Cavitating jet is a promising drilling rate improvement technology in both the marine natural gas hydrate (NGH) fluidization exploitation method and the integrated radial jet drilling and completion method. In present...Cavitating jet is a promising drilling rate improvement technology in both the marine natural gas hydrate (NGH) fluidization exploitation method and the integrated radial jet drilling and completion method. In present study, we aim to improve the efficiency of jet erosion and extracting NGH. With a computational fluid dynamics (CFD) method, the pressure, velocity and cavitation field characteristics of organ-pipe cavitating jet (OPCJ) are analysed. The divergent angle, throat length, and divergent length of OPCJ nozzle are preferred to obtain stronger jet cavitation erosion effect. Laboratory experiments of gas hydrate-bearing sediments (GHBS) erosion by OPCJ and conical jet (CJ) are conducted to compare and validate the jet erosion performance. The impinging models of OPCJ and CJ are constructed to study the impact characteristics. Results show that the preferred values of divergent angle, throat length, and divergent length are 15°, 1d, and 3d, respectively, in present simulation conditions. For GHBS, the OPCJ possesses the advantages of high efficiency and low energy consumption. Moreover, the OPCJ has higher penetration efficiency, while showing equivalent penetration ability compared to CJ. During the impinging process, the OPCJ can induce stronger impact pressure and turbulence effect, and also shows stronger chambering effect and bottom cleaning ability compared to CJ. This study presents the erosion performance of OPCJ and CJ on GHBS, and provides preliminary insights on the potential field applications in NGH exploitation.展开更多
The plenum chamber of a heat setting machine is a key structure for distributing hot air to different air channels.Its outlet velocity uniformity directly determines the heating uniformity of textiles,significantly af...The plenum chamber of a heat setting machine is a key structure for distributing hot air to different air channels.Its outlet velocity uniformity directly determines the heating uniformity of textiles,significantly affecting the heat setting performance.In a traditional heat setting machine,the outlet airflow maldistribution of the plenum chamber still exists.In this study,a novel plenum chamber with an airfoil baffle was established to improve the uniformity of the velocity distribution at the outlet in a heat setting machine.The structural influence of the plenum chamber on the velocity distribution was investigated using a computational fluid dynamics program.It was found that a chamber with a smaller outlet partition thickness had a better outlet velocity uniformity.The structural optimization of the plenum chamber was conducted using the particle swarm optimization algorithm.The outlet partition thickness,the transverse distance and the longitudinal distance of the optimized plenum chamber were 20,686.2 and 274.6 mm,respectively.Experiments were carried out.The experimental and simulated results showed that the optimized plenum chamber with an airfoil baffle could improve the outlet velocity uniformity.The air outlet velocity uniformity index of the optimized plenum chamber with an airfoil baffle was 4.75%higher than that of the plenum chamber without an airfoil baffle and 5.98%higher than that of the conventional chamber with a square baffle in a commercial heat setting machine.展开更多
This paper firstly introduces the common faults of traveling transmission system of shuttle car.Secondly,by analyzing the characteristics of shuttle car structure,the layout of traveling transmission system and the co...This paper firstly introduces the common faults of traveling transmission system of shuttle car.Secondly,by analyzing the characteristics of shuttle car structure,the layout of traveling transmission system and the common faults on shuttle car,this paper concludes that"internal holding torque"is the main cause of faults.Finally,this paper proposes a corresponding optimization design scheme to reduce the impact of"internal torque",and calculates the relevant results through the finite element simulation analysis method.Through these analyses and calculations,it is shown that the method can effectively reduce the probability of failure of traveling transmission system of shuttle car.展开更多
Build-up panels for the commercial aircraft fuselage subjected to the axial compression load are studied by both experimental and theoretical methods.An integral panel is designed with the same overall size and weight...Build-up panels for the commercial aircraft fuselage subjected to the axial compression load are studied by both experimental and theoretical methods.An integral panel is designed with the same overall size and weight as the build-up structure,and finite element models(FEMs)of these two panels are established.Experimental results of build-up panels agree well with the FEM results with the nonliearity and the large deformation,so FEMs are validated.FEM calculation results of these two panels indicate that the failure mode of the integral panel is different from that of the build-up panel,and the failure load increases by 18.4% up to post-buckling.Furthermore,the integral structure is optimized by using the multi-island genetic algorithm and the sequential quadratic programming.Compared with the initial design,the optimal mass is reduced by 8.7% and the strength is unchanged.展开更多
Land use structure optimization(LUSO) is an important issue for land use planning. In order for land use planning to have reasonable flexibility, uncertain optimization should be applied for LUSO. In this paper, the r...Land use structure optimization(LUSO) is an important issue for land use planning. In order for land use planning to have reasonable flexibility, uncertain optimization should be applied for LUSO. In this paper, the researcher first expounded the uncertainties of LUSO. Based on this, an interval programming model was developed, of which interval variables were to hold land use uncertainties. To solve the model, a heuristics based on Genetic Algorithm was designed according to Pareto Optimum principle with a confidence interval under given significance level to represent LUSO result. Proposed method was applied to a real case of Yangzhou, an eastern city in China. The following conclusions were reached. 1) Different forms of uncertainties ranged from certainty to indeterminacy lay in the five steps of LUSO, indicating necessary need of comprehensive approach to quantify them. 2) With regards to trade-offs of conflicted objectives and preferences to uncertainties, our proposed model displayed good ability of making planning decision process transparent, therefore providing an effective tool for flexible land use planning compiling. 3) Under uncertain conditions, land use planning effectiveness can be primarily enhanced by flexible management with reserved space to percept and hold uncertainties in advance.展开更多
