Steel truss suspension bridges are prone to developing defects after prolonged use.These defects may include corrosion of the main cable or the steel truss.To ensure the normal and safe functioning of the suspension b...Steel truss suspension bridges are prone to developing defects after prolonged use.These defects may include corrosion of the main cable or the steel truss.To ensure the normal and safe functioning of the suspension bridge,it is necessary to inspect for defects promptly,understand the cause of the defect,and locate it through the use of inspection technology.By promptly addressing defects,the suspension bridge’s safety can be ensured.The author has analyzed the common defects and causes of steel truss suspension bridges and proposed specific inspection technologies.This research is intended to aid in the timely discovery of steel truss suspension bridge defects.展开更多
Steel truss bridges are frequently used in bridge engineering because of their good ability of spanning capacity, construction and light self-weight. Main trusses are the critical component of steel truss bridge and t...Steel truss bridges are frequently used in bridge engineering because of their good ability of spanning capacity, construction and light self-weight. Main trusses are the critical component of steel truss bridge and the main truss are made of truss members linked by integral joints. This paper presents the mechanic performance of key joints, and the codified design of joints in steel truss girders according to the latest European norms. The results showed that the fatigue resistance of welded joints evaluation is necessary to predict, detect, and repair the crack in time for the safety service life of the bridge. The stresses of integral joint are greater than that of truss members;the stresses in the center area of the integral joint are greater than the stress at the edge.展开更多
In order to further improve the seismic performance of RC shear walls, a new composite shear wall with concrete filled steel tube (CFT) columns and concealed steel trusses is proposed. This new shear wall is a doubl...In order to further improve the seismic performance of RC shear walls, a new composite shear wall with concrete filled steel tube (CFT) columns and concealed steel trusses is proposed. This new shear wall is a double composite shear wall; the first composite being the use of three different force systems, CFT, steel truss and shear wall, and the second the use of two different materials, steel and concrete. Three 1/5 scaled experimental specimens: a traditional RC shear wall, a shear wall with CFT columns, and a shear wall with CFT columns and concealed steel trusses, were tested under cyclic loading and the seismic performance indices of the shear walls were comparatively analyzed. Based on the data from these experiments, a thorough elastic-plastic finite element analysis and parametric analysis of the new shear walls were carried out using ABAQUS software. The finite element results of deformation, stress distribution, and the evolution of cracks in each phase were compared with the experimental results and showed good agreement. A mechanical model was also established for calculating the load-carrying capacity of the new composite shear walls. The results show that this new type of shear wall has improved seismic performance over the other two types of shear wails tested.展开更多
When the installation of cables and pipelines needs to go across rivers,bridges are usually adopted to support the cables and pipelines for crossing the rivers.The measure can make full use of the space resources and ...When the installation of cables and pipelines needs to go across rivers,bridges are usually adopted to support the cables and pipelines for crossing the rivers.The measure can make full use of the space resources and have no effect on the flow pattern of rivers.For this reason,analysis on the structural-type design of a large-span steel truss bridge specially used for cables has been performed.The numerical results indicate that the stayed-cable bridge with steel truss beam and concrete main tower has better performance and improved structural type caparisoned with that of the beam and arch bridges,and the construction of the major beam can be without the temporary support.展开更多
Purpose–Under different ground motion excitation modes,the spatial coupling effect of seismic response for the arch bridge with thrust,seismic weak parts and the internal force components of the control section of ma...Purpose–Under different ground motion excitation modes,the spatial coupling effect of seismic response for the arch bridge with thrust,seismic weak parts and the internal force components of the control section of main arch ribs are analyzed.Design/methodology/approach–Taking a 490 m deck type railway steel truss arch bridge as the background,the dynamic calculation model of the whole bridge was established by SAP2000 software.The seismic response analyses under one-,two-and three-dimension(1D,2D and 3D)uniform ground motion excitations were carried out.Findings–For the steel truss arch bridge composed of multiple arch ribs,any single direction ground motion excitation will cause large axial force in the chord of arch rib.The axial force caused by transverse and vertical ground motion excitation in the chord of arch crown area is 1.4–3.6 times of the corresponding axial force under longitudinal seismic excitation.The in-plane bending moment caused by the lower chord at the vault is 4.2–5.5 times of the corresponding bending moment under the longitudinal seismic excitation.For the bottom chord of arch rib,the arch foot is the weak part of earthquake resistance,but for the upper chord of arch rib,the arch foot,arch crown and the intersection of column and upper chord can all be the potential earthquake-resistant weak parts.The normal stress of the bottom chord of the arch rib under multidimensional excitation is mainly caused by the axial force,but the normal stress of the upper chord of the arch rib is caused by the axial force,in-plane and out of plane bending moment.Originality/value–The research provides specific suggestions for ground motion excitation mode and also provides reference information for the earthquake-resistant weak part and seismic design of long-span deck type railway steel truss arch bridges.展开更多
Cave-in failure is apt to occur in joints of trusses made of square hollow sections. In order to turn the failure mode into a strength failure mode of joint members, the idea is proposed that the chord of the truss is...Cave-in failure is apt to occur in joints of trusses made of square hollow sections. In order to turn the failure mode into a strength failure mode of joint members, the idea is proposed that the chord of the truss is grouted to increase the cave-in beating capacity of a hollow tube chord. An experiment of eight specimens of N- joints made of grout-filled square steel tubes is performed. Based on the experimental study, the geometrical parameters of specimens are analyzed, and the effects of the confinement index ε, the spacing between the two web members g and the ratio of side length of the vertical web member to that of the chord β on the behavior of specimens are investigated through simulation analysis by simulation analyses, the mechanical properties and the failure an ANSYS program. Based on the test results and modes of this kind of joints are analyzed and the formulae to predict the ultimate bearing capacities corresponding to different failure modes are developed. The ultimate bearing capacity of compressive N-joints is calculated in accordance with the cave-in failure mode of a chord member; the ultimate bearing capacity of tension N-joints is calculated in accordance with the punchingshear failure mode; the ultimate bearing capacity of a chord member is calculated in accordance with the shear failure mode in normal sections.展开更多
Generally, the number of fatigue cycles, the range of the repeated stresses, and the type of the structural details are the key factors affecting fatigue in large-scale welded structures. Seven types of struc- ture ...Generally, the number of fatigue cycles, the range of the repeated stresses, and the type of the structural details are the key factors affecting fatigue in large-scale welded structures. Seven types of struc- ture details were tested using a 2000-kN hydraulic-pressure-servo fatigue machine to imitate fatigue behav- ior in modern steel-truss-structures fabricated using thicker welded steel plates and integral joint technology. The details included longitudinal edge welds, welded attachment affecting detail, integral joint, and weld re- pairs on plate edges. The fatigue damage locations show that the stress (normal or shear), the shape, and the location of the weld start and end points are three major factors reducing the fatigue strength. The test results can be used for similar large structures.展开更多
To improve the seismic performance of reinforced concrete core walls,reinforced concrete com-posite core walls with concealed steel truss were proposed and systemically investigated.Two 1/6 scale core wall specimens,i...To improve the seismic performance of reinforced concrete core walls,reinforced concrete com-posite core walls with concealed steel truss were proposed and systemically investigated.Two 1/6 scale core wall specimens,including a normal reinforced concrete core wall and a reinforced concrete composite core wall with concealed steel truss,were designed.The experimental study on seismic performance under cyclic loading was carried out.The load-carrying capacity,stiffness,ductility,hysteretic behavior and energy dissipation of the core walls were discussed.The test results showed that the seismic performance of core walls is improved greatly by the concealed steel truss.The calculated results were found to agree well with the actual measured ones.展开更多
Experimental research was conducted to study the structural behaviors of a steel roof truss model without fire-proof coating under pool fire conditions. The data of temperature distribution and displacements of typica...Experimental research was conducted to study the structural behaviors of a steel roof truss model without fire-proof coating under pool fire conditions. The data of temperature distribution and displacements of typical members were obtained. It is found that the temperature distribution of environment inside the structure, which is found to be in accordance with the multi-zone model with height, has a decisive effect on the tempera^tre evolution of steel members. Besides, it can also be observed that due to the restriction and coordination among the truss members in the localized fire, the maximum relative deflection, which occurs at the mid-span of the top chord, is relatively slight and has not exceeded 1 mm under experimental conditions. On the other hand, the column experiences a notable thermal expansion during the test. Then, a finite element model is presented and validated by the test results.展开更多
Based on a shaking table experiment of 1 :25 scale frame-shearwall structure model with steel transfer trusses,the dynamic characteristics,seismic responses in elastic and elastic-plastic phases with de- structive for...Based on a shaking table experiment of 1 :25 scale frame-shearwall structure model with steel transfer trusses,the dynamic characteristics,seismic responses in elastic and elastic-plastic phases with de- structive forms of the structure were studied.It was observed that cracks were developed with earthquake wave acceleration increasing,but no severe crack was developed in the structure during the experiment.In the seismic responses caused by artificial wave,site wave and E1 Centro wave,that caused by the artificial wave is the most intense one.Displacement angle between steel transfer trusses is large,which means the transfer stories might be weak.However,the seismic performance of the steel transfer trusses is good and the overall structure can satisfy seismic fortification requirements in the region of intensity 6.展开更多
Tests of 4 simply supported unbonded prestressed truss concrete composite beams encased with circular steel tube were carried out. It is found that the ratio of the stress increment of the unbonded tendon to that of t...Tests of 4 simply supported unbonded prestressed truss concrete composite beams encased with circular steel tube were carried out. It is found that the ratio of the stress increment of the unbonded tendon to that of the tensile steel tube is 0.252 during the using stage,and the average crack space of beams depends on the ratio of the sum of the bottom chord steel tube's outside diameter and the secondary bottom chord steel tube's section area to the effective tensile concrete area. The coefficient of uneven crack distribution is 1.68 and the formula for the calculation of crack width is established. Test results indicate that the ultimate stress increment of unbonded tendon in the beams decreases in linearity with the increase of the composite reinforcement index β0. The pure bending region of beams accords with the plane section assumption from loading to failure. The calculation formula of ultimate stress increment of the unbonded tendon and the method to calculate the bearing capacity of normal section of beams have been presented. Besides,the method to calculate the stiffness of this sort of beams is brought forward as well.展开更多
文摘Steel truss suspension bridges are prone to developing defects after prolonged use.These defects may include corrosion of the main cable or the steel truss.To ensure the normal and safe functioning of the suspension bridge,it is necessary to inspect for defects promptly,understand the cause of the defect,and locate it through the use of inspection technology.By promptly addressing defects,the suspension bridge’s safety can be ensured.The author has analyzed the common defects and causes of steel truss suspension bridges and proposed specific inspection technologies.This research is intended to aid in the timely discovery of steel truss suspension bridge defects.
文摘Steel truss bridges are frequently used in bridge engineering because of their good ability of spanning capacity, construction and light self-weight. Main trusses are the critical component of steel truss bridge and the main truss are made of truss members linked by integral joints. This paper presents the mechanic performance of key joints, and the codified design of joints in steel truss girders according to the latest European norms. The results showed that the fatigue resistance of welded joints evaluation is necessary to predict, detect, and repair the crack in time for the safety service life of the bridge. The stresses of integral joint are greater than that of truss members;the stresses in the center area of the integral joint are greater than the stress at the edge.
基金Science and Technology Key Project of Beijing Under Grant No.D0905060370000National Natural Science Foundation of China Under Grant No.50878007+1 种基金Project High-level Personnel in Beijing Under Grant No.PHR20100502the Scientific and Technological Planning of Beijing Key Project Education Commission Under Grant No.KZ200910005008
文摘In order to further improve the seismic performance of RC shear walls, a new composite shear wall with concrete filled steel tube (CFT) columns and concealed steel trusses is proposed. This new shear wall is a double composite shear wall; the first composite being the use of three different force systems, CFT, steel truss and shear wall, and the second the use of two different materials, steel and concrete. Three 1/5 scaled experimental specimens: a traditional RC shear wall, a shear wall with CFT columns, and a shear wall with CFT columns and concealed steel trusses, were tested under cyclic loading and the seismic performance indices of the shear walls were comparatively analyzed. Based on the data from these experiments, a thorough elastic-plastic finite element analysis and parametric analysis of the new shear walls were carried out using ABAQUS software. The finite element results of deformation, stress distribution, and the evolution of cracks in each phase were compared with the experimental results and showed good agreement. A mechanical model was also established for calculating the load-carrying capacity of the new composite shear walls. The results show that this new type of shear wall has improved seismic performance over the other two types of shear wails tested.
文摘When the installation of cables and pipelines needs to go across rivers,bridges are usually adopted to support the cables and pipelines for crossing the rivers.The measure can make full use of the space resources and have no effect on the flow pattern of rivers.For this reason,analysis on the structural-type design of a large-span steel truss bridge specially used for cables has been performed.The numerical results indicate that the stayed-cable bridge with steel truss beam and concrete main tower has better performance and improved structural type caparisoned with that of the beam and arch bridges,and the construction of the major beam can be without the temporary support.
基金supported by the National Natural Science Foundation of China(Grant No.51768037)“Foundation of A Hundred Youth Talents Training Program of Lanzhou Jiaotong University.”。
文摘Purpose–Under different ground motion excitation modes,the spatial coupling effect of seismic response for the arch bridge with thrust,seismic weak parts and the internal force components of the control section of main arch ribs are analyzed.Design/methodology/approach–Taking a 490 m deck type railway steel truss arch bridge as the background,the dynamic calculation model of the whole bridge was established by SAP2000 software.The seismic response analyses under one-,two-and three-dimension(1D,2D and 3D)uniform ground motion excitations were carried out.Findings–For the steel truss arch bridge composed of multiple arch ribs,any single direction ground motion excitation will cause large axial force in the chord of arch rib.The axial force caused by transverse and vertical ground motion excitation in the chord of arch crown area is 1.4–3.6 times of the corresponding axial force under longitudinal seismic excitation.The in-plane bending moment caused by the lower chord at the vault is 4.2–5.5 times of the corresponding bending moment under the longitudinal seismic excitation.For the bottom chord of arch rib,the arch foot is the weak part of earthquake resistance,but for the upper chord of arch rib,the arch foot,arch crown and the intersection of column and upper chord can all be the potential earthquake-resistant weak parts.The normal stress of the bottom chord of the arch rib under multidimensional excitation is mainly caused by the axial force,but the normal stress of the upper chord of the arch rib is caused by the axial force,in-plane and out of plane bending moment.Originality/value–The research provides specific suggestions for ground motion excitation mode and also provides reference information for the earthquake-resistant weak part and seismic design of long-span deck type railway steel truss arch bridges.
基金The National Natural Science Foundation of China(No50178026)Program for New Century Excellent Talents in University+1 种基金the Key Technologies R & D Program of Heilongjiang Province(NoGC04A609)the Key Technologies R & D Program of Harbin City(No2004AA9CS187)
文摘Cave-in failure is apt to occur in joints of trusses made of square hollow sections. In order to turn the failure mode into a strength failure mode of joint members, the idea is proposed that the chord of the truss is grouted to increase the cave-in beating capacity of a hollow tube chord. An experiment of eight specimens of N- joints made of grout-filled square steel tubes is performed. Based on the experimental study, the geometrical parameters of specimens are analyzed, and the effects of the confinement index ε, the spacing between the two web members g and the ratio of side length of the vertical web member to that of the chord β on the behavior of specimens are investigated through simulation analysis by simulation analyses, the mechanical properties and the failure an ANSYS program. Based on the test results and modes of this kind of joints are analyzed and the formulae to predict the ultimate bearing capacities corresponding to different failure modes are developed. The ultimate bearing capacity of compressive N-joints is calculated in accordance with the cave-in failure mode of a chord member; the ultimate bearing capacity of tension N-joints is calculated in accordance with the punchingshear failure mode; the ultimate bearing capacity of a chord member is calculated in accordance with the shear failure mode in normal sections.
基金Supported by the Science and Technology Development Project of the Ministry of Railways China (No. 96G35)
文摘Generally, the number of fatigue cycles, the range of the repeated stresses, and the type of the structural details are the key factors affecting fatigue in large-scale welded structures. Seven types of struc- ture details were tested using a 2000-kN hydraulic-pressure-servo fatigue machine to imitate fatigue behav- ior in modern steel-truss-structures fabricated using thicker welded steel plates and integral joint technology. The details included longitudinal edge welds, welded attachment affecting detail, integral joint, and weld re- pairs on plate edges. The fatigue damage locations show that the stress (normal or shear), the shape, and the location of the weld start and end points are three major factors reducing the fatigue strength. The test results can be used for similar large structures.
文摘To improve the seismic performance of reinforced concrete core walls,reinforced concrete com-posite core walls with concealed steel truss were proposed and systemically investigated.Two 1/6 scale core wall specimens,including a normal reinforced concrete core wall and a reinforced concrete composite core wall with concealed steel truss,were designed.The experimental study on seismic performance under cyclic loading was carried out.The load-carrying capacity,stiffness,ductility,hysteretic behavior and energy dissipation of the core walls were discussed.The test results showed that the seismic performance of core walls is improved greatly by the concealed steel truss.The calculated results were found to agree well with the actual measured ones.
基金Project(50706059) supported by the National Natural Science Foundation of ChinaProject(HZ2009-KF05) supported by Open Fund of State Key Laboratory of Fire Science of University of Science and Technology in ChinaProject supported by the Fundamental Research Funds for the Central Universities of China
文摘Experimental research was conducted to study the structural behaviors of a steel roof truss model without fire-proof coating under pool fire conditions. The data of temperature distribution and displacements of typical members were obtained. It is found that the temperature distribution of environment inside the structure, which is found to be in accordance with the multi-zone model with height, has a decisive effect on the tempera^tre evolution of steel members. Besides, it can also be observed that due to the restriction and coordination among the truss members in the localized fire, the maximum relative deflection, which occurs at the mid-span of the top chord, is relatively slight and has not exceeded 1 mm under experimental conditions. On the other hand, the column experiences a notable thermal expansion during the test. Then, a finite element model is presented and validated by the test results.
文摘Based on a shaking table experiment of 1 :25 scale frame-shearwall structure model with steel transfer trusses,the dynamic characteristics,seismic responses in elastic and elastic-plastic phases with de- structive forms of the structure were studied.It was observed that cracks were developed with earthquake wave acceleration increasing,but no severe crack was developed in the structure during the experiment.In the seismic responses caused by artificial wave,site wave and E1 Centro wave,that caused by the artificial wave is the most intense one.Displacement angle between steel transfer trusses is large,which means the transfer stories might be weak.However,the seismic performance of the steel transfer trusses is good and the overall structure can satisfy seismic fortification requirements in the region of intensity 6.
文摘Tests of 4 simply supported unbonded prestressed truss concrete composite beams encased with circular steel tube were carried out. It is found that the ratio of the stress increment of the unbonded tendon to that of the tensile steel tube is 0.252 during the using stage,and the average crack space of beams depends on the ratio of the sum of the bottom chord steel tube's outside diameter and the secondary bottom chord steel tube's section area to the effective tensile concrete area. The coefficient of uneven crack distribution is 1.68 and the formula for the calculation of crack width is established. Test results indicate that the ultimate stress increment of unbonded tendon in the beams decreases in linearity with the increase of the composite reinforcement index β0. The pure bending region of beams accords with the plane section assumption from loading to failure. The calculation formula of ultimate stress increment of the unbonded tendon and the method to calculate the bearing capacity of normal section of beams have been presented. Besides,the method to calculate the stiffness of this sort of beams is brought forward as well.