We used GIS and maximum entropy to predict the potential distribution of six snake species belong to three families in Kroumiria(Northwestern Tunisia): Natricidae(Natrix maura and Natrix astreptophora), Colubrida...We used GIS and maximum entropy to predict the potential distribution of six snake species belong to three families in Kroumiria(Northwestern Tunisia): Natricidae(Natrix maura and Natrix astreptophora), Colubridae(Hemorrhois hippocrepis, Coronella girondica and Macroprotodon mauritanicus), and Lamprophiidae(Malpolon insignitus). The suitable habitat for each species was modelled using the maximum entropy algorithm, combining presence field data(collected during 16 years:2000–2015) with a set of seven environmental variables(mean annual precipitation, elevation, slope gradient,aspect, distance to watercourses, land surface temperature and normalized Differential Vegetation Index. The relative importance of these environmental variables was evaluated by jackknife tests and the predictive power of our models was assessed using the area under the receiver operating characteristic. The main explicative variables of the species distribution were distance from streams and elevation, with contributions ranging from 60 to 77 and from 10 to 25%,respectively. Our study provided the first habitat suitability models for snakes in Kroumiria and this information can be used by conservation biologists and land managers concerned with preserving snakes in Kroumiria.展开更多
The effects of the calorimetric buffer solutions were investigated while the two colorimetric reactions of AI-ferron complex and Fe-ferron complex occurred individually, and the effects of the testing wavelength and t...The effects of the calorimetric buffer solutions were investigated while the two colorimetric reactions of AI-ferron complex and Fe-ferron complex occurred individually, and the effects of the testing wavelength and the pH of the solutions were also investigated. A timed complexatian colorimetric analysis method of Al-Fe-ferron in view of the total concentration of {AI + Fe} was then established to determine the species distribution of polymeric Al-Fe. The testing wavelength was recommended at 362 net and the testing pH value was 5. With a comparison of the ratios of n(Al)/n(Fe), the standard adsorption curves of the polymeric Al-Fe solutions were derived from the experimental results. Furthermore, the solutions' composition were carious in both the molar n(Al)/n(Fe) ratios, i.e. 0/0, 5/5, 9/1 and 0/10, and the concentrations associated with the total ( Al + Fe which ranged from 10(-5) to 10(-4) mol/L..展开更多
Predictive studies play a crucial role in the study of biological invasions of terrestrial plants under possible climate change scenarios.Invasive species are recognized for their ability to modify soil microbial comm...Predictive studies play a crucial role in the study of biological invasions of terrestrial plants under possible climate change scenarios.Invasive species are recognized for their ability to modify soil microbial communities and influence ecosystem dynamics.Here,we focused on six species of allelopathic flowering plants-Ailanthus altissima,Casuarina equisetifolia,Centaurea stoebe ssp.micranthos,Dioscorea bulbifera,Lantana camara,and Schinus terebinthifolia-Xhat are invasive in North America and examined their potential to spread further during projected climate change.We used Species Distribution Models(SDMs)to predict future suitable areas for these species in North America under several proposed future climate models.ENMEval and Maxent were used to develop SDMs,estimate current distributions,and predict future areas of suitable climate for each species.Areas with the greatest predicted suitable climate in the future include the northeastern and the coastal northwestern regions of North America.Range size estimations demonstrate the possibility of extreme range loss for these invasives in the southeastern United States,while new areas may become suitable in the northeastern United States and southeastern Canada.These findings show an overall northward shift of suitable climate during the next few decades,given projected changes in temperature and precipitation.Our results can be utilized to analyze potential shifts in the distribution of these invasive species and may aid in the development of conservation and management plans to target and control dissemination in areas at higher risk for potential future invasion by these allelopathic species.展开更多
Knowledge on the potential suitability of tree species to the site is very important for forest management planning.Natural forest distribution provides a good reference for afforestation and forest restoration.In thi...Knowledge on the potential suitability of tree species to the site is very important for forest management planning.Natural forest distribution provides a good reference for afforestation and forest restoration.In this study,we developed species distribution model(SDM)for 16 major tree species with 2,825 permanent sample plots with natural origin from Chinese National Forest Inventory data collected in Jilin Province using the Maxent model.Three types of environmental factors including bioclimate,soil and topography with a total of 33 variables were tested as the input.The values of area under the curve(AUC,one of the receiver operating characteristics of the Maxent model)in the training and test datasets were between 0.784 and 0.968,indicating that the prediction results were quite reliable.The environmental factors affecting the distribution of species were ranked in terms of their importance to the species distribution.Generally,the climatic factors had the greatest contribution,which included mean diurnal range,annual mean temperature,temperature annual range,and iosthermality.But the main environmental factors varied with tree species.Distribution suitability maps under current(1950-2000)and future climate scenarios(CCSM4-RCP 2.6 and RCP 6.0 during 2050)were produced for 16 major tree species in Jilin Province using the model developed.The predicted current and future ranges of habitat suitability of the 16 tree species are likely to be positively and negatively affected by future climate.Seven tree species were found to benefit from future climate including B etula costata,Fraxinus mandshurica,Juglans mandshurica,Phellodendron amurense,Populus ussuriensis,Quercus mongolica and Ulmus pumila;five tree species will experience decline in their suitable habitat including B.platyphylla,Tilia mongolica,Picea asperata,Pinus sylvestris,Pinus koraiensis;and four(Salix koreensis,Abies fabri,Pinus densiflora and Larix olgensis)showed the inconsistency under RCP 2.6 and RCP 6.0 scenarios.The maps of the habitat suitability can be used as a basis for afforestation and forest restoration in northeastern China.The SDMs could be a potential tool for forest management planning.展开更多
The study of plant species abundance distribution(SAD)in natural communities is of considerable importance to understand the processes and ecological rules of community assembly.With the distribution of tree,shrub and...The study of plant species abundance distribution(SAD)in natural communities is of considerable importance to understand the processes and ecological rules of community assembly.With the distribution of tree,shrub and herb layers of eight natural communities of Toona ciliata as research targets,three diff erent ecological niche models were used:broken stick model,overlapping niche model and niche preemption model,as well as three statistical models:log-series distribution model,log-normal distribution model and Weibull distribution model,to fi t SAD of the diff erent vegetation layers based on data collected.Goodness-of-fi t was compared with Chi square test,Kolmogorov–Smirnov(K–S)test and Akaike Information Criterion(AIC).The results show:(1)based on the criteria of the lowest AIC value,Chi square value and K–S value with no signifi cant diff erence(p>0.05)between theoretic and observed SADs.The suitability and goodness-of-fi t of the broken stick model was the best of three ecological niche models.The log-series distribution model did not accept the fi tted results of most vegetation layers and had the lowest goodness-of-fi t.The Weibull distribution model had the best goodness-of-fi t for SADs.Overall,the statistical SADs performed better than the ecological ones.(2)T.ciliata was the dominant species in all the communities;species richness and diversity of herbs were the highest of the vegetation layers,while the diversities of the tree layers were slightly higher than the shrub layers;there were fewer common species and more rare species in the eight communities.The herb layers had the highest community evenness,followed by the shrub and the tree layers.Due to the complexity and habitat diversity of the diff erent T.ciliata communities,comprehensive analyses of a variety of SADs and tests for optimal models together with management,are practical steps to enhance understanding of ecological processes and mechanisms of T.ciliata communities,to detect disturbances,and to facilitate biodiversity and species conservation.展开更多