A large number of mathematical models were developed for supporting agricultural production structure optimization decisions; however, few of them can address various uncertainties existing in many factors (e.g., eco...A large number of mathematical models were developed for supporting agricultural production structure optimization decisions; however, few of them can address various uncertainties existing in many factors (e.g., eco-social benefit maximization, food security, employment stability and ecosystem balance). In this study, an interval-probabilistic agricultural production structure optimization model (IPAPSOM) is formulated for tackling uncertainty presented as discrete intervals and/or probability distribution. The developed model improves upon the existing probabilistic programming and inexact optimization approaches. The IPAPSOM considers not only food security policy constraints, but also involves rural households’income increase and eco-environmental conversation, which can effectively reflect various interrelations among different aspects in an agricultural production structure optimization system. Moreover, it can also help examine the reliability of satisfying (or risk of violating) system constraints under uncertainty. The model is applied to a real case of long-term agricultural production structure optimization in Dancheng County, which is located in Henan Province of Central China as one of the major grain producing areas. Interval solutions associated with different risk levels of constraint violation are obtained. The results are useful for generating a range of decision alternatives under various system benefit conditions, and thus helping decision makers to identify the desired agricultural production structure optimization strategy under uncertainty.展开更多
Flow characteristics, such as flow pattern, gas holdup, and bubble size distribution, in an internal loop reactor with external liquid circulation, are simulated to investigate the influence of reactor internals by us...Flow characteristics, such as flow pattern, gas holdup, and bubble size distribution, in an internal loop reactor with external liquid circulation, are simulated to investigate the influence of reactor internals by using the computational fluid dynamics (CFD)-population balance equations (PBE) coupled model. Numerical results reveal that introducing a downcomer tube and a draft tube can help to improve the mass and heat transfer of the reactor through enhanced liquid circulation, increased gas holdup and reduced bubble diameter. The hydrodynamic behavior in the internal loop reactor with external liquid circulation can be managed effectively by adjusting the diameter and axial position of the draft tube.展开更多
Pavement construction in permafrost regions is complicated by the fact that the permafrost properties are influenced by the temperature and are extremely unstable.The numerical model for runway structures in permafros...Pavement construction in permafrost regions is complicated by the fact that the permafrost properties are influenced by the temperature and are extremely unstable.The numerical model for runway structures in permafrost regions is applied to analyze the time–space characteristics of the temperature field and the depth of the frozen layer.The influence of the installation layer is studied to enable structural optimization of the runway.Numerical results show that the temperature stabilization depth,low-and high-temperature interlayer response ranges,and maximum depth of the frozen layer are greater in runway engineering than in highway and railway engineering.The time history curves for the pavement and natural surface are similar,and the development of freezing and thawing is approximately linear.The pavement and natural surface have similar thawing rates,but the freezing rate of the natural surface is faster than that of the pavement.The depth of the frozen layer and the time of the frozen are greater for the natural surface than for the pavement.The installation layer helps to stabilize the temperature of the subgrade and reduces the freezing and thawing rates.This study provides technical support for the design and maintenance of runways in permafrost regions.展开更多
A gas-phase surface discharge(GSD)was employed to optimize the discharge reactor structure and investigate the dye degradation.A dye mixture of methylene blue,acid orange and methyl orange was used as a model pollut...A gas-phase surface discharge(GSD)was employed to optimize the discharge reactor structure and investigate the dye degradation.A dye mixture of methylene blue,acid orange and methyl orange was used as a model pollutant.The results indicated that the reactor structure of the GSD system with the ratio of tube inner surface area and volume of 2.48,screw pitch between a high-voltage electrode of 9.7 mm,high-voltage electrode wire diameter of 0.8 mm,dielectric tube thickness of2.0 mm and tube inner diameter of 16.13 mm presented a better ozone(O_3)generation efficiency.Furthermore,a larger screw pitch and smaller wire diameter enhanced the O_3generation.After the dye mixture degradation by the optimized GSD system,73.21%and 50.74%of the chemical oxygen demand(COD)and total organic carbon removal rate were achieved within 20 min,respectively,and the biochemical oxygen demand(BOD)and biodegradability(BOD/COD)improved.展开更多
In order to solve the problem of using new nozzle is proposed in fire rescue robot. middle or low water pressure to form fine water mist, a Existing water mist nozzles are basically used for high pressure and in large...In order to solve the problem of using new nozzle is proposed in fire rescue robot. middle or low water pressure to form fine water mist, a Existing water mist nozzles are basically used for high pressure and in large size, complex structure and poor low pressure atomization effect in comparison with requirement of snake-like fire rescue robots. On the basis of comprehensive typical spray noz- zles, a direct spiral double helix converging nozzle (DSDHCN) is proposed, which has the advanta- ges of small volume, light weight, simple structure, and convenient installation. To make the spray nozzle have good performance, and meet the requirements of more efficient fire extinguishing, a nu- merical study is carried out to analyze the internal and external full flow field of nozzle. A gas-liquid two-phase flow is applied to simulate the external full flow field of nozzle with VOF model in fluent software. The simulation results show the real situation of water flow out of the atomization nozzle and the water jet trajectory. Some simulations about middle or low water pressure direct spiral double he- lix converging optimized nozzle have been done in 30bar pressure. The simulation results show that the optimized nozzle structure not only makes the spray droplets have a good cone angle, but also have a sufficient axial velocity,which proves the structure rationality of the proposed optimized nozzle.展开更多
A new kind of material cast polyurethane elastomers (CPUE) is introduced to take the place of rubber on load bearing wheel for the first time. Based on load bearing wheel dimensions, material properties and operatin...A new kind of material cast polyurethane elastomers (CPUE) is introduced to take the place of rubber on load bearing wheel for the first time. Based on load bearing wheel dimensions, material properties and operating conditions, the structure of wheel flange is optimized by zero order finite element method. A detailed three dimensional finite element model of flange of load bearing wheel is developed and utilized to optimize structure of wheel flange. Its service life, which is affected by flange structure parameter, is analyzed by comparing the optimization results with those of prototype of wheel. The results of optimization are presented and the stress field of load bearing wheel in optimal dimension obtained by using finite element analysis method is demonstrated. The finite element analysis and optimization results show that the CPUE load bearing wheel is feasible and suitable for the tracked vehicle and has a guiding value in practice of the weighting design of the whole tracked vehicle.展开更多
