We investigate rigidity problems for odd-dimensional compact submanifolds.We show that if Mn(n 5) is an odd-dimensional compact submanifold with parallel mean curvature in Sn+p,and if RicM >(n- 2-1n)(1 + H2...We investigate rigidity problems for odd-dimensional compact submanifolds.We show that if Mn(n 5) is an odd-dimensional compact submanifold with parallel mean curvature in Sn+p,and if RicM >(n- 2-1n)(1 + H2) and H < δn,where δn is an explicit positive constant depending only on n,then M is a totally umbilical sphere.Here H is the mean curvature of M.Moreover,we prove that if Mn(n 5) is an odd-dimensional compact submanifold in the space form Fn+p(c) with c 0,and if RicM >(n-2-εn)(c+H2),where εn is an explicit positive constant depending only on n,then M is homeomorphic to a sphere.展开更多
基金supported by National Natural Science Foundation of China (Grant Nos.11071211,11371315 and 11301476)the Trans-Century Training Programme Foundation for Talents by the Ministry of Education of Chinathe China Postdoctoral Science Foundation (Grant No.2012M521156)
文摘We investigate rigidity problems for odd-dimensional compact submanifolds.We show that if Mn(n 5) is an odd-dimensional compact submanifold with parallel mean curvature in Sn+p,and if RicM >(n- 2-1n)(1 + H2) and H < δn,where δn is an explicit positive constant depending only on n,then M is a totally umbilical sphere.Here H is the mean curvature of M.Moreover,we prove that if Mn(n 5) is an odd-dimensional compact submanifold in the space form Fn+p(c) with c 0,and if RicM >(n-2-εn)(c+H2),where εn is an explicit positive constant depending only on n,then M is homeomorphic to a sphere.