWs.The amplitudes of ISWs on the shelf and slope areas reach 50 m and 80 m,respectively.The upper layer velocity in the westward direction is about 0.8 m/s on the continental shelf and 0.9 m/s on the continental slope during the passing through of ISWs.The lower layer is dominated by the eastward compensating flow.In the vertical direction,the water in front of the wave flows downward,while the water behind the wave flows upward,and the maximum vertical velocity exceeds 0.2 m/s.Numerical simulation results show that the larger the amplitude of ISWs,the larger the load on the submerged body.The force on the submerged body by ISWs is dominated by the vertical force,and the corresponding maximum vertical forces on the continental shelf and slope are−25 kN and −27 kN.The submerged body is subjected to a large counterclockwise moment and the sudden change of the moment will also cause the submerged body to capsize.This paper not only gives a deeper understanding of the characteristics of ISWs from the deep continental slope to the shallow continental shelf,but also has a certain guiding value for the prediction of ISWs and for marine military activities. 展开更多
关键词 internal solitary waves submerged body CFD horizontal force vertical force MOMENT South China Sea
下载PDF
Interaction between internal solitary waves and the seafloor in the deep sea
7
作者 Zhuangcai Tian Jinjian Huang +5 位作者 Jiaming Xiang Shaotong Zhang Jinran Wu Xiaolei Liu Tingting Luo Jianhua Yue 《Deep Underground Science and Engineering》 2024年第2期149-162,共14页
Internal solitary wave(ISW),as a typical marine dynamic process in the deep sea,widely exists in oceans and marginal seas worldwide.The interaction between ISW and the seafloor mainly occurs in the bottom boundary lay... Internal solitary wave(ISW),as a typical marine dynamic process in the deep sea,widely exists in oceans and marginal seas worldwide.The interaction between ISW and the seafloor mainly occurs in the bottom boundary layer.For the seabed boundary layer of the deep sea,ISW is the most important dynamic process.This study analyzed the current status,hotspots,and frontiers of research on the interaction between ISW and the seafloor by CiteSpace.Focusing on the action of ISW on the seabed,such as transformation and reaction,a large amount of research work and results were systematically analyzed and summarized.On this basis,this study analyzed the wave–wave interaction and interaction between ISW and the bedform or slope of the seabed,which provided a new perspective for an in‐depth understanding of the interaction between ISW and the seafloor.Finally,the latest research results of the bottom boundary layer and marine engineering stability by ISW were introduced,and the unresolved problems in the current research work were summarized.This study provides a valuable reference for further research on the hazards of ISW to marine engineering geology. 展开更多
关键词 bottom boundary layer INTERACTION internal solitary wave SEAFLOOR SEDIMENT
下载PDF
Bifurcations, Analytical and Non-Analytical Traveling Wave Solutions of (2 + 1)-Dimensional Nonlinear Dispersive Boussinesq Equation
8
作者 Dahe Feng Jibin Li Airen Zhou 《Applied Mathematics》 2024年第8期543-567,共25页
For the (2 + 1)-dimensional nonlinear dispersive Boussinesq equation, by using the bifurcation theory of planar dynamical systems to study its corresponding traveling wave system, the bifurcations and phase portraits ... For the (2 + 1)-dimensional nonlinear dispersive Boussinesq equation, by using the bifurcation theory of planar dynamical systems to study its corresponding traveling wave system, the bifurcations and phase portraits of the regular system are obtained. Under different parametric conditions, various sufficient conditions to guarantee the existence of analytical and non-analytical solutions of the singular system are given by using singular traveling wave theory. For certain special cases, some explicit and exact parametric representations of traveling wave solutions are derived such as analytical periodic waves and non-analytical periodic cusp waves. Further, two-dimensional wave plots of analytical periodic solutions and non-analytical periodic cusp wave solutions are drawn to visualize the dynamics of the equation. 展开更多
关键词 (2 + 1)-Dimensional Nonlinear Dispersive Boussinesq Equation BIFURCATIONS Phase Portrait Analytical Periodic wave solution Periodic Cusp wave solution
下载PDF
GLOBAL CLASSICAL SOLUTIONS OF SEMILINEAR WAVE EQUATIONS ON R^(3)×T WITH CUBIC NONLINEARITIES
9
作者 陶飞 《Acta Mathematica Scientia》 SCIE CSCD 2024年第1期115-128,共14页
In this paper,we establish global classical solutions of semilinear wave equations with small compact supported initial data posed on the product space R^(3)×T.The semilinear nonlinearity is assumed to be of the ... In this paper,we establish global classical solutions of semilinear wave equations with small compact supported initial data posed on the product space R^(3)×T.The semilinear nonlinearity is assumed to be of the cubic form.The main ingredient here is the establishment of the L^(2)-L^(∞)decay estimates and the energy estimates for the linear problem,which are adapted to the wave equation on the product space.The proof is based on the Fourier mode decomposition of the solution with respect to the periodic direction,the scaling technique,and the combination of the decay estimates and the energy estimates. 展开更多