Enterprise capital structure means the various resources, combination and relationships of enterprise raising capital as well as means the short or long debts, shareholders' rights and interest, and the proportional ...Enterprise capital structure means the various resources, combination and relationships of enterprise raising capital as well as means the short or long debts, shareholders' rights and interest, and the proportional relationships among constituting items. Capitals raised by enterprise from different ways constitute the capital sum. Because of changing enterprise operation, the capital structure is also various and it cannot be in a fixed proportion. Therefore, we need to optimize the capital structure of state-owned enterprises so as to reach the rational resources allocation and make the national economy develop soundly and rapidly. How to optimize it? This is a big problem that we have to face. Debt-to-equity swap at the moment is only the transition for correcting capital structure of state-owned enterprises. Decreasing stocks owned by state is the inevitable choice for optimizing enterprise stock right.展开更多
Anal fistula is one of the three greatest anorectal diseases with a high prevalence. The traditional treatments(e.g., surgery) for fistula have limitations due to damage to the internal anal sphincter of patients. W...Anal fistula is one of the three greatest anorectal diseases with a high prevalence. The traditional treatments(e.g., surgery) for fistula have limitations due to damage to the internal anal sphincter of patients. With recent advances in biomaterials, treatments based on biomaterial filling (e.g., scleraprotein injection, fistula plug) have emerged as novel therapies for fistula. The anal fistula plug (e.g., based on small intestinal submucosa (SIS)) has attracted increasing attention because of short term healing rate and biocompatibility. However, challenges remain for this method such as plug falling as observed in clinics. To address this, this paper analyzes the case of SIS falling under physiological condition from mechanical point of view using ANSYS simulation. It then proposes three new geometrical structures for fistula plug and compares their mechanical behavior (e.g., axial stress, reaction of constraint) with that of clinically used structure (cone shape). Based on the simulation, it optimizes the geometric parameters of fistula plug. The approach developed here can help to improve the design of fistula plug for better clinical treatments.展开更多
Sintering characteristics of common fluxes and sintering blending ores, such as mineralization capacity, liquid generation capacity, consolidation strength, were examined to master the behavior and effect of fluxes in...Sintering characteristics of common fluxes and sintering blending ores, such as mineralization capacity, liquid generation capacity, consolidation strength, were examined to master the behavior and effect of fluxes in sintering. Based on fundamental studies, sinter pot tests were carried out to obtain the principles of optimizing the sinter flux structure. The results showed that strong mineralization capacity, liquid phase generation capacity, and consolidation strength were obtained as sintering blending ores combined with the calcareous flux, while rela-tively poor sintering characteristics were obtained as sintering blending ores combined with the magnesian flux. High reactive quicklime should be used as much as possible in the sintering mixture. It reached better sintering results while quicklime was used instead of limestone and its appropriate proportion in the sintering mixture was around 4wt%. On the premise of ensuring the MgO content, the dolomite amount should be decreased, and the substitution of quicklime for dolomite caused better sintering results. The granularity of serpentine should be re-fined with a proper size smaller than 2 mm. The application of the divided addition method brought the best sintering performance with 30wt% of quicklime and 70wt% of fuel.展开更多
The dynamic characteristics of hydraulic self servo swing cylinder were analyzed according to the hydraulic system natural frequency formula. Based on that,a method of the hydraulic self servo swing cylinder structure...The dynamic characteristics of hydraulic self servo swing cylinder were analyzed according to the hydraulic system natural frequency formula. Based on that,a method of the hydraulic self servo swing cylinder structure optimization based on genetic algorithm was proposed in this paper. By analyzing the four parameters that affect the dynamic characteristics, we had to optimize the structure to obtain as larger the Dm( displacement) as possible under the condition with the purpose of improving the dynamic characteristics of hydraulic self servo swing cylinder. So three state equations were established in this paper. The paper analyzed the effect of the four parameters in hydraulic self servo swing cylinder natural frequency equation and used the genetic algorithm to obtain the optimal solution of structure parameters. The model was simulated by substituting the parameters and initial value to the simulink model. Simulation results show that: using self servo hydraulic swing cylinder natural frequency equation to study its dynamic response characteristics is very effective.Compared with no optimization,the overall system dynamic response speed is significantly improved.展开更多
The portal structure is the support equipment in the catenary,which bears the load of contact suspension and support equipment.In practical work,with the change of external forces,the support equipment bears complex a...The portal structure is the support equipment in the catenary,which bears the load of contact suspension and support equipment.In practical work,with the change of external forces,the support equipment bears complex and changeable loads,so it has higher requirements for its reliability and safety.In order to study the dynamic characteristics of catenary portal structure on continuous beam of four-way bridge,taking the catenary portal structure on Dshaping four-way bridge as the research object,the portal structure simulation model of bridgenetwork integration was established in Midas Civil.The maximum point of deformation and stress was determined by finite element analysis of catenary hard span equipment,and the frequency and mode of natural vibration of hard span were obtained by modal analysis.Secondly,through the field dynamic stress acquisition test,combined with the results of finite element analysis,the fault location is determined,and the vibration characteristics are analyzed.Finally,based on the results of modal analysis and vibration analysis,the method that the vibration of portal structure beam is affected by structural stiffness and vibration frequency amplitude is proposed.The torsional vibration of the portal structure beam was suppressed by increasing the stiffness of the beam and reducing the vibration conduction between the trolley and the beam,and the hard cross beam was optimized by strengthening the hanging column and the connecting beam and adding diagonal support between the pillar and the portal structure beam.By comparing the values of shear,bending moment,displacement and dynamic stress on the hard span before and after optimization,the amplitude peak after structural optimization is reduced by about 25%,and the application of oblique support and reinforcement of the beam can significantly improve the portal structure vibration.展开更多