In recent years,herbicide sulfometuron-methyl(SM)has been used to kill the invasive plant Spartina alterniflora in some coastal areas of China,which may lead to the toxic effects on non-target marine organisms.The 96-...In recent years,herbicide sulfometuron-methyl(SM)has been used to kill the invasive plant Spartina alterniflora in some coastal areas of China,which may lead to the toxic effects on non-target marine organisms.The 96-h median effective concentrations(96-h EC50)of SM on six species of marine microalgae were measured in growth inhibition tests,and were then compared with other published toxicity data,based on which a method of species sensitivity distribution(SSD)was built to estimate the hazardous concentration of SM for 5%of species(HC5)and potentially affected fraction(PAF)for a certain concentration.Results indicate that SM exhibited a high toxicity to two species of green algae(Chlorella pacifica and Dunaliella salina)with a 96-h EC50 of 0.11 and 0.13 mg/L respectively,had a medium toxicity to two species of golden algae(Diacronema viridis and Isochrysis galbana)with a 96-h EC50 of 14.24 and 21.48 mg/L respectively,and showed a low toxicity to two species of diatoms(Skeletonema costatum and Phaeodactylum tricornutum)with a 96-h EC50 of 148.99 and>100 mg/L,respectively.The estimated values of HC5 and the predicted no-effect concentrations(PNEC)for SM were 0.077 and 0.015 mg/L,respectively.According to the current dosage for killing S.alterniflora in tidal flats in Fujian Province,China,SM entering the sea by spraying might cause the acute injury or death of 14%of marine species.This hazard could last for about a month for those sensitive species.Therefore,on the premise of inhibiting the growth of this invasive plant,the dosage of SM should be reduced as much as possible to avoid severe damage to the marine ecosystem.The results provide a valuable information for marine ecological risk assessment on SM and for marine environmental management.展开更多
We proposed a theoretical spatio-temporal imaging method,which was based on the thermal model of laser ablation and the two-dimensional axisymmetric multi-species hydrodynamics model.By using the intensity formula,the...We proposed a theoretical spatio-temporal imaging method,which was based on the thermal model of laser ablation and the two-dimensional axisymmetric multi-species hydrodynamics model.By using the intensity formula,the integral intensity of spectral lines could be calculated and the corresponding images of intensity distribution could be drawn.Through further image processing such as normalization,determination of minimum intensity,combination and color filtering,a relatively clear species distribution image in the plasma could be obtained.Using the above method,we simulated the plasma ablated from Al-Mg alloy by different laser energies under 1 atm argon,and obtained the theoretical spatio-temporal distributions of Mg I,Mg II,Al I,Al II and Ar I species,which are almost consistent with the experimental results by differential imaging.Compared with the experimental decay time constants,the consistency is higher at low laser energy,indicating that our theoretical model is more suitable for the plasma dominated by laser-supported combustion wave.展开更多
Climate change may cause shifts in the natural range of species especially for those that are geographically restricted and/or endemic species.In this study,the spatial distribution of five endemic and threatened spec...Climate change may cause shifts in the natural range of species especially for those that are geographically restricted and/or endemic species.In this study,the spatial distribution of five endemic and threatened species belonging to the genus Onosma(including O.asperrima,O.bisotunensis,O.kotschyi,O.platyphylla,and O.straussii)was investigated under present and future climate change scenarios:RCP2.6(RCP,representative concentration pathway;optimistic scenario)and RCP8.5(pessimistic scenario)for the years 2050 and 2080 in Iran.Analysis was conducted using the maximum entropy(MaxEnt)model to provide a basis for the protection and conservation of these species.Seven environmental variables including aspect,depth of soil,silt content,slope,annual precipitation,minimum temperature of the coldest month,and annual temperature range were used as main predictors in this study.The model output for the potential habitat suitability of the studied species showed acceptable performance for all species(i.e.,the area under the curve(AUC)>0.800).According to the models generated by MaxEnt,the potential current patterns of the species were consistent with the observed areas of distributions.The projected climate maps under optimistic and pessimistic scenarios(RCP2.6 and RCP8.5,respectively)of 2050 and 2080 resulted in reductions and expansions as well as positive range changes for all species in comparison to their current predicted distributions.Among all species,O.bisotunensis showed the most significant and highest increase under the pessimistic scenario of 2050 and 2080.Finally,the results of this study revealed that the studied plant species have shown an acute adaptability to environmental changes.The results can provide useful information to managers to apply appropriate strategies for the management and conservation of these valuable Iranian medicinal and threatened plant species in the future.展开更多
Over the last decades,the species distribution model(SDM)has become an essential tool for studying the potential eff ects of climate change on species distribution.In this study,an ensemble SDM was developed to predic...Over the last decades,the species distribution model(SDM)has become an essential tool for studying the potential eff ects of climate change on species distribution.In this study,an ensemble SDM was developed to predict the changes in species distribution of swimming crab Portunus trituberculatus across diff erent seasons in the future(2050s and 2100s)under the climate scenarios of Representative Concentration Pathway(RCP)4.5 and RCP8.5.Results of the ensemble SDM indicate that the distribution of this species will move northward and exhibit evident seasonal variations.Among the four seasons,the suitable habitat for this species will be signifi cantly reduced in summer,with loss rates ranging from 45.23%(RCP4.5)to 88.26%(RCP.8.5)by the 2100s.The loss of habitat will mostly occur in the East China Sea and the southern part of the Yellow Sea,while a slight increase in habitat will occur in the northern part of the Bohai Sea.These fi ndings provide an information forecast for this species in the future.Such forecast will be helpful in improving fi shery management under climate change.展开更多
Background: A number of conservation and societal issues require understanding how species are distributed on the landscape, yet ecologists are often faced with a lack of data to develop models at the resolution and e...Background: A number of conservation and societal issues require understanding how species are distributed on the landscape, yet ecologists are often faced with a lack of data to develop models at the resolution and extent desired, resulting in inefficient use of conservation resources.Such a situation presented itself in our attempt to develop waterfowl distribution models as part of a multi-disciplinary team targeting the control of the highly pathogenic H5N1 avian influenza virus in China.Methods: Faced with limited data, we built species distribution models using a habitat suitability approach for China's breeding and non-breeding(hereafter, wintering) waterfowl.An extensive review of the literature was used to determine model parameters for habitat modeling.Habitat relationships were implemented in GIS using land cover covariates.Wintering models were validated using waterfowl census data, while breeding models, though developed for many species, were only validated for the one species with sufficient telemetry data available.Results: We developed suitability models for 42 waterfowl species(30 breeding and 39 wintering) at 1 km resolution for the extent of China, along with cumulative and genus level species richness maps.Breeding season models showed highest waterfowl suitability in wetlands of the high-elevation west-central plateau and northeastern China.Wintering waterfowl suitability was highest in the lowland regions of southeastern China.Validation measures indicated strong performance in predicting species presence.Comparing our model outputs to China's protected areas indicated that breeding habitat was generally better covered than wintering habitat, and identified locations for which additional research and protection should be prioritized.Conclusions: These suitability models are the first available for many of China's waterfowl species, and have direct utility to conservation and habitat planning and prioritizing management of critically important areas, providing an example of how this approach may aid others faced with the challenge of addressing conservation issues with little data to inform decision making.展开更多
On the basis of the data of zooplankton biomass and three major taxa—— Copepoda, Chaetognatha andSiphonophora of May-June 1986, July-August and December 1987, the distributional patterns and the indicator species of...On the basis of the data of zooplankton biomass and three major taxa—— Copepoda, Chaetognatha andSiphonophora of May-June 1986, July-August and December 1987, the distributional patterns and the indicator species of zooplankton in the Kuroshio and adjacent waters of the East China Sea are preliminarily studied. The results are as follows:The horizontal distribution of zooplankton biomass and the abundance of copepods, chaetognaths and siphonophores arecurred in the continent area northwest of Taiwan and the south-centre section of the East China Sea continent, which are the mix front of different waters. Zooplankton in the water area inside of Ryukyu Islands presented low abundance and high diversity. There are clear seasonal variations in zooplankton biomass and abundance in the study area. The strength or weakness of different water masses and fronts is the basic reason for the variations of zooplankton biomass and abundance.The species composition of zooplankton in the study area is complex and varies, however, the tropic oceanic species predominates overwhelmingly. The distribution of different ecotype species evidences the distribution of different water masses and the state of mixture. The indicator species of each water mass are listed in the paper so as to provide grounds for the variation of currents in the Kuroshio area.The temperature and salinity of sea water are important factors affecting zooplankton distribution, composition and diversity , however the role of salinity is major. With the replacement of one season by another, the correlative levels of temperature and salinity to various zooplankton taxa are more or less significant.展开更多
Background:Forecasts of climate change impacts on biodiversity often assume that the current geographical distributions of species match their niche optima.However,empirical evidence has challenged this assumption,sug...Background:Forecasts of climate change impacts on biodiversity often assume that the current geographical distributions of species match their niche optima.However,empirical evidence has challenged this assumption,suggesting a mismatch.We examine whether the mismatch is related to functional traits along temperature or precipitation gradients.Methods:The observed distributions of 32 tree species in northeast China were evaluated to test this mismatch.Bayesian models were used to estimate the climatic niche optima,i.e.the habitats where the highest species growth and density can be expected.The mismatch is defined as the difference between the actual species occurrence in an assumed niche optimum and the habitat with the highest probability of species occurrence.Species’functional traits were used to explore the mechanisms that may have caused the mismatches.Results:Contrasting these climatic niche optima with the observed species distributions,we found that the distribution-niche optima mismatch had high variability among species based on temperature and precipitation gradients.However,these mismatches depended on functional traits associated with competition and migration lags only in temperature gradients.Conclusions:We conclude that more relevant research is needed in the future to quantify the mismatch between species distribution and climatic niche optima,which may be crucial for future designs of forested landscapes,species conservation and dynamic forecasting of biodiversity under expected climate change.展开更多
The species distribution of hydroxy polyaluminum chloride (PAC, Al T=0.1mol/L) solutions prepared through two different types of base injection was studied and compared quantitatively by Al Ferron timed complex colo...The species distribution of hydroxy polyaluminum chloride (PAC, Al T=0.1mol/L) solutions prepared through two different types of base injection was studied and compared quantitatively by Al Ferron timed complex colorimetric method(AFM) and 27 Al NMR spectroscopy method (ANM), and was simulated by using a quantitative calculating procedure of chemical equilibrium in MINEQL model. The results suggest that methodology of synthesis is very important for determining species distribution in the preparation of PAC solutions. In the PAC solution prepared by micro injection of base method(MIBM), there are at least five kinds of species including a kind of monomeric species Al 3+ , three kinds of polymeric species Al 2(OH) 4+ 2, Al 7(OH) 4+ 17 , Al 13 O 4(OH) (7- n )+ 24+ n ( n =0,2)and an aggregate of Al 13 or a solid phase Al(OH) 3 (aq.). Whereas in the PAC solution prepared by instantaneous injection of base method (IIBM), there are a kind of monomeric species Al 3+ , two kinds of polymeric species Al 2(OH) 4+ 2, Al 13 O 4(OH) (7- n )+ 24+ n ( n =0,2) and a solid phase Al(OH) 3(am). The change of species distribution in the PAC solution depends on preparing method, B(OH/Al) value and concentration.展开更多
The stability constants and species distributions of complexes of two lanthanide ions, Eu(Ⅲ) and Tb(Ⅲ), with a macrocyclic ligand, BDBPH, in 1:1 and 2:lsystem, were determined potentiometrically at 25.0 ℃ and...The stability constants and species distributions of complexes of two lanthanide ions, Eu(Ⅲ) and Tb(Ⅲ), with a macrocyclic ligand, BDBPH, in 1:1 and 2:lsystem, were determined potentiometrically at 25.0 ℃ and I=0.100 mol L^-l. The two metal ions could form deprotonated mono- or dinuclear complexes with BDBPH after the first two protons of the ligand completely neutralized. At higher pH values, Eu(Ⅲ) could not form hydroxy complexes with BDBPH, while Tb(Ⅲ) could form hydroxy complexes in the type of M2L(OH), M2L(OH)2, and M2L(OH)3.展开更多
The stability constants of the mononuclear complexes of BDBPH-Zn(II), Cd(II) and Mn (II) were determined by the potentiometric equilibrium measurements, and species distributions were also discussed. The metal ions do...The stability constants of the mononuclear complexes of BDBPH-Zn(II), Cd(II) and Mn (II) were determined by the potentiometric equilibrium measurements, and species distributions were also discussed. The metal ions do not combine with the ligand until the first two protons of the ligand have almost been completely neutralized. The main species were mononuclear complexes with the diprotonated ligand, MH,L. The three metal ions also form mono- and noprotonated (fully deprotonated) complexes, MHL, ML. The relative order of stabilities of the mononuclear complexes, ML, is Zn(II) > Cd(II) > Mn(II). The ligand has strong tendency to form mononuclear complexes with Zn(II), Cd(II) and Mn(II), and it can also form dinuclear complexes at high pH.展开更多