关键词 semilinear wave equation product space decay estimate energy estimate global solution
下载PDF
Experimental study on the variation of optical remote sensing imaging characteristics of internal solitary waves with wind speed
10
作者 Zhe CHANG Lina SUN +4 位作者 Tengfei LIU Meng ZHANG Keda LIANG Junmin MENG Jing WANG 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2024年第2期408-420,共13页
Optical remote sensing has been widely used to study internal solitary waves(ISWs).Wind speed has an important effect on ISW imaging of optical remote sensing.The light and dark bands of ISWs cannot be observed by opt... Optical remote sensing has been widely used to study internal solitary waves(ISWs).Wind speed has an important effect on ISW imaging of optical remote sensing.The light and dark bands of ISWs cannot be observed by optical remote sensing when the wind is too strong.The relationship between the characteristics of ISWs bands in optical remote sensing images and the wind speed is still unclear.The influence of wind speeds on the characteristics of the ISWs bands is investigated based on the physical simulation experiments with the wind speeds of 1.6,3.1,3.5,3.8,and 3.9 m/s.The experimental results show that when the wind speed is 3.9 m/s,the ISWs bands cannot be observed in optical remote sensing images with the stratification of h_(1)∶h_(2)=7∶58,ρ_(1)∶ρ_(2)=1∶1.04.When the wind speeds are 3.1,3.5,and 3.8 m/s,which is lower than 3.9 m/s,the ISWs bands can be obtained in the simulated optical remote sensing image.The location of the band’s dark and light extremum and the band’s peak-to-peak spacing are almost not affected by wind speed.More-significant wind speeds can cause a greater gray difference of the light-dark bands.This provided a scientific basis for further understanding of ISW optical remote sensing imaging. 展开更多
关键词 internal solitary wave(ISW) optical remote sensing wind speed characteristics of ISWs bands
下载PDF
Unveiling three-dimensional sea surface signatures caused by internal solitary waves:insights from the surface water ocean topography mission
11
作者 Xudong ZHANG Xiaofeng LI 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2024年第3期709-714,共6页
Internal solitary waves(ISW),characterized by large amplitude and long propagation distance,are widespread in global oceans.While remote sensing images have played an essential role in studying ISWs,they mainly exploi... Internal solitary waves(ISW),characterized by large amplitude and long propagation distance,are widespread in global oceans.While remote sensing images have played an essential role in studying ISWs,they mainly exploit two-dimensional image information.However,with the launch of the surface water ocean topography(SWOT)satellite on December 16,2022,a unique opportunity has emerged to capture wide-swath three-dimensional ISW-induced sea surface information.In this study,we examine ISWs in the Andaman Sea using data from the Ka-band Radar Interferometer(KaRIN),a crucial sensor onboard SWOT.KaRIN not only provides backscattering satellite images but also employs synthetic aperture interferometry techniques to retrieve wide-swath two-dimensional sea surface height measurements.Our observations in the Andaman Sea revealed the presence of ISWs characterized by dark-bright strips and surface elevation solitons.The surface soliton has an amplitude of 0.32 m,resulting in an estimation of ISW amplitude of approximately 60 m.In contrast to traditional two-dimensional satellite images or nadir-looking altimetry data,the SWOT mission’s capability to capture threedimensional sea surface information represents a significant advancement.This breakthrough holds substantial promise for ISW studies,particularly in the context of ISW amplitude inversion. 展开更多
关键词 internal solitary wave(ISW) surface water ocean topography(SWOT) ALTIMETER
下载PDF
Spatiotemporal variations of parameters of internal solitary waves in the northern South China Sea
12
作者 Yu’ang LIU Yifei JIANG +3 位作者 Xiaojiang ZHANG Zhiyuan WANG Yu CAO Huizan WANG 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2024年第2期421-438,共18页
The dynamic parameters for internal solitary waves(ISWs)derived from the extended Korteweg-de Vries(eKdV)equation play an important role in the understanding and prediction of ISWs.The spatiotemporal variations of the... The dynamic parameters for internal solitary waves(ISWs)derived from the extended Korteweg-de Vries(eKdV)equation play an important role in the understanding and prediction of ISWs.The spatiotemporal variations of the dynamic parameters of the ISWs in the northern South China Sea(SCS)were studied based on the reanalysis of long-term temperature and salinity datasets.The results for spectrum analysis show that there are definite geographical differences for the periodic variation of the parameters:in shallow water,all parameters vary with a wave period of one year,while in deep water wave components of the parameters at other frequencies exist.Using wavelet analysis,the wavelet power spectral densities in deep water exhibited an inter-annual variation pattern.For example,the wave component of the dispersion coefficient with a wave period of about half a year reached its power peak once every two years.Based on previous work,this inter-annual variation pattern was deduced to be caused by dynamic processes.In further work on the regulatory mechanisms,empirical orthogonal function(EOF)decomposition was performed.It was found that the modes of the dispersion coefficient have different geographical distributions,explaining the reason why the wave components in different frequencies appeared in different locations.The numerical simulation results confirm that the variations in the parameters of the ISWs derived from the eKdV equation could affect the waveforms significantly because of changes in the polarity of the ISWs.Therefore,the periodic variations of the dynamic parameters are related to the geographical location because of dynamic processes operating. 展开更多
关键词 internal solitary waves(ISWs) dynamic parameters eKdV equation spatiotemporal variation polarity empirical orthogonal function(EOF)decomposition
下载PDF
Study of the ability of SWOT to detect sea surface height changes caused by internal solitary waves
13
作者 Hao Zhang Chenqing Fan +1 位作者 Lina Sun Junmin Meng 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2024年第5期54-64,共11页
Surface Water and Ocean Topography(SWOT)is a next-generation radar altimeter that offers high resolution,wide swath,imaging capabilities.It has provided free public data worldwide since December 2023.This paper aims t... Surface Water and Ocean Topography(SWOT)is a next-generation radar altimeter that offers high resolution,wide swath,imaging capabilities.It has provided free public data worldwide since December 2023.This paper aims to preliminarily analyze the detection capabilities of the Ka-band radar interferometer(KaRIn)and Nadir altimeter(NALT),which are carried out by SWOT for internal solitary waves(ISWs),and to gather other remote sensing images to validate SWOT observations.KaRIn effectively detects ISW surface features and generates surface height variation maps reflecting the modulations induced by ISWs.However,its swath width does not completely cover the entire wave packet,and the resolution of L2/L3 level products(about 2 km)cannot be used to identify ISWs with smaller wavelengths.Additionally,significant wave height(SWH)images exhibit blocky structures that are not suitable for ISW studies;sea surface height anomaly(SSHA)images display systematic leftright banding.We optimize this imbalance using detrending methods;however,more precise treatment should commence with L1-level data.Quantitative analysis based on L3-level SSHA data indicates that the average SSHA variation induced by ISWs ranges from 10 cm to 20 cm.NALTs disturbed by ISWs record unusually elevated SWH and SSHA values,rendering the data unsuitable for analysis and necessitating targeted corrections in future retracking algorithms.For the normalized radar cross section,Ku-band and four-parameter maximum likelihood estimation retracking demonstrated greater sensitivity to minor changes in the sea surface,making them more suitable for ISW detection.In conclusion,SWOT demonstrates outstanding capabilities in ISW detection,significantly advancing research on the modulation of the sea surface by ISWs and remote sensing imaging mechanisms. 展开更多
关键词 internal solitary waves Surface Water and Ocean Topography(SWOT) Ka-band radar interferometer(KaRIn) Nadir altimeter(NALT) sea surface height anomaly(SSHA) normalized radar cross section(NRCS)
下载PDF
Selective Impact of Dispersion and Nonlinearity on Waves and Solitary Wave in a Strongly Nonlinear and Flattened Waveguide
14
作者 Christian Regis Ngouo Tchinda Marcelle Nina Zambo Abou’ou Jean Roger Bogning 《Open Journal of Applied Sciences》 2024年第7期1730-1753,共24页
The waveguide which is at the center of our concerns in this work is a strongly flattened waveguide, that is to say characterized by a strong dispersion and in addition is strongly nonlinear. As this type of waveguide... The waveguide which is at the center of our concerns in this work is a strongly flattened waveguide, that is to say characterized by a strong dispersion and in addition is strongly nonlinear. As this type of waveguide contains multiple dispersion coefficients according to the degrees of spatial variation within it, our work in this article is to see how these dispersions and nonlinearities each influence the wave or the signal that can propagate in the waveguide. Since the partial differential equation which governs the dynamics of propagation in such transmission medium presents several dispersion and nonlinear coefficients, we check how they contribute to the choices of the solutions that we want them to verify this nonlinear partial differential equation. This effectively requires an adequate choice of the form of solution to be constructed. Thus, this article is based on three main pillars, namely: first of all, making a good choice of the solution function to be constructed, secondly, determining the exact solutions and, if necessary, remodeling the main equation such that it is possible;then check the impact of the dispersion and nonlinear coefficients on the solutions. Finally, the reliability of the solutions obtained is tested by a study of the propagation. Another very important aspect is the use of notions of probability to select the predominant solutions. 展开更多
关键词 Flattened waveguide solitary wave Characteristic Coefficient Probabilities Propagation Nonlinear DISPERSIVE Partial Differential Equation
下载PDF
Shoaling Internal Solitary Waves and the Formation of Boluses
15
作者 Hooman Enayati Brian T. Helenbrook 《Open Journal of Fluid Dynamics》 2024年第2期65-82,共18页
An internal solitary wave of elevation in a two-layer density stratified system of an incompressible, viscous and homogeneous fluid was studied. The run-up of a wave of elevation encountering different slopes was inve... An internal solitary wave of elevation in a two-layer density stratified system of an incompressible, viscous and homogeneous fluid was studied. The run-up of a wave of elevation encountering different slopes was investigated numerically based on solving the continuity, Navier-Stokes and convective-diffusion equations within the Boussinesq approximation. The commercial software COMSOL Multiphysics was used to conduct the numerical simulations. For gradual shoals, a bolus formed that transported dense fluid up the shoal. The bolus disappeared when it reached its maximum height on the slope due to the draining of the dense fluid. Various shoal angles were simulated to detect the critical angle above which a bolus does not form. An angle of 30 or less resulted in the formation of a bolus. In addition, the simulations demonstrated that the size of the bolus induced by shallower slopes was larger and that the vertical height traveled by the bolus was insensitive to the slope of the shoal. 展开更多
关键词 Internal solitary waves COMSOL Multiphysics wave Breaking
下载PDF
Influence of dissipation on solitary wave solution to generalized Boussinesq equation
16
作者 Weiguo ZHANG Siyu HONG +1 位作者 Xingqian LING Wenxia LI 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2023年第3期477-498,共22页
This paper uses the theory of planar dynamic systems and the knowledge of reaction-diffusion equations,and then studies the bounded traveling wave solution of the generalized Boussinesq equation affected by dissipatio... This paper uses the theory of planar dynamic systems and the knowledge of reaction-diffusion equations,and then studies the bounded traveling wave solution of the generalized Boussinesq equation affected by dissipation and the influence of dissipation on solitary waves.The dynamic system corresponding to the traveling wave solution of the equation is qualitatively analyzed in detail.The influence of the dissipation coefficient on the solution behavior of the bounded traveling wave is studied,and the critical values that can describe the magnitude of the dissipation effect are,respectively,found for the two cases of b_3<0 and b_3>0 in the equation.The results show that,when the dissipation effect is significant(i.e.,r is greater than the critical value in a certain situation),the traveling wave solution to the generalized Boussinesq equation appears as a kink-shaped solitary wave solution;when the dissipation effect is small(i.e.,r is smaller than the critical value in a certain situation),the traveling wave solution to the equation appears as the oscillation attenuation solution.By using the hypothesis undetermined method,all possible solitary wave solutions to the equation when there is no dissipation effect(i.e.,r=0)and the partial kink-shaped solitary wave solution when the dissipation effect is significant are obtained;in particular,when the dissipation effect is small,an approximate solution of the oscillation attenuation solution can be achieved.This paper is further based on the idea of the homogenization principles.By establishing an integral equation reflecting the relationship between the approximate solution of the oscillation attenuation solution and the exact solution obtained in the paper,and by investigating the asymptotic behavior of the solution at infinity,the error estimate between the approximate solution of the oscillation attenuation solution and the exact solution is obtained,which is an infinitesimal amount that decays exponentially.The influence of the dissipation coefficient on the amplitude,frequency,period,and energy of the bounded traveling wave solution of the equation is also discussed. 展开更多
关键词 generalized Boussinesq equation influence of dissipation qualitative analysis solitary wave solution oscillation attenuation solution error estimation
下载PDF
Adequate Closed Form Wave Solutions to the Generalized KdV Equation in Mathematical Physics
17
作者 Md. Munnu Miah Md. Al Amin Meia +1 位作者 Md. Matiur Rahman Sarker Ahammodullah Hasan 《Journal of Applied Mathematics and Physics》 2024年第6期2069-2082,共14页
In this paper, we consider the generalized Korteweg-de-Vries (KdV) equations which are remarkable models of the water waves mechanics, the shallow water waves, the quantum mechanics, the ion acoustic waves in plasma, ... In this paper, we consider the generalized Korteweg-de-Vries (KdV) equations which are remarkable models of the water waves mechanics, the shallow water waves, the quantum mechanics, the ion acoustic waves in plasma, the electro-hydro-dynamical model for local electric field, signal processing waves through optical fibers, etc. We determine the useful and further general exact traveling wave solutions of the above mentioned NLDEs by applying the exp(−τ(ξ))-expansion method by aid of traveling wave transformations. Furthermore, we explain the physical significance of the obtained solutions of its definite values of the involved parameters with graphic representations in order to know the physical phenomena. Finally, we show that the exp(−τ(ξ))-expansion method is convenient, powerful, straightforward and provide more general solutions and can be helping to examine vast amount of travelling wave solutions to the other different kinds of NLDEs. 展开更多
关键词 The Generalized KdV Equation The exp(-τ(ξ)) -Expansion Method Travelling wave solitary wave
下载PDF
Diversity of Rogue Wave Solutions to the (1+1)-Dimensional Boussinesq Equation
18
作者 Xiaoming Wang Jingjie Huang 《Journal of Applied Mathematics and Physics》 2024年第2期458-467,共10页
A periodically homoclinic solution and some rogue wave solutions of (1+1)-dimensional Boussinesq equation are obtained via the limit behavior of parameters and different polynomial functions. Besides, the mathematics ... A periodically homoclinic solution and some rogue wave solutions of (1+1)-dimensional Boussinesq equation are obtained via the limit behavior of parameters and different polynomial functions. Besides, the mathematics reasons for different spatiotemporal structures of rogue waves are analyzed using the extreme value theory of the two-variables function. The diversity of spatiotemporal structures not only depends on the disturbance parameter u0 </sub>but also has a relationship with the other parameters c<sub>0</sub>, α, β. 展开更多
关键词 Boussinesq Equation Rogue wave Periodically Homoclinic solution Spatiotemporal Structure
下载PDF
Dispersive propagation of optical solitions and solitary wave solutions of Kundu-Eckhaus dynamical equation via modified mathematical method
19
作者 Aly R.Seadawy Mujahid Iqbal 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2023年第1期16-26,共11页
In this research work,we constructed the optical soliton solutions of nonlinear complex Kundu-Eckhaus(KE)equation with the help of modified mathematical method.We obtained the solutions in the form of dark solitons,br... In this research work,we constructed the optical soliton solutions of nonlinear complex Kundu-Eckhaus(KE)equation with the help of modified mathematical method.We obtained the solutions in the form of dark solitons,bright solitons and combined dark-bright solitons,travelling wave and periodic wave solutions with general coefficients.In our knowledge earlier reported results of the KE equation with specific coefficients.These obtained solutions are more useful in the development of optical fibers,dynamics of solitons,dynamics of adiabatic parameters,dynamics of fluid,problems of biomedical,industrial phenomena and many other branches.All calculations show that this technique is more powerful,effective,straightforward,and fruitfulness to study analytically other higher-order nonlinear complex PDEs involves in mathematical physics,quantum physics,Geo physics,fluid mechanics,hydrodynamics,mathematical biology,field of engineering and many other physical sciences. 展开更多
关键词 Kundu-Eckhaus equation modified mathematical method solitons and solitary wave solutions
下载PDF
Traveling Wave Solutions of a SIR Epidemic Model with Spatio-Temporal Delay
20
作者 Zhihe Hou 《Journal of Applied Mathematics and Physics》 2024年第10期3422-3438,共17页
In this paper, we studied the traveling wave solutions of a SIR epidemic model with spatial-temporal delay. We proved that this result is determined by the basic reproduction number R0and the minimum wave speed c*of t... In this paper, we studied the traveling wave solutions of a SIR epidemic model with spatial-temporal delay. We proved that this result is determined by the basic reproduction number R0and the minimum wave speed c*of the corresponding ordinary differential equations. The methods used in this paper are primarily the Schauder fixed point theorem and comparison principle. We have proved that when R0>1and c>c*, the model has a non-negative and non-trivial traveling wave solution. However, for R01and c≥0or R0>1and 0cc*, the model does not have a traveling wave solution. 展开更多
关键词 Susceptible-Infected-Recovered Epidemic Model Traveling wave solutions Spatio-Temporal Delay Schauder Fixed Point Theorem
下载PDF
上一页 1 2 229 下一页 到第
使用帮助 返回顶部