In this paper,to present a lightweight-developed front underrun protection device(FUPD)for heavy-duty trucks,plain weave carbon fiber reinforced plastic(CFRP)is used instead of the original high-strength steel.First,t...In this paper,to present a lightweight-developed front underrun protection device(FUPD)for heavy-duty trucks,plain weave carbon fiber reinforced plastic(CFRP)is used instead of the original high-strength steel.First,the mechanical and structural properties of plain carbon fiber composite anti-collision beams are comparatively analyzed from a multi-scale perspective.For studying the design capability of carbon fiber composite materials,we investigate the effects of TC-33 carbon fiber diameter(D),fiber yarn width(W)and height(H),and fiber yarn density(N)on the front underrun protective beam of carbon fiber compositematerials.Based on the investigation,a material-structure matching strategy suitable for the front underrun protective beam of heavy-duty trucks is proposed.Next,the composite material structure is optimized by applying size optimization and stack sequence optimization methods to obtain the higher performance carbon fiber composite front underrun protection beam of commercial vehicles.The results show that the fiber yarn height(H)has the greatest influence on the protective beam,and theH1matching scheme for the front underrun protective beamwith a carbon fiber composite structure exhibits superior performance.The proposed method achieves a weight reduction of 55.21% while still meeting regulatory requirements,which demonstrates its remarkable weight reduction effect.展开更多
The structural optimization of electric vehicles involves numerous design variables and constraints,making it a complex engineering optimization task over the past decades.Many population-based evolutionary algorithms...The structural optimization of electric vehicles involves numerous design variables and constraints,making it a complex engineering optimization task over the past decades.Many population-based evolutionary algorithms encounter issues such as converging to local optima and lacking population diversity when tackling such optimization problems.Consequently,the solutions obtained for the optimization may be flawed or suboptimal.To address these problems,an improved genetic algorithm(GA)based on reinforcement learning is proposed in this paper.The proposed method introduces a population delimitation method based on individual fitness ranking.The population is divided into two parts:the excellent population and the ordinary population,and different selection and cross-mutation methods are applied to each part separately.More efficient crossover and mutation methods are then applied to the ordinary population to enhance the generation of excellent individuals.Furthermore,the proposed approach replaces the traditional fixed crossover and mutation rates with a dynamic selection method based on reinforcement learning to enhance optimization efficiency.A markov decision process model is constructed based on GA environment in this context.The population state determination method and reward method are designed for reinforcement learning in the GA environment,dynamically selecting the most appropriate genetic parameters based on the current state of the population.Finally,the uncertainty in the manufacturing process is introduced into the optimization problem and the case study results demonstrate that the proposed reinforcement learning-based GA significantly outperforms other evolutionary algorithms when applied to solving the structural optimization of electric vehicles.展开更多
Driven by the concept of agricultural sustainable development,crop planting structure optimization(CPSO)has become an effective measure to reduce regional crop water demand,ensure food security,and protect the environ...Driven by the concept of agricultural sustainable development,crop planting structure optimization(CPSO)has become an effective measure to reduce regional crop water demand,ensure food security,and protect the environment.However,traditional optimization of crop planting structures often ignores the impact on regional food supply–demand relations and interprovincial food trading.Therefore,using a system analysis concept and taking virtual water output as the connecting point,this study proposes a theoretical CPSO framework based on a multi-aspect and full-scale evaluation index system.To this end,a water footprint(WF)simulation module denoted as soil and water assessment tool–water footprint(SWAT-WF)is constructed to simulate the amount and components of regional crop WFs.A multi-objective spatial CPSO model with the objectives of maximizing the regional economic water productivity(EWP),minimizing the blue water dependency(BWFrate),and minimizing the grey water footprint(GWFgrey)is established to achieve an optimal planting layout.Considering various benefits,a fullscale evaluation index system based on region,province,and country scales is constructed.Through an entropy weight technique for order preference by similarity to an ideal solution(TOPSIS)comprehensive evaluation model,the optimal plan is selected from a variety of CPSO plans.The proposed framework is then verified through a case study of the upper–middle reaches of the Heihe River Basin in Gansu province,China.By combining the theory of virtual water trading with system analysis,the optimal planting structure is found.While sacrificing reasonable regional economic benefits,the optimization of the planting structure significantly improves the regional water resource benefits and ecological benefits at different scales.展开更多
Objective To study the changing characteristics and trend of medical income structure in the government-run hospitals of traditional Chinese medicine(TCM),evaluate the effects of relevant reform measures,and to put fo...Objective To study the changing characteristics and trend of medical income structure in the government-run hospitals of traditional Chinese medicine(TCM),evaluate the effects of relevant reform measures,and to put forward corresponding suggestions for further optimizing their income structure.Methods The data related to the average medical income of government-run hospitals of TCM from 2012 to 2021 were sorted out.Then,descriptive analysis method was used to analyze the changes of related indicators.Besides,structural change method was applied to investigate the changes of outpatient income and inpatient income.Results and Conclusion From 2012 to 2021,the growth of medical income in government-run hospitals of TCM tended to be stable,and the proportion of medical service income increased from 22.62%(2012)to 29.38%(2021),but the average annual growth rate was only 0.68%.The main items that caused the change of outpatient income structure were medicine revenue,laboratory tests,diagnosis and treatment,and the cumulative contribution rate was 89.15%.The main items that caused the change of inpatient income structure were medicine revenue,sanitary materials,and auxiliary examinations income,with a cumulative contribution rate of 80.04%.However,the contribution rate of registration,diagnosis,treatment,surgery and nursing income reflecting the value of medical personnel’s technical labor was relatively small.The medical income structure of government-run hospitals of TCM underwent great changes and gradually became reasonable,but the medical service income increased slowly,and not all indicators achieved the expectations.To promote the sustainable development of public hospitals of TCM and enable them to provide high-quality and efficient TCM medical and health services,it is necessary to further improve the relevant policy mechanism.展开更多
基金financially supported by National Natural Science Foundation of China(No.52174009 and No.51827804)Marine Economy Development Foundation of Guangdong Province(GDNRC[2022]44)“Technical Support for Stimulation and Testing of Gas Hydrate Reservoirs”.
文摘Cavitating jet is a promising drilling rate improvement technology in both the marine natural gas hydrate (NGH) fluidization exploitation method and the integrated radial jet drilling and completion method. In present study, we aim to improve the efficiency of jet erosion and extracting NGH. With a computational fluid dynamics (CFD) method, the pressure, velocity and cavitation field characteristics of organ-pipe cavitating jet (OPCJ) are analysed. The divergent angle, throat length, and divergent length of OPCJ nozzle are preferred to obtain stronger jet cavitation erosion effect. Laboratory experiments of gas hydrate-bearing sediments (GHBS) erosion by OPCJ and conical jet (CJ) are conducted to compare and validate the jet erosion performance. The impinging models of OPCJ and CJ are constructed to study the impact characteristics. Results show that the preferred values of divergent angle, throat length, and divergent length are 15°, 1d, and 3d, respectively, in present simulation conditions. For GHBS, the OPCJ possesses the advantages of high efficiency and low energy consumption. Moreover, the OPCJ has higher penetration efficiency, while showing equivalent penetration ability compared to CJ. During the impinging process, the OPCJ can induce stronger impact pressure and turbulence effect, and also shows stronger chambering effect and bottom cleaning ability compared to CJ. This study presents the erosion performance of OPCJ and CJ on GHBS, and provides preliminary insights on the potential field applications in NGH exploitation.
基金National Natural Science Foundation of China(No.62173307)the Key R&D Projects of Science and Technology Department of Zhejiang Province,China(Nos.2023C01158,2022C01065 and 2022C01188)the Fundamental Research Funds of Zhejiang Sci-Tech University,China(No.22242298-Y)。
文摘The plenum chamber of a heat setting machine is a key structure for distributing hot air to different air channels.Its outlet velocity uniformity directly determines the heating uniformity of textiles,significantly affecting the heat setting performance.In a traditional heat setting machine,the outlet airflow maldistribution of the plenum chamber still exists.In this study,a novel plenum chamber with an airfoil baffle was established to improve the uniformity of the velocity distribution at the outlet in a heat setting machine.The structural influence of the plenum chamber on the velocity distribution was investigated using a computational fluid dynamics program.It was found that a chamber with a smaller outlet partition thickness had a better outlet velocity uniformity.The structural optimization of the plenum chamber was conducted using the particle swarm optimization algorithm.The outlet partition thickness,the transverse distance and the longitudinal distance of the optimized plenum chamber were 20,686.2 and 274.6 mm,respectively.Experiments were carried out.The experimental and simulated results showed that the optimized plenum chamber with an airfoil baffle could improve the outlet velocity uniformity.The air outlet velocity uniformity index of the optimized plenum chamber with an airfoil baffle was 4.75%higher than that of the plenum chamber without an airfoil baffle and 5.98%higher than that of the conventional chamber with a square baffle in a commercial heat setting machine.
基金supported by the Key Project of China Coal Technology and Engineering Group(No.2020-2-TD-ZD003).
文摘This paper firstly introduces the common faults of traveling transmission system of shuttle car.Secondly,by analyzing the characteristics of shuttle car structure,the layout of traveling transmission system and the common faults on shuttle car,this paper concludes that"internal holding torque"is the main cause of faults.Finally,this paper proposes a corresponding optimization design scheme to reduce the impact of"internal torque",and calculates the relevant results through the finite element simulation analysis method.Through these analyses and calculations,it is shown that the method can effectively reduce the probability of failure of traveling transmission system of shuttle car.
文摘Build-up panels for the commercial aircraft fuselage subjected to the axial compression load are studied by both experimental and theoretical methods.An integral panel is designed with the same overall size and weight as the build-up structure,and finite element models(FEMs)of these two panels are established.Experimental results of build-up panels agree well with the FEM results with the nonliearity and the large deformation,so FEMs are validated.FEM calculation results of these two panels indicate that the failure mode of the integral panel is different from that of the build-up panel,and the failure load increases by 18.4% up to post-buckling.Furthermore,the integral structure is optimized by using the multi-island genetic algorithm and the sequential quadratic programming.Compared with the initial design,the optimal mass is reduced by 8.7% and the strength is unchanged.
基金Under the auspices of National Natural Science Foundation of China(No.41401627,41471144)Foundation Research Project of Jiangsu Province(No.BK20140236)
文摘Land use structure optimization(LUSO) is an important issue for land use planning. In order for land use planning to have reasonable flexibility, uncertain optimization should be applied for LUSO. In this paper, the researcher first expounded the uncertainties of LUSO. Based on this, an interval programming model was developed, of which interval variables were to hold land use uncertainties. To solve the model, a heuristics based on Genetic Algorithm was designed according to Pareto Optimum principle with a confidence interval under given significance level to represent LUSO result. Proposed method was applied to a real case of Yangzhou, an eastern city in China. The following conclusions were reached. 1) Different forms of uncertainties ranged from certainty to indeterminacy lay in the five steps of LUSO, indicating necessary need of comprehensive approach to quantify them. 2) With regards to trade-offs of conflicted objectives and preferences to uncertainties, our proposed model displayed good ability of making planning decision process transparent, therefore providing an effective tool for flexible land use planning compiling. 3) Under uncertain conditions, land use planning effectiveness can be primarily enhanced by flexible management with reserved space to percept and hold uncertainties in advance.
