We built a three-dimensional irregular network model which can adequately describe reