期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Cochlear function after selective spiral ganglion cells degeneration induced by ouabain 被引量:4
1
作者 WANG Lin-e CAO Ke-li +2 位作者 YIN Shan-kai WANG Zhen CHEN Zheng-nong 《Chinese Medical Journal》 SCIE CAS CSCD 2006年第12期974-979,共6页
Background Ouabain, a cardiac glycoside that specifically binds to Na/K-ATPase and inhibits its activity, was applied to gerbils to develop a method for studying auditory neuropathy. Methods Ouabain was applied to the... Background Ouabain, a cardiac glycoside that specifically binds to Na/K-ATPase and inhibits its activity, was applied to gerbils to develop a method for studying auditory neuropathy. Methods Ouabain was applied to the round window of the cochlea in each gerbil by using a piece of gelfoam with 3 μl or 24 μl (1 mmol/L) ouabain solution. The changes of the threshold of auditory brainstem response, cochlear function round window electrocochleography, as well as the morphological changes of the spiral ganglion cells of the cochlea were observed after application of ouabain for 24 hours or 96 hours. Results In ouabain treated gerbils, auditory brainstem response and compound action potential thresholds showed either elevation or no response at all. However, the thresholds of cochlear microphonic and distortion product otoacoustic emissions were not affected. Degeneration and necrosis of some spiral ganglion cells in ears with applications of ouabain (24 hours, 3 μl, 1 mmol/L; 96 hours, 24 μl, 1 mmol/L ouabain). The number of spiral ganglion cells was decreased (24 hours, 3 μl, 1 mmol/L ouabain) or near to a total loss (96 hours, 24 μl, 1 mmol/L ouabain).Conclusions These results indicate a high degree of independence between the spiral ganglion ceils and the outer hair cell systems in the cochlear transduction mechanism. The method used in this study would provide a valuable tool for studying auditory neuropathy. 展开更多
关键词 OUABAIN spiral ganglion cells GERBILS cochlear action potentials cochlear microphonics
原文传递
Gene transfection mediated by polyethyleneiminepolyethylene glycol nanocarrier prevents cisplatininduced spiral ganglion cell damage 被引量:1
2
作者 Guan-gui Chen Min Mao +1 位作者 Li-zi Qiu Qi-ming Liu 《Neural Regeneration Research》 SCIE CAS CSCD 2015年第3期425-431,共7页
Polyethyleneimine-polyethylene glycol (PEI-PEG), a novel nanocarrier, has been used for trans- fection and gene therapy in a variety of cells. In our previous study, we successfully carried out PEI-PEG-mediated gene... Polyethyleneimine-polyethylene glycol (PEI-PEG), a novel nanocarrier, has been used for trans- fection and gene therapy in a variety of cells. In our previous study, we successfully carried out PEI-PEG-mediated gene transfer in spiral ganglion cells. It remains unclear whether PEI-PEG could be used for gene therapy with X-linked inhibitor of apoptosis protein (XIAP) in the inner ear. In the present study, we performed PEI-PEG-mediated XIAP gene transfection in the cochlea of Sprague-Dawley rats, via scala tympani fenestration, before daily cisplatin injections. Audito- ry brainstem reflex tests demonstrated the protective effects of XIAP gene therapy on auditory function. Immunohistochemical staining revealed XIAP protein expression in the cytoplasm of cells in the spiral ganglion, the organ of Corti and the stria vascularis. Reverse transcription-PCR detected high levels of XIAP mRNA expression in the cochlea. The present findings suggest that PEI-PEG nanocarrier-mediated XIAP gene transfection results in XIAP expression in the cochlea, prevents damage to cochlear spiral ganglion cells, and protects hearing. 展开更多
关键词 nerve regeneration polyethyleneimine-polyethylene glycol spiral ganglion cells X-linkedinhibitor of apoptosis protein gene therapy NANOCARRIER cisplatin neural regeneration OTOTOXICITY COCHLEA
下载PDF
An efficient strategy for establishing a model of sensorineural deafness in rats 被引量:3
3
作者 Long Ma Hai-jin Yi +2 位作者 Fen-qian Yuan Wei-wei Guo Shi-ming Yang 《Neural Regeneration Research》 SCIE CAS CSCD 2015年第10期1683-1689,共7页
Ototoxic drugs can be used to produce a loss of cochlear hair cells to create animal models of deafness. However, to the best of our knowledge, there is no report on the establishment of a rat deafness model through t... Ototoxic drugs can be used to produce a loss of cochlear hair cells to create animal models of deafness. However, to the best of our knowledge, there is no report on the establishment of a rat deafness model through the combined application of aminoglycosides and loop diuretics. The aim of this study was to use single or combined administration of furosemide and kanamycin sulfate to establish rat models of deafness. The rats received intravenous injections of different doses of furosemide and/or intramuscular injections of kanamycin sulfate. The auditory brainstem response was measured to determine the hearing threshold after drug application. Immunocytochemistry and confocal microscopy were performed to evaluate inner ear morphology. In the group receiving combined administration of furosemide and kanamycin, the auditory brainstem response threshold showed significant elevation 3 days after administration, higher than that produced by furosemide or kanamycin alone. The hair cells showed varying degrees of injury, from the apical turn to the basal turn of the cochlea and from the outer hair cells to the inner hair cells. The spiral ganglion cells maintained a normal morphology during the first week after the hair cells completely disappeared, and then gradually degenerated. After 2 months, the majority of spiral ganglion cells disappeared, but a few remained. These findings demonstrate that the combined administration of furosemide and kanamycin has a synergistic ototoxic effect, and that these drugs can produce hair cell loss and hearing loss in rats. These findings suggest that even in patients with severe deafness, electronic cochlear implants may partially restore hearing. 展开更多
关键词 nerve regeneration sensorineural deafness kanamycin furosemide ototoxic drug spiral ganglion cells hair cell neural regeneration
下载PDF
Effects of delayed brain-derived neurotrophic factor application on cochlear pathology and auditory physiology in rats 被引量:1
4
作者 SONG Bing-nan 《Chinese Medical Journal》 SCIE CAS CSCD 2008年第13期1189-1196,共8页
Background The development and maintenance of spiral ganglion cells (SGCs) appear to be supported by neurotrophins Removal of this support leads to their gradual degeneration. Intracochlear infusion with neurotrophi... Background The development and maintenance of spiral ganglion cells (SGCs) appear to be supported by neurotrophins Removal of this support leads to their gradual degeneration. Intracochlear infusion with neurotrophins can provide trophic support to SGCs in animal deafness models if given shortly after deafening. However, it is not known whether delayed intervention will provide similar protection, which might be clinically relevant. The present research was conducted to determine the effects of brain-derived neurotrophic factor (BDNF) administration on the capacity of the peripheral processes to resprout. Methods The left cochlea of 20 profoundly deafened rats, which were divided into 2 groups equally, was implanted with an electrode and drug-delivery system 30 days after deafening. Either BDNF or artificial perilymph (AP) was delivered continuously for 28 days. Electrically evoked auditory brainstem responses (EABRs) were recorded during the period. SGC body and peripheral process density were measured. Results The EABR thresholds of AP increase continually. Those of BDNF increase slowly at the beginning then decrease, and were significantly less than those of the AP group from day 14 to 28 (P 〈0.01). In terms of SGC and peripheral process density, the difference between the treated and control ears of BDNF group was clearly significant (P 〈0.01), but not in AP group (P 〉0.05). Analysis of the left cochlea between the two groups demonstrated that SGC/peripheral process density of the BDNF group was significantly greater than that of the AP group. Finally, a functional formula was developed relating the last EABR threshold and SGC density and process density, which was as follows: T= 466.184-2.71 (F.B.L). Conclusions Under the conditions of delayed intervention following 30 days after deafening in rats, it can be concluded that BDNF enhances SGC bodies and peripheral processes survival after differentiation and so improves auditory sensitivity. SGC peripheral processes influence the auditory sensitivity. 展开更多
关键词 brain-derived neurotrophic factor spiral ganglion cell electrically evoked auditory brainstem response
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部