基金funded by the National Natural Science Foundation of China (41130748, 41101162)the Key Knowledge Innovation Project of Chinese Academy of Sciences (KZCX2-EW-304)
文摘A large number of mathematical models were developed for supporting agricultural production structure optimization decisions; however, few of them can address various uncertainties existing in many factors (e.g., eco-social benefit maximization, food security, employment stability and ecosystem balance). In this study, an interval-probabilistic agricultural production structure optimization model (IPAPSOM) is formulated for tackling uncertainty presented as discrete intervals and/or probability distribution. The developed model improves upon the existing probabilistic programming and inexact optimization approaches. The IPAPSOM considers not only food security policy constraints, but also involves rural households’income increase and eco-environmental conversation, which can effectively reflect various interrelations among different aspects in an agricultural production structure optimization system. Moreover, it can also help examine the reliability of satisfying (or risk of violating) system constraints under uncertainty. The model is applied to a real case of long-term agricultural production structure optimization in Dancheng County, which is located in Henan Province of Central China as one of the major grain producing areas. Interval solutions associated with different risk levels of constraint violation are obtained. The results are useful for generating a range of decision alternatives under various system benefit conditions, and thus helping decision makers to identify the desired agricultural production structure optimization strategy under uncertainty.
基金Financial support from the Central Universities (12QN02)National Natural Science Foundation of China (51025624and 51076043)111 Project (B12034)
文摘Flow characteristics, such as flow pattern, gas holdup, and bubble size distribution, in an internal loop reactor with external liquid circulation, are simulated to investigate the influence of reactor internals by using the computational fluid dynamics (CFD)-population balance equations (PBE) coupled model. Numerical results reveal that introducing a downcomer tube and a draft tube can help to improve the mass and heat transfer of the reactor through enhanced liquid circulation, increased gas holdup and reduced bubble diameter. The hydrodynamic behavior in the internal loop reactor with external liquid circulation can be managed effectively by adjusting the diameter and axial position of the draft tube.
基金the National Natural Science Foundation of China(Grant No.52108333)the Natural Science Foundation of Tianjin(Grant Nos.18JCQNJC08300,18JCYBJC90800,20JCQNJC01320)the Key Laboratory of Road Structure and Materials Transportation Industry(Grant No.310821171114)for providing the funding that made this study possible.
文摘Pavement construction in permafrost regions is complicated by the fact that the permafrost properties are influenced by the temperature and are extremely unstable.The numerical model for runway structures in permafrost regions is applied to analyze the time–space characteristics of the temperature field and the depth of the frozen layer.The influence of the installation layer is studied to enable structural optimization of the runway.Numerical results show that the temperature stabilization depth,low-and high-temperature interlayer response ranges,and maximum depth of the frozen layer are greater in runway engineering than in highway and railway engineering.The time history curves for the pavement and natural surface are similar,and the development of freezing and thawing is approximately linear.The pavement and natural surface have similar thawing rates,but the freezing rate of the natural surface is faster than that of the pavement.The depth of the frozen layer and the time of the frozen are greater for the natural surface than for the pavement.The installation layer helps to stabilize the temperature of the subgrade and reduces the freezing and thawing rates.This study provides technical support for the design and maintenance of runways in permafrost regions.
基金National Natural Science Foundation of China(No.51477025)
文摘A gas-phase surface discharge(GSD)was employed to optimize the discharge reactor structure and investigate the dye degradation.A dye mixture of methylene blue,acid orange and methyl orange was used as a model pollutant.The results indicated that the reactor structure of the GSD system with the ratio of tube inner surface area and volume of 2.48,screw pitch between a high-voltage electrode of 9.7 mm,high-voltage electrode wire diameter of 0.8 mm,dielectric tube thickness of2.0 mm and tube inner diameter of 16.13 mm presented a better ozone(O_3)generation efficiency.Furthermore,a larger screw pitch and smaller wire diameter enhanced the O_3generation.After the dye mixture degradation by the optimized GSD system,73.21%and 50.74%of the chemical oxygen demand(COD)and total organic carbon removal rate were achieved within 20 min,respectively,and the biochemical oxygen demand(BOD)and biodegradability(BOD/COD)improved.
基金Supported by the National Natural Science Foundation of China(No.61105086)Self-Planned Task(SKLRS-2010-MS-12)of State Key Laboratory of Robotics and System(HIT)Hubei Province Natural Science Foundation(No.2010CDB03405)
文摘In order to solve the problem of using new nozzle is proposed in fire rescue robot. middle or low water pressure to form fine water mist, a Existing water mist nozzles are basically used for high pressure and in large size, complex structure and poor low pressure atomization effect in comparison with requirement of snake-like fire rescue robots. On the basis of comprehensive typical spray noz- zles, a direct spiral double helix converging nozzle (DSDHCN) is proposed, which has the advanta- ges of small volume, light weight, simple structure, and convenient installation. To make the spray nozzle have good performance, and meet the requirements of more efficient fire extinguishing, a nu- merical study is carried out to analyze the internal and external full flow field of nozzle. A gas-liquid two-phase flow is applied to simulate the external full flow field of nozzle with VOF model in fluent software. The simulation results show the real situation of water flow out of the atomization nozzle and the water jet trajectory. Some simulations about middle or low water pressure direct spiral double he- lix converging optimized nozzle have been done in 30bar pressure. The simulation results show that the optimized nozzle structure not only makes the spray droplets have a good cone angle, but also have a sufficient axial velocity,which proves the structure rationality of the proposed optimized nozzle.
文摘A new kind of material cast polyurethane elastomers (CPUE) is introduced to take the place of rubber on load bearing wheel for the first time. Based on load bearing wheel dimensions, material properties and operating conditions, the structure of wheel flange is optimized by zero order finite element method. A detailed three dimensional finite element model of flange of load bearing wheel is developed and utilized to optimize structure of wheel flange. Its service life, which is affected by flange structure parameter, is analyzed by comparing the optimization results with those of prototype of wheel. The results of optimization are presented and the stress field of load bearing wheel in optimal dimension obtained by using finite element analysis method is demonstrated. The finite element analysis and optimization results show that the CPUE load bearing wheel is feasible and suitable for the tracked vehicle and has a guiding value in practice of the weighting design of the whole tracked vehicle.
文摘Enterprise capital structure means the various resources, combination and relationships of enterprise raising capital as well as means the short or long debts, shareholders' rights and interest, and the proportional relationships among constituting items. Capitals raised by enterprise from different ways constitute the capital sum. Because of changing enterprise operation, the capital structure is also various and it cannot be in a fixed proportion. Therefore, we need to optimize the capital structure of state-owned enterprises so as to reach the rational resources allocation and make the national economy develop soundly and rapidly. How to optimize it? This is a big problem that we have to face. Debt-to-equity swap at the moment is only the transition for correcting capital structure of state-owned enterprises. Decreasing stocks owned by state is the inevitable choice for optimizing enterprise stock right.
基金supported by the Major International (Regional) Joint Research Program of China (11120101002)the National Natural Science Foundation of China(10825210 and 31050110125)the National 111 Project of China(B06024)
文摘Anal fistula is one of the three greatest anorectal diseases with a high prevalence. The traditional treatments(e.g., surgery) for fistula have limitations due to damage to the internal anal sphincter of patients. With recent advances in biomaterials, treatments based on biomaterial filling (e.g., scleraprotein injection, fistula plug) have emerged as novel therapies for fistula. The anal fistula plug (e.g., based on small intestinal submucosa (SIS)) has attracted increasing attention because of short term healing rate and biocompatibility. However, challenges remain for this method such as plug falling as observed in clinics. To address this, this paper analyzes the case of SIS falling under physiological condition from mechanical point of view using ANSYS simulation. It then proposes three new geometrical structures for fistula plug and compares their mechanical behavior (e.g., axial stress, reaction of constraint) with that of clinically used structure (cone shape). Based on the simulation, it optimizes the geometric parameters of fistula plug. The approach developed here can help to improve the design of fistula plug for better clinical treatments.
文摘Sintering characteristics of common fluxes and sintering blending ores, such as mineralization capacity, liquid generation capacity, consolidation strength, were examined to master the behavior and effect of fluxes in sintering. Based on fundamental studies, sinter pot tests were carried out to obtain the principles of optimizing the sinter flux structure. The results showed that strong mineralization capacity, liquid phase generation capacity, and consolidation strength were obtained as sintering blending ores combined with the calcareous flux, while rela-tively poor sintering characteristics were obtained as sintering blending ores combined with the magnesian flux. High reactive quicklime should be used as much as possible in the sintering mixture. It reached better sintering results while quicklime was used instead of limestone and its appropriate proportion in the sintering mixture was around 4wt%. On the premise of ensuring the MgO content, the dolomite amount should be decreased, and the substitution of quicklime for dolomite caused better sintering results. The granularity of serpentine should be re-fined with a proper size smaller than 2 mm. The application of the divided addition method brought the best sintering performance with 30wt% of quicklime and 70wt% of fuel.
基金Sponsored by the National Natural Science Foundation of China(Grant No.61105086)Self-Planned Task of State Key Laboratory of Robotics and System(HIT)(Grant No.SKLRS-2010-MS-12)Hubei Province Natural Science Foundation(Grant No.2010CDB0 3405)
文摘The dynamic characteristics of hydraulic self servo swing cylinder were analyzed according to the hydraulic system natural frequency formula. Based on that,a method of the hydraulic self servo swing cylinder structure optimization based on genetic algorithm was proposed in this paper. By analyzing the four parameters that affect the dynamic characteristics, we had to optimize the structure to obtain as larger the Dm( displacement) as possible under the condition with the purpose of improving the dynamic characteristics of hydraulic self servo swing cylinder. So three state equations were established in this paper. The paper analyzed the effect of the four parameters in hydraulic self servo swing cylinder natural frequency equation and used the genetic algorithm to obtain the optimal solution of structure parameters. The model was simulated by substituting the parameters and initial value to the simulink model. Simulation results show that: using self servo hydraulic swing cylinder natural frequency equation to study its dynamic response characteristics is very effective.Compared with no optimization,the overall system dynamic response speed is significantly improved.
基金National Science Foundation of China(51767014,51867013)China Railway Corporation(2017010-c).
文摘The portal structure is the support equipment in the catenary,which bears the load of contact suspension and support equipment.In practical work,with the change of external forces,the support equipment bears complex and changeable loads,so it has higher requirements for its reliability and safety.In order to study the dynamic characteristics of catenary portal structure on continuous beam of four-way bridge,taking the catenary portal structure on Dshaping four-way bridge as the research object,the portal structure simulation model of bridgenetwork integration was established in Midas Civil.The maximum point of deformation and stress was determined by finite element analysis of catenary hard span equipment,and the frequency and mode of natural vibration of hard span were obtained by modal analysis.Secondly,through the field dynamic stress acquisition test,combined with the results of finite element analysis,the fault location is determined,and the vibration characteristics are analyzed.Finally,based on the results of modal analysis and vibration analysis,the method that the vibration of portal structure beam is affected by structural stiffness and vibration frequency amplitude is proposed.The torsional vibration of the portal structure beam was suppressed by increasing the stiffness of the beam and reducing the vibration conduction between the trolley and the beam,and the hard cross beam was optimized by strengthening the hanging column and the connecting beam and adding diagonal support between the pillar and the portal structure beam.By comparing the values of shear,bending moment,displacement and dynamic stress on the hard span before and after optimization,the amplitude peak after structural optimization is reduced by about 25%,and the application of oblique support and reinforcement of the beam can significantly improve the portal structure vibration.
基金supported by the Guangxi Science and Technology Plan and Project(Grant Numbers 2021AC19131 and 2022AC21140)Guangxi University of Science and Technology Doctoral Fund Project(Grant Number 20Z40).
文摘In this paper,to present a lightweight-developed front underrun protection device(FUPD)for heavy-duty trucks,plain weave carbon fiber reinforced plastic(CFRP)is used instead of the original high-strength steel.First,the mechanical and structural properties of plain carbon fiber composite anti-collision beams are comparatively analyzed from a multi-scale perspective.For studying the design capability of carbon fiber composite materials,we investigate the effects of TC-33 carbon fiber diameter(D),fiber yarn width(W)and height(H),and fiber yarn density(N)on the front underrun protective beam of carbon fiber compositematerials.Based on the investigation,a material-structure matching strategy suitable for the front underrun protective beam of heavy-duty trucks is proposed.Next,the composite material structure is optimized by applying size optimization and stack sequence optimization methods to obtain the higher performance carbon fiber composite front underrun protection beam of commercial vehicles.The results show that the fiber yarn height(H)has the greatest influence on the protective beam,and theH1matching scheme for the front underrun protective beamwith a carbon fiber composite structure exhibits superior performance.The proposed method achieves a weight reduction of 55.21% while still meeting regulatory requirements,which demonstrates its remarkable weight reduction effect.
基金supported by the Open Fund of National Key Laboratory of Intelligent Vehicle Safety Technology(Grant No.IVSTSKL-202305)Chongqing Jiaotong University-Yangtse Delta Advanced Material Research Institute Provincial-level Joint Graduate Student Cultivation Base(Grant No.JDLHPYJD2021008).
文摘The structural optimization of electric vehicles involves numerous design variables and constraints,making it a complex engineering optimization task over the past decades.Many population-based evolutionary algorithms encounter issues such as converging to local optima and lacking population diversity when tackling such optimization problems.Consequently,the solutions obtained for the optimization may be flawed or suboptimal.To address these problems,an improved genetic algorithm(GA)based on reinforcement learning is proposed in this paper.The proposed method introduces a population delimitation method based on individual fitness ranking.The population is divided into two parts:the excellent population and the ordinary population,and different selection and cross-mutation methods are applied to each part separately.More efficient crossover and mutation methods are then applied to the ordinary population to enhance the generation of excellent individuals.Furthermore,the proposed approach replaces the traditional fixed crossover and mutation rates with a dynamic selection method based on reinforcement learning to enhance optimization efficiency.A markov decision process model is constructed based on GA environment in this context.The population state determination method and reward method are designed for reinforcement learning in the GA environment,dynamically selecting the most appropriate genetic parameters based on the current state of the population.Finally,the uncertainty in the manufacturing process is introduced into the optimization problem and the case study results demonstrate that the proposed reinforcement learning-based GA significantly outperforms other evolutionary algorithms when applied to solving the structural optimization of electric vehicles.
基金financially supported by the National Key Research and Development Program of China(2022YFD1900501)National Natural Science Foundation of China(51861125103)。
文摘Driven by the concept of agricultural sustainable development,crop planting structure optimization(CPSO)has become an effective measure to reduce regional crop water demand,ensure food security,and protect the environment.However,traditional optimization of crop planting structures often ignores the impact on regional food supply–demand relations and interprovincial food trading.Therefore,using a system analysis concept and taking virtual water output as the connecting point,this study proposes a theoretical CPSO framework based on a multi-aspect and full-scale evaluation index system.To this end,a water footprint(WF)simulation module denoted as soil and water assessment tool–water footprint(SWAT-WF)is constructed to simulate the amount and components of regional crop WFs.A multi-objective spatial CPSO model with the objectives of maximizing the regional economic water productivity(EWP),minimizing the blue water dependency(BWFrate),and minimizing the grey water footprint(GWFgrey)is established to achieve an optimal planting layout.Considering various benefits,a fullscale evaluation index system based on region,province,and country scales is constructed.Through an entropy weight technique for order preference by similarity to an ideal solution(TOPSIS)comprehensive evaluation model,the optimal plan is selected from a variety of CPSO plans.The proposed framework is then verified through a case study of the upper–middle reaches of the Heihe River Basin in Gansu province,China.By combining the theory of virtual water trading with system analysis,the optimal planting structure is found.While sacrificing reasonable regional economic benefits,the optimization of the planting structure significantly improves the regional water resource benefits and ecological benefits at different scales.
文摘Objective To study the changing characteristics and trend of medical income structure in the government-run hospitals of traditional Chinese medicine(TCM),evaluate the effects of relevant reform measures,and to put forward corresponding suggestions for further optimizing their income structure.Methods The data related to the average medical income of government-run hospitals of TCM from 2012 to 2021 were sorted out.Then,descriptive analysis method was used to analyze the changes of related indicators.Besides,structural change method was applied to investigate the changes of outpatient income and inpatient income.Results and Conclusion From 2012 to 2021,the growth of medical income in government-run hospitals of TCM tended to be stable,and the proportion of medical service income increased from 22.62%(2012)to 29.38%(2021),but the average annual growth rate was only 0.68%.The main items that caused the change of outpatient income structure were medicine revenue,laboratory tests,diagnosis and treatment,and the cumulative contribution rate was 89.15%.The main items that caused the change of inpatient income structure were medicine revenue,sanitary materials,and auxiliary examinations income,with a cumulative contribution rate of 80.04%.However,the contribution rate of registration,diagnosis,treatment,surgery and nursing income reflecting the value of medical personnel’s technical labor was relatively small.The medical income structure of government-run hospitals of TCM underwent great changes and gradually became reasonable,but the medical service income increased slowly,and not all indicators achieved the expectations.To promote the sustainable development of public hospitals of TCM and enable them to provide high-quality and efficient TCM medical and health services,it is necessary to further improve the relevant policy mechanism.