The core structure of (110){001} mixed disloca- tion in perovskite SrTiO3 is investigated with the modified two-dimensional Peierls-Nabarro dislocation equation con- sidering the discreteness effect of crystals. The...The core structure of (110){001} mixed disloca- tion in perovskite SrTiO3 is investigated with the modified two-dimensional Peierls-Nabarro dislocation equation con- sidering the discreteness effect of crystals. The results show that the core structure of mixed dislocation is independent of the unstable energy in the (100) direction, but closely related to the unstable energy in the (110) direction which is the direction of total Burgers vector of mixed dislocation. Furthermore, the ratio of edge displacement to screw one nearly equals to the tangent of dislocation angle for differ- ent unstable energies in the (110) direction. Thus, the con- strained path approximation is effective for the (110){001} mixed dislocation in SrTiO3 and two-dimensional equation can degenerate into one-dimensional equation that is only related to the dislocation angle. The Peierls stress for (110) {001 } dislocations can be expediently obtained with the one-dimensional equation and the predictive values for edge, mixed and screw dislocations are 0.17, 0.22 and 0.46 GPa, respectively.展开更多
A discrete dislocation plasticity analysis of dispersion strengthening in oxide dispersion strengthened(ODS) steels was described. Parametric dislocation dynamics(PDD) simulation of the interaction between an edge dis...A discrete dislocation plasticity analysis of dispersion strengthening in oxide dispersion strengthened(ODS) steels was described. Parametric dislocation dynamics(PDD) simulation of the interaction between an edge dislocation and randomly distributed spherical dispersoids(Y2O3) in bcc iron was performed for measuring the influence of the dispersoid distribution on the critical resolved shear stress(CRSS). The dispersoid distribution was made using a method mimicking the Ostwald growth mechanism. Then, an edge dislocation was introduced, and was moved under a constant shear stress condition. The CRSS was extracted from the result of dislocation velocity under constant shear stress using the mobility(linear) relationship between the shear stress and the dislocation velocity. The results suggest that the dispersoid distribution gives a significant influence to the CRSS, and the influence of dislocation dipole, which forms just before finishing up the Orowan looping mechanism, is substantial in determining the CRSS, especially for the interaction with small dispersoids. Therefore, the well-known Orowan equation for determining the CRSS cannot give an accurate estimation, because the influence of the dislocation dipole in the process of the Orowan looping mechanism is not accounted for in the equation.展开更多
Total strain controlled cyclic test was performed on 316 LN under uniaxial loadings. Through the partitioning of hysteresis loops, the evolution of two components of cyclic flow stress, the internal and effective stre...Total strain controlled cyclic test was performed on 316 LN under uniaxial loadings. Through the partitioning of hysteresis loops, the evolution of two components of cyclic flow stress, the internal and effective stresses, was reported. The former one determines the cyclic stress response. Based on the transmission electron microscopic(TEM) observation on specimens loaded with scheduled cycles, it is found that planar dislocation structures prevail during the entire cyclic process at low strain amplitude, while a remarkable dislocation rearrangement from planar structures to heterogeneous spatial distributions is companied by a cyclic softening behavior at high strain amplitude. The competition between the evolution of the intergranular and the intragranular components of the internal stress caused by the transition of slip mode induces the cyclic hardening and softening at high strain levels. The intergranular internal stress represents the most part of the internal stress at low strain level.展开更多
We investigated the stress fields caused by a dislocation in an anisotropic 3-layer system. Based on the image method, the original 3-layer system is firstly decomposed into three infinite homogenous systems. The imag...We investigated the stress fields caused by a dislocation in an anisotropic 3-layer system. Based on the image method, the original 3-layer system is firstly decomposed into three infinite homogenous systems. The image dislocation densities used as unknowns are then strategically distributed in order to satisfy the boundary conditions. The resulting governing equations are singular Cauchy integral ones. Removing the singular terms yields non-linear Fredhom integral equations of the second kind. The obtained stress fields satisfy the boundary conditions, i.e., the traction free condition on the free surface and continuous conditions across the interfaces. Also, a comparison with previous results is made and good agreement is achieved. Numerical investigations show that under the plain strain condition, layer thickness and dislocation position play stronger roles in the stress fields than crystallographic orientation, and these effects more significantly affect the stress fields caused by an edge dislocation than by a screw dislocation.展开更多
The creep deformation behavior of aged AZ91 magnesium alloy under the cyclic stress reduction has been investigated in the temperature range 353–383 K. The microstructural evolution of the AZ91 magnesium alloy at dif...The creep deformation behavior of aged AZ91 magnesium alloy under the cyclic stress reduction has been investigated in the temperature range 353–383 K. The microstructural evolution of the AZ91 magnesium alloy at different heat treatment conditions has been studied using optical microscopy and scanning electron microscopy. The minimum strain rate, e_min, was found to be higher under cyclic stress reduction condition than that under static creep condition for the same maximum stress. Cyclic creep acceleration is interpreted using the interaction of moving dislocations with the existing b-phase(Mg17Al12) precipitates. The mean value of the activation energy of secondary creep stage was found to be equal to that quoted for lattice self-diffusion of magnesium mechanism.展开更多
The data of deformation strength and microstructure of thin films of nanocrystalline Pd recently provided by Colla et al. have been analysed. It is shown that the properties of the films with cylindrical grains of30 n...The data of deformation strength and microstructure of thin films of nanocrystalline Pd recently provided by Colla et al. have been analysed. It is shown that the properties of the films with cylindrical grains of30 nm diameter extending over a significant portion of the film thickness(≈90 nm) are quantitatively comparable to what is known from nanocrystalline bulk material. This is explained in terms of boundarymediated processes governing emission, storage, and recovery of dislocations.展开更多
基金supported by the National Natural Science Foundation of China(10774196)Science Foundation Project of CQ CSTC(2006BB4156)Chongqing University Postgraduates' Science and Innovation Fund(200707A1A0030240)
文摘The core structure of (110){001} mixed disloca- tion in perovskite SrTiO3 is investigated with the modified two-dimensional Peierls-Nabarro dislocation equation con- sidering the discreteness effect of crystals. The results show that the core structure of mixed dislocation is independent of the unstable energy in the (100) direction, but closely related to the unstable energy in the (110) direction which is the direction of total Burgers vector of mixed dislocation. Furthermore, the ratio of edge displacement to screw one nearly equals to the tangent of dislocation angle for differ- ent unstable energies in the (110) direction. Thus, the con- strained path approximation is effective for the (110){001} mixed dislocation in SrTiO3 and two-dimensional equation can degenerate into one-dimensional equation that is only related to the dislocation angle. The Peierls stress for (110) {001 } dislocations can be expediently obtained with the one-dimensional equation and the predictive values for edge, mixed and screw dislocations are 0.17, 0.22 and 0.46 GPa, respectively.
文摘A discrete dislocation plasticity analysis of dispersion strengthening in oxide dispersion strengthened(ODS) steels was described. Parametric dislocation dynamics(PDD) simulation of the interaction between an edge dislocation and randomly distributed spherical dispersoids(Y2O3) in bcc iron was performed for measuring the influence of the dispersoid distribution on the critical resolved shear stress(CRSS). The dispersoid distribution was made using a method mimicking the Ostwald growth mechanism. Then, an edge dislocation was introduced, and was moved under a constant shear stress condition. The CRSS was extracted from the result of dislocation velocity under constant shear stress using the mobility(linear) relationship between the shear stress and the dislocation velocity. The results suggest that the dispersoid distribution gives a significant influence to the CRSS, and the influence of dislocation dipole, which forms just before finishing up the Orowan looping mechanism, is substantial in determining the CRSS, especially for the interaction with small dispersoids. Therefore, the well-known Orowan equation for determining the CRSS cannot give an accurate estimation, because the influence of the dislocation dipole in the process of the Orowan looping mechanism is not accounted for in the equation.
基金Funded by the Nuclear Power Major Project(No.2011zx06004-002)
文摘Total strain controlled cyclic test was performed on 316 LN under uniaxial loadings. Through the partitioning of hysteresis loops, the evolution of two components of cyclic flow stress, the internal and effective stresses, was reported. The former one determines the cyclic stress response. Based on the transmission electron microscopic(TEM) observation on specimens loaded with scheduled cycles, it is found that planar dislocation structures prevail during the entire cyclic process at low strain amplitude, while a remarkable dislocation rearrangement from planar structures to heterogeneous spatial distributions is companied by a cyclic softening behavior at high strain amplitude. The competition between the evolution of the intergranular and the intragranular components of the internal stress caused by the transition of slip mode induces the cyclic hardening and softening at high strain levels. The intergranular internal stress represents the most part of the internal stress at low strain level.
基金supported by the Innovation Fund of Institute of Structural Mechanics, CAEP (Grant No: 09cxj02)
文摘We investigated the stress fields caused by a dislocation in an anisotropic 3-layer system. Based on the image method, the original 3-layer system is firstly decomposed into three infinite homogenous systems. The image dislocation densities used as unknowns are then strategically distributed in order to satisfy the boundary conditions. The resulting governing equations are singular Cauchy integral ones. Removing the singular terms yields non-linear Fredhom integral equations of the second kind. The obtained stress fields satisfy the boundary conditions, i.e., the traction free condition on the free surface and continuous conditions across the interfaces. Also, a comparison with previous results is made and good agreement is achieved. Numerical investigations show that under the plain strain condition, layer thickness and dislocation position play stronger roles in the stress fields than crystallographic orientation, and these effects more significantly affect the stress fields caused by an edge dislocation than by a screw dislocation.
文摘The creep deformation behavior of aged AZ91 magnesium alloy under the cyclic stress reduction has been investigated in the temperature range 353–383 K. The microstructural evolution of the AZ91 magnesium alloy at different heat treatment conditions has been studied using optical microscopy and scanning electron microscopy. The minimum strain rate, e_min, was found to be higher under cyclic stress reduction condition than that under static creep condition for the same maximum stress. Cyclic creep acceleration is interpreted using the interaction of moving dislocations with the existing b-phase(Mg17Al12) precipitates. The mean value of the activation energy of secondary creep stage was found to be equal to that quoted for lattice self-diffusion of magnesium mechanism.
文摘The data of deformation strength and microstructure of thin films of nanocrystalline Pd recently provided by Colla et al. have been analysed. It is shown that the properties of the films with cylindrical grains of30 nm diameter extending over a significant portion of the film thickness(≈90 nm) are quantitatively comparable to what is known from nanocrystalline bulk material. This is explained in terms of boundarymediated processes governing emission, storage, and recovery of dislocations.