Abiotic factors play an important role in species localisation,but biotic and anthropogenic predictors must also be considered in distribution modelling for models to be biologically meaningful.In this study,we formal...Abiotic factors play an important role in species localisation,but biotic and anthropogenic predictors must also be considered in distribution modelling for models to be biologically meaningful.In this study,we formalised the biotic predictors of nesting sites for four threatened Caucasian vultures by including species distribution models(wild ungulates,nesting tree species)as biotic layers in the vulture Maxent models.Maxent was applied in the R dismo package and the best set of the model parameters were defined in the R ENMeval package.Performance metrics were continuous Boyce index,Akaike's information criterion,the area under receiver operating curve and true skill statistics.We also calculated and evaluated the null models.Kernel density estimation method was applied to assess the overlap of vulture ecological niches in the environmental space.The accessibility of anthropogenic food resources was estimated using the Path Distance measure that considers elevation gradient.The availability of pine forests(Scots Pine)and wild ungulates(Alpine Chamois and Caucasian Goat)contributed the most(29.6%and 34.3%)to Cinereous Vulture(Aegypius monachus)nesting site model.Wild ungulate distribution also contributed significantly(about 46%)to the Bearded Vulture(Gypaetus barbatus)model.This scavenger nests in the highlands of the Caucasus at a minimum distance of 5–10 km from anthropogenic facilities.In contrast,livestock as a food source was most important in colony distribution of Griffon Vulture(Gyps fulvus).The contribution of distances to settlements and agricultural facilities to the model was 45%.The optimal distance from Egyptian Vulture(Neophron percnopterus)nesting sites to settlements was only 3–10 km,to livestock facilities no more than 15 km with the factor contribution of about 57%.Excluding the wild ungulate availability,the ecological niches of studied vultures overlapped significantly.Despite similar foraging and nesting requirements,Caucasian vultures are not pronounced nesting and trophic competitors due to the abundance of nesting sites,anthropogenic food sources and successful niche sharing.展开更多
Species distribution models have been widely used to explore suitable habitats of species,the impact of climate change on the distribution of suitable habitats of species,and the construction of ecological reserves.Th...Species distribution models have been widely used to explore suitable habitats of species,the impact of climate change on the distribution of suitable habitats of species,and the construction of ecological reserves.This paper introduced species distribution models commonly used in biodiversity analysis,as well as model performance evaluation indexes,challenges in the application of species distribution models,and finally prospected the development trend of research on species distribution models.展开更多
The spatial distribution of bats in Burkina Faso is little-known. Previous studies have only described the bat species’ richness in Burkina Faso. This study was conducted to highlight bat species’ richness distribut...The spatial distribution of bats in Burkina Faso is little-known. Previous studies have only described the bat species’ richness in Burkina Faso. This study was conducted to highlight bat species’ richness distribution within Burkina Faso and environmental variables that influence this distribution with the aim to give support for protection and further sampling for biodiversity. The Species Distribution Models (SDMs) were used to perform this study. To do that, species occurrences were collected throughout literature and field sampling and correlated to environmental variables through the Maxent software (Maximum Entropy). Our modeling variables included climate, vegetation cover, topography and hydrography data. The Jackknife test was performed to determine the importance of environmental variables that influence the species distribution model. The results showed that bats are present in all areas of vegetation in Burkina Faso. Species richness varies across the country. The species richness for major families increases from North to South. The total annual precipitation and topography are the main variables that positively influence bats distribution in Burkina Faso but the bare ground cover and standard deviation of the maximum temperature negatively influence this distribution. This modeling approach of bat species richness is important for policies makers and represents an invaluable tool in ecological management, particularly in the current context of climate change.展开更多
Quercus arkansana(Arkansas oak)is at risk of becoming endangered,as the total known population size is represented by a few isolated populations.The potential impact of climate change on this species in the near futur...Quercus arkansana(Arkansas oak)is at risk of becoming endangered,as the total known population size is represented by a few isolated populations.The potential impact of climate change on this species in the near future is high,yet knowledge of its predicted effects is limited.Our study utilized the biomod2 R package to develop habi-tat suitability ensemble models based on bioclimatic and topographic environmental variables and the known loca-tions of current distribution of Q.arkansana.We predicted suitable habitats across three climate change scenarios(SSP1-2.6,SSP2-4.5,and SSP5-8.5)for 2050,2070,and 2090.Our findings reveal that the current suitable habitat for Q.arkansana is approximately 127,881 km^(2) across seven states(Texas,Arkansas,Alabama,Louisiana,Mississippi,Georgia,and Florida);approximately 9.5%is encompassed within state and federally managed protected areas.Our models predict that all current suitable habitats will disap-pear by 2050 due to climate change,resulting in a northward shift into new regions such as Tennessee and Kentucky.The large extent of suitable habitat outside protected areas sug-gests that a species-specific action plan incorporating pro-tected areas and other areas may be crucial for its conserva-tion.Moreover,protection of Q.arkansana habitat against climate change may require locally and regionally focused conservation policies,adaptive management strategies,and educational outreach among local people.展开更多
Potato cyst nematodes(PCNs)are a significant threat to potato production,having caused substantial damage in many countries.Predicting the future distribution of PCN species is crucial to implementing effective biosec...Potato cyst nematodes(PCNs)are a significant threat to potato production,having caused substantial damage in many countries.Predicting the future distribution of PCN species is crucial to implementing effective biosecurity strategies,especially given the impact of climate change on pest species invasion and distribution.Machine learning(ML),specifically ensemble models,has emerged as a powerful tool in predicting species distributions due to its ability to learn and make predictions based on complex data sets.Thus,this research utilised advanced machine learning techniques to predict the distribution of PCN species under climate change conditions,providing the initial element for invasion risk assessment.We first used Global Climate Models to generate homogeneous climate predictors to mitigate the variation among predictors.Then,five machine learning models were employed to build two groups of ensembles,single-algorithm ensembles(ESA)and multi-algorithm ensembles(EMA),and compared their performances.In this research,the EMA did not always perform better than the ESA,and the ESA of Artificial Neural Network gave the highest performance while being cost-effective.Prediction results indicated that the distribution range of PCNs would shift northward with a decrease in tropical zones and an increase in northern latitudes.However,the total area of suitable regions will not change significantly,occupying 16-20%of the total land surface(18%under current conditions).This research alerts policymakers and practitioners to the risk of PCNs’incursion into new regions.Additionally,this ML process offers the capability to track changes in the distribution of various species and provides scientifically grounded evidence for formulating long-term biosecurity plans for their control.展开更多
基金Funding support for this work was provided by the Silvo-Pastoral Institute of Tabarka
文摘We used GIS and maximum entropy to predict the potential distribution of six snake species belong to three families in Kroumiria(Northwestern Tunisia): Natricidae(Natrix maura and Natrix astreptophora), Colubridae(Hemorrhois hippocrepis, Coronella girondica and Macroprotodon mauritanicus), and Lamprophiidae(Malpolon insignitus). The suitable habitat for each species was modelled using the maximum entropy algorithm, combining presence field data(collected during 16 years:2000–2015) with a set of seven environmental variables(mean annual precipitation, elevation, slope gradient,aspect, distance to watercourses, land surface temperature and normalized Differential Vegetation Index. The relative importance of these environmental variables was evaluated by jackknife tests and the predictive power of our models was assessed using the area under the receiver operating characteristic. The main explicative variables of the species distribution were distance from streams and elevation, with contributions ranging from 60 to 77 and from 10 to 25%,respectively. Our study provided the first habitat suitability models for snakes in Kroumiria and this information can be used by conservation biologists and land managers concerned with preserving snakes in Kroumiria.
基金TheNationalNaturalScienceFoundationofChina (No .2 96 770 0 4)
文摘The effects of the calorimetric buffer solutions were investigated while the two colorimetric reactions of AI-ferron complex and Fe-ferron complex occurred individually, and the effects of the testing wavelength and the pH of the solutions were also investigated. A timed complexatian colorimetric analysis method of Al-Fe-ferron in view of the total concentration of {AI + Fe} was then established to determine the species distribution of polymeric Al-Fe. The testing wavelength was recommended at 362 net and the testing pH value was 5. With a comparison of the ratios of n(Al)/n(Fe), the standard adsorption curves of the polymeric Al-Fe solutions were derived from the experimental results. Furthermore, the solutions' composition were carious in both the molar n(Al)/n(Fe) ratios, i.e. 0/0, 5/5, 9/1 and 0/10, and the concentrations associated with the total ( Al + Fe which ranged from 10(-5) to 10(-4) mol/L..
基金This research was supported by NSF grants DBI-1458640 and DBI-1547229.
文摘Predictive studies play a crucial role in the study of biological invasions of terrestrial plants under possible climate change scenarios.Invasive species are recognized for their ability to modify soil microbial communities and influence ecosystem dynamics.Here,we focused on six species of allelopathic flowering plants-Ailanthus altissima,Casuarina equisetifolia,Centaurea stoebe ssp.micranthos,Dioscorea bulbifera,Lantana camara,and Schinus terebinthifolia-Xhat are invasive in North America and examined their potential to spread further during projected climate change.We used Species Distribution Models(SDMs)to predict future suitable areas for these species in North America under several proposed future climate models.ENMEval and Maxent were used to develop SDMs,estimate current distributions,and predict future areas of suitable climate for each species.Areas with the greatest predicted suitable climate in the future include the northeastern and the coastal northwestern regions of North America.Range size estimations demonstrate the possibility of extreme range loss for these invasives in the southeastern United States,while new areas may become suitable in the northeastern United States and southeastern Canada.These findings show an overall northward shift of suitable climate during the next few decades,given projected changes in temperature and precipitation.Our results can be utilized to analyze potential shifts in the distribution of these invasive species and may aid in the development of conservation and management plans to target and control dissemination in areas at higher risk for potential future invasion by these allelopathic species.
基金supported by the forestry public welfare scientific research project(Grant No.201504303)。
文摘Knowledge on the potential suitability of tree species to the site is very important for forest management planning.Natural forest distribution provides a good reference for afforestation and forest restoration.In this study,we developed species distribution model(SDM)for 16 major tree species with 2,825 permanent sample plots with natural origin from Chinese National Forest Inventory data collected in Jilin Province using the Maxent model.Three types of environmental factors including bioclimate,soil and topography with a total of 33 variables were tested as the input.The values of area under the curve(AUC,one of the receiver operating characteristics of the Maxent model)in the training and test datasets were between 0.784 and 0.968,indicating that the prediction results were quite reliable.The environmental factors affecting the distribution of species were ranked in terms of their importance to the species distribution.Generally,the climatic factors had the greatest contribution,which included mean diurnal range,annual mean temperature,temperature annual range,and iosthermality.But the main environmental factors varied with tree species.Distribution suitability maps under current(1950-2000)and future climate scenarios(CCSM4-RCP 2.6 and RCP 6.0 during 2050)were produced for 16 major tree species in Jilin Province using the model developed.The predicted current and future ranges of habitat suitability of the 16 tree species are likely to be positively and negatively affected by future climate.Seven tree species were found to benefit from future climate including B etula costata,Fraxinus mandshurica,Juglans mandshurica,Phellodendron amurense,Populus ussuriensis,Quercus mongolica and Ulmus pumila;five tree species will experience decline in their suitable habitat including B.platyphylla,Tilia mongolica,Picea asperata,Pinus sylvestris,Pinus koraiensis;and four(Salix koreensis,Abies fabri,Pinus densiflora and Larix olgensis)showed the inconsistency under RCP 2.6 and RCP 6.0 scenarios.The maps of the habitat suitability can be used as a basis for afforestation and forest restoration in northeastern China.The SDMs could be a potential tool for forest management planning.
基金Hubei Provincial Department of Science and Technology,under the public welfare research project[No.402012DBA40001]Hubei Provincial Department of Education,under the scientifi c research project[No.B20160555].
文摘The study of plant species abundance distribution(SAD)in natural communities is of considerable importance to understand the processes and ecological rules of community assembly.With the distribution of tree,shrub and herb layers of eight natural communities of Toona ciliata as research targets,three diff erent ecological niche models were used:broken stick model,overlapping niche model and niche preemption model,as well as three statistical models:log-series distribution model,log-normal distribution model and Weibull distribution model,to fi t SAD of the diff erent vegetation layers based on data collected.Goodness-of-fi t was compared with Chi square test,Kolmogorov–Smirnov(K–S)test and Akaike Information Criterion(AIC).The results show:(1)based on the criteria of the lowest AIC value,Chi square value and K–S value with no signifi cant diff erence(p>0.05)between theoretic and observed SADs.The suitability and goodness-of-fi t of the broken stick model was the best of three ecological niche models.The log-series distribution model did not accept the fi tted results of most vegetation layers and had the lowest goodness-of-fi t.The Weibull distribution model had the best goodness-of-fi t for SADs.Overall,the statistical SADs performed better than the ecological ones.(2)T.ciliata was the dominant species in all the communities;species richness and diversity of herbs were the highest of the vegetation layers,while the diversities of the tree layers were slightly higher than the shrub layers;there were fewer common species and more rare species in the eight communities.The herb layers had the highest community evenness,followed by the shrub and the tree layers.Due to the complexity and habitat diversity of the diff erent T.ciliata communities,comprehensive analyses of a variety of SADs and tests for optimal models together with management,are practical steps to enhance understanding of ecological processes and mechanisms of T.ciliata communities,to detect disturbances,and to facilitate biodiversity and species conservation.
基金Supported by the National Natural Science Foundation of China(No.42077335)。
文摘In recent years,herbicide sulfometuron-methyl(SM)has been used to kill the invasive plant Spartina alterniflora in some coastal areas of China,which may lead to the toxic effects on non-target marine organisms.The 96-h median effective concentrations(96-h EC50)of SM on six species of marine microalgae were measured in growth inhibition tests,and were then compared with other published toxicity data,based on which a method of species sensitivity distribution(SSD)was built to estimate the hazardous concentration of SM for 5%of species(HC5)and potentially affected fraction(PAF)for a certain concentration.Results indicate that SM exhibited a high toxicity to two species of green algae(Chlorella pacifica and Dunaliella salina)with a 96-h EC50 of 0.11 and 0.13 mg/L respectively,had a medium toxicity to two species of golden algae(Diacronema viridis and Isochrysis galbana)with a 96-h EC50 of 14.24 and 21.48 mg/L respectively,and showed a low toxicity to two species of diatoms(Skeletonema costatum and Phaeodactylum tricornutum)with a 96-h EC50 of 148.99 and>100 mg/L,respectively.The estimated values of HC5 and the predicted no-effect concentrations(PNEC)for SM were 0.077 and 0.015 mg/L,respectively.According to the current dosage for killing S.alterniflora in tidal flats in Fujian Province,China,SM entering the sea by spraying might cause the acute injury or death of 14%of marine species.This hazard could last for about a month for those sensitive species.Therefore,on the premise of inhibiting the growth of this invasive plant,the dosage of SM should be reduced as much as possible to avoid severe damage to the marine ecosystem.The results provide a valuable information for marine ecological risk assessment on SM and for marine environmental management.
基金supported by National Key R&D Program of China(No.2017YFA0304203)National Energy R&D Center of Petroleum Refining Technology(RIPP,SINOPEC)+4 种基金Changjiang Scholars and Innovative Research Team in University of Ministry of Education of China(No.IRT_17R70)National Natural Science Foundation of China(NSFC)(Nos.61975103,61875108,61775125,11434007)Major Special Science and Technology Projects in Shanxi(No.201804D131036)111 Project(No.D18001)Fund for Shanxi‘1331KSC’。
文摘We proposed a theoretical spatio-temporal imaging method,which was based on the thermal model of laser ablation and the two-dimensional axisymmetric multi-species hydrodynamics model.By using the intensity formula,the integral intensity of spectral lines could be calculated and the corresponding images of intensity distribution could be drawn.Through further image processing such as normalization,determination of minimum intensity,combination and color filtering,a relatively clear species distribution image in the plasma could be obtained.Using the above method,we simulated the plasma ablated from Al-Mg alloy by different laser energies under 1 atm argon,and obtained the theoretical spatio-temporal distributions of Mg I,Mg II,Al I,Al II and Ar I species,which are almost consistent with the experimental results by differential imaging.Compared with the experimental decay time constants,the consistency is higher at low laser energy,indicating that our theoretical model is more suitable for the plasma dominated by laser-supported combustion wave.
文摘Climate change may cause shifts in the natural range of species especially for those that are geographically restricted and/or endemic species.In this study,the spatial distribution of five endemic and threatened species belonging to the genus Onosma(including O.asperrima,O.bisotunensis,O.kotschyi,O.platyphylla,and O.straussii)was investigated under present and future climate change scenarios:RCP2.6(RCP,representative concentration pathway;optimistic scenario)and RCP8.5(pessimistic scenario)for the years 2050 and 2080 in Iran.Analysis was conducted using the maximum entropy(MaxEnt)model to provide a basis for the protection and conservation of these species.Seven environmental variables including aspect,depth of soil,silt content,slope,annual precipitation,minimum temperature of the coldest month,and annual temperature range were used as main predictors in this study.The model output for the potential habitat suitability of the studied species showed acceptable performance for all species(i.e.,the area under the curve(AUC)>0.800).According to the models generated by MaxEnt,the potential current patterns of the species were consistent with the observed areas of distributions.The projected climate maps under optimistic and pessimistic scenarios(RCP2.6 and RCP8.5,respectively)of 2050 and 2080 resulted in reductions and expansions as well as positive range changes for all species in comparison to their current predicted distributions.Among all species,O.bisotunensis showed the most significant and highest increase under the pessimistic scenario of 2050 and 2080.Finally,the results of this study revealed that the studied plant species have shown an acute adaptability to environmental changes.The results can provide useful information to managers to apply appropriate strategies for the management and conservation of these valuable Iranian medicinal and threatened plant species in the future.
基金Supported by the National Key Research and Development Program of China(Nos.2017YFA0604902,2017YFA0604904)the Zhejiang Provincial Natural Science Foundation of China(No.LR21D060003)+1 种基金the New Talent Program for College Students in Zhejiang Province(No.2016R411011)the Innovation Training Program for University students of Zhejiang Ocean University(No.2020-03)。
文摘Over the last decades,the species distribution model(SDM)has become an essential tool for studying the potential eff ects of climate change on species distribution.In this study,an ensemble SDM was developed to predict the changes in species distribution of swimming crab Portunus trituberculatus across diff erent seasons in the future(2050s and 2100s)under the climate scenarios of Representative Concentration Pathway(RCP)4.5 and RCP8.5.Results of the ensemble SDM indicate that the distribution of this species will move northward and exhibit evident seasonal variations.Among the four seasons,the suitable habitat for this species will be signifi cantly reduced in summer,with loss rates ranging from 45.23%(RCP4.5)to 88.26%(RCP.8.5)by the 2100s.The loss of habitat will mostly occur in the East China Sea and the southern part of the Yellow Sea,while a slight increase in habitat will occur in the northern part of the Bohai Sea.These fi ndings provide an information forecast for this species in the future.Such forecast will be helpful in improving fi shery management under climate change.
基金supported by the United States Geological Survey(Ecosystems Mission Area)the National Science Foundation Small Grants for Exploratory Research(No.0713027)Wetlands International
文摘Background: A number of conservation and societal issues require understanding how species are distributed on the landscape, yet ecologists are often faced with a lack of data to develop models at the resolution and extent desired, resulting in inefficient use of conservation resources.Such a situation presented itself in our attempt to develop waterfowl distribution models as part of a multi-disciplinary team targeting the control of the highly pathogenic H5N1 avian influenza virus in China.Methods: Faced with limited data, we built species distribution models using a habitat suitability approach for China's breeding and non-breeding(hereafter, wintering) waterfowl.An extensive review of the literature was used to determine model parameters for habitat modeling.Habitat relationships were implemented in GIS using land cover covariates.Wintering models were validated using waterfowl census data, while breeding models, though developed for many species, were only validated for the one species with sufficient telemetry data available.Results: We developed suitability models for 42 waterfowl species(30 breeding and 39 wintering) at 1 km resolution for the extent of China, along with cumulative and genus level species richness maps.Breeding season models showed highest waterfowl suitability in wetlands of the high-elevation west-central plateau and northeastern China.Wintering waterfowl suitability was highest in the lowland regions of southeastern China.Validation measures indicated strong performance in predicting species presence.Comparing our model outputs to China's protected areas indicated that breeding habitat was generally better covered than wintering habitat, and identified locations for which additional research and protection should be prioritized.Conclusions: These suitability models are the first available for many of China's waterfowl species, and have direct utility to conservation and habitat planning and prioritizing management of critically important areas, providing an example of how this approach may aid others faced with the challenge of addressing conservation issues with little data to inform decision making.
文摘On the basis of the data of zooplankton biomass and three major taxa—— Copepoda, Chaetognatha andSiphonophora of May-June 1986, July-August and December 1987, the distributional patterns and the indicator species of zooplankton in the Kuroshio and adjacent waters of the East China Sea are preliminarily studied. The results are as follows:The horizontal distribution of zooplankton biomass and the abundance of copepods, chaetognaths and siphonophores arecurred in the continent area northwest of Taiwan and the south-centre section of the East China Sea continent, which are the mix front of different waters. Zooplankton in the water area inside of Ryukyu Islands presented low abundance and high diversity. There are clear seasonal variations in zooplankton biomass and abundance in the study area. The strength or weakness of different water masses and fronts is the basic reason for the variations of zooplankton biomass and abundance.The species composition of zooplankton in the study area is complex and varies, however, the tropic oceanic species predominates overwhelmingly. The distribution of different ecotype species evidences the distribution of different water masses and the state of mixture. The indicator species of each water mass are listed in the paper so as to provide grounds for the variation of currents in the Kuroshio area.The temperature and salinity of sea water are important factors affecting zooplankton distribution, composition and diversity , however the role of salinity is major. With the replacement of one season by another, the correlative levels of temperature and salinity to various zooplankton taxa are more or less significant.
基金supported by the Key Project of National Key Research and Development Plan(No.2022YFD2201004)Beijing Forestry University Outstanding Young Talent Cultivation Project(No.2019JQ03001)。
文摘Background:Forecasts of climate change impacts on biodiversity often assume that the current geographical distributions of species match their niche optima.However,empirical evidence has challenged this assumption,suggesting a mismatch.We examine whether the mismatch is related to functional traits along temperature or precipitation gradients.Methods:The observed distributions of 32 tree species in northeast China were evaluated to test this mismatch.Bayesian models were used to estimate the climatic niche optima,i.e.the habitats where the highest species growth and density can be expected.The mismatch is defined as the difference between the actual species occurrence in an assumed niche optimum and the habitat with the highest probability of species occurrence.Species’functional traits were used to explore the mechanisms that may have caused the mismatches.Results:Contrasting these climatic niche optima with the observed species distributions,we found that the distribution-niche optima mismatch had high variability among species based on temperature and precipitation gradients.However,these mismatches depended on functional traits associated with competition and migration lags only in temperature gradients.Conclusions:We conclude that more relevant research is needed in the future to quantify the mismatch between species distribution and climatic niche optima,which may be crucial for future designs of forested landscapes,species conservation and dynamic forecasting of biodiversity under expected climate change.
文摘The species distribution of hydroxy polyaluminum chloride (PAC, Al T=0.1mol/L) solutions prepared through two different types of base injection was studied and compared quantitatively by Al Ferron timed complex colorimetric method(AFM) and 27 Al NMR spectroscopy method (ANM), and was simulated by using a quantitative calculating procedure of chemical equilibrium in MINEQL model. The results suggest that methodology of synthesis is very important for determining species distribution in the preparation of PAC solutions. In the PAC solution prepared by micro injection of base method(MIBM), there are at least five kinds of species including a kind of monomeric species Al 3+ , three kinds of polymeric species Al 2(OH) 4+ 2, Al 7(OH) 4+ 17 , Al 13 O 4(OH) (7- n )+ 24+ n ( n =0,2)and an aggregate of Al 13 or a solid phase Al(OH) 3 (aq.). Whereas in the PAC solution prepared by instantaneous injection of base method (IIBM), there are a kind of monomeric species Al 3+ , two kinds of polymeric species Al 2(OH) 4+ 2, Al 13 O 4(OH) (7- n )+ 24+ n ( n =0,2) and a solid phase Al(OH) 3(am). The change of species distribution in the PAC solution depends on preparing method, B(OH/Al) value and concentration.
文摘The stability constants and species distributions of complexes of two lanthanide ions, Eu(Ⅲ) and Tb(Ⅲ), with a macrocyclic ligand, BDBPH, in 1:1 and 2:lsystem, were determined potentiometrically at 25.0 ℃ and I=0.100 mol L^-l. The two metal ions could form deprotonated mono- or dinuclear complexes with BDBPH after the first two protons of the ligand completely neutralized. At higher pH values, Eu(Ⅲ) could not form hydroxy complexes with BDBPH, while Tb(Ⅲ) could form hydroxy complexes in the type of M2L(OH), M2L(OH)2, and M2L(OH)3.
基金The financial support from the Robert A. Welch Foundation (A-0259) in the U.S and China Scholarship Council (97837086) is gratefully acknowledged.
文摘The stability constants of the mononuclear complexes of BDBPH-Zn(II), Cd(II) and Mn (II) were determined by the potentiometric equilibrium measurements, and species distributions were also discussed. The metal ions do not combine with the ligand until the first two protons of the ligand have almost been completely neutralized. The main species were mononuclear complexes with the diprotonated ligand, MH,L. The three metal ions also form mono- and noprotonated (fully deprotonated) complexes, MHL, ML. The relative order of stabilities of the mononuclear complexes, ML, is Zn(II) > Cd(II) > Mn(II). The ligand has strong tendency to form mononuclear complexes with Zn(II), Cd(II) and Mn(II), and it can also form dinuclear complexes at high pH.
基金the State Assignment,project 075-00347-19-00(Patterns of the spatiotemporal dynamics of meadow and forest ecosystems in mountainous areas(Russian Western and Central Caucasus)WWF's‘Save the Forest-Home of Raptors’project(2020-2022).
文摘Abiotic factors play an important role in species localisation,but biotic and anthropogenic predictors must also be considered in distribution modelling for models to be biologically meaningful.In this study,we formalised the biotic predictors of nesting sites for four threatened Caucasian vultures by including species distribution models(wild ungulates,nesting tree species)as biotic layers in the vulture Maxent models.Maxent was applied in the R dismo package and the best set of the model parameters were defined in the R ENMeval package.Performance metrics were continuous Boyce index,Akaike's information criterion,the area under receiver operating curve and true skill statistics.We also calculated and evaluated the null models.Kernel density estimation method was applied to assess the overlap of vulture ecological niches in the environmental space.The accessibility of anthropogenic food resources was estimated using the Path Distance measure that considers elevation gradient.The availability of pine forests(Scots Pine)and wild ungulates(Alpine Chamois and Caucasian Goat)contributed the most(29.6%and 34.3%)to Cinereous Vulture(Aegypius monachus)nesting site model.Wild ungulate distribution also contributed significantly(about 46%)to the Bearded Vulture(Gypaetus barbatus)model.This scavenger nests in the highlands of the Caucasus at a minimum distance of 5–10 km from anthropogenic facilities.In contrast,livestock as a food source was most important in colony distribution of Griffon Vulture(Gyps fulvus).The contribution of distances to settlements and agricultural facilities to the model was 45%.The optimal distance from Egyptian Vulture(Neophron percnopterus)nesting sites to settlements was only 3–10 km,to livestock facilities no more than 15 km with the factor contribution of about 57%.Excluding the wild ungulate availability,the ecological niches of studied vultures overlapped significantly.Despite similar foraging and nesting requirements,Caucasian vultures are not pronounced nesting and trophic competitors due to the abundance of nesting sites,anthropogenic food sources and successful niche sharing.
基金Supported by Natural Science Foundation of Hunan Province (2021JJ30375)Natural Science Foundation of Hunan Provincial Department of Education (20A275)Science and Technology Innovation Team Project of Hunan Province (201937924).
文摘Species distribution models have been widely used to explore suitable habitats of species,the impact of climate change on the distribution of suitable habitats of species,and the construction of ecological reserves.This paper introduced species distribution models commonly used in biodiversity analysis,as well as model performance evaluation indexes,challenges in the application of species distribution models,and finally prospected the development trend of research on species distribution models.
文摘The spatial distribution of bats in Burkina Faso is little-known. Previous studies have only described the bat species’ richness in Burkina Faso. This study was conducted to highlight bat species’ richness distribution within Burkina Faso and environmental variables that influence this distribution with the aim to give support for protection and further sampling for biodiversity. The Species Distribution Models (SDMs) were used to perform this study. To do that, species occurrences were collected throughout literature and field sampling and correlated to environmental variables through the Maxent software (Maximum Entropy). Our modeling variables included climate, vegetation cover, topography and hydrography data. The Jackknife test was performed to determine the importance of environmental variables that influence the species distribution model. The results showed that bats are present in all areas of vegetation in Burkina Faso. Species richness varies across the country. The species richness for major families increases from North to South. The total annual precipitation and topography are the main variables that positively influence bats distribution in Burkina Faso but the bare ground cover and standard deviation of the maximum temperature negatively influence this distribution. This modeling approach of bat species richness is important for policies makers and represents an invaluable tool in ecological management, particularly in the current context of climate change.
基金The work was partially supported by research project funding from the Undergraduate Research Grant,Arkansas Tech University.
文摘Quercus arkansana(Arkansas oak)is at risk of becoming endangered,as the total known population size is represented by a few isolated populations.The potential impact of climate change on this species in the near future is high,yet knowledge of its predicted effects is limited.Our study utilized the biomod2 R package to develop habi-tat suitability ensemble models based on bioclimatic and topographic environmental variables and the known loca-tions of current distribution of Q.arkansana.We predicted suitable habitats across three climate change scenarios(SSP1-2.6,SSP2-4.5,and SSP5-8.5)for 2050,2070,and 2090.Our findings reveal that the current suitable habitat for Q.arkansana is approximately 127,881 km^(2) across seven states(Texas,Arkansas,Alabama,Louisiana,Mississippi,Georgia,and Florida);approximately 9.5%is encompassed within state and federally managed protected areas.Our models predict that all current suitable habitats will disap-pear by 2050 due to climate change,resulting in a northward shift into new regions such as Tennessee and Kentucky.The large extent of suitable habitat outside protected areas sug-gests that a species-specific action plan incorporating pro-tected areas and other areas may be crucial for its conserva-tion.Moreover,protection of Q.arkansana habitat against climate change may require locally and regionally focused conservation policies,adaptive management strategies,and educational outreach among local people.
基金funded by the National Key R&D Program of China(2021YFD1400200)the Taishan Scholar Constructive Engineering Foundation of Shandong,China(tstp20221135)。
文摘Potato cyst nematodes(PCNs)are a significant threat to potato production,having caused substantial damage in many countries.Predicting the future distribution of PCN species is crucial to implementing effective biosecurity strategies,especially given the impact of climate change on pest species invasion and distribution.Machine learning(ML),specifically ensemble models,has emerged as a powerful tool in predicting species distributions due to its ability to learn and make predictions based on complex data sets.Thus,this research utilised advanced machine learning techniques to predict the distribution of PCN species under climate change conditions,providing the initial element for invasion risk assessment.We first used Global Climate Models to generate homogeneous climate predictors to mitigate the variation among predictors.Then,five machine learning models were employed to build two groups of ensembles,single-algorithm ensembles(ESA)and multi-algorithm ensembles(EMA),and compared their performances.In this research,the EMA did not always perform better than the ESA,and the ESA of Artificial Neural Network gave the highest performance while being cost-effective.Prediction results indicated that the distribution range of PCNs would shift northward with a decrease in tropical zones and an increase in northern latitudes.However,the total area of suitable regions will not change significantly,occupying 16-20%of the total land surface(18%under current conditions).This research alerts policymakers and practitioners to the risk of PCNs’incursion into new regions.Additionally,this ML process offers the capability to track changes in the distribution of various species and provides scientifically grounded evidence for formulating long-term biosecurity plans for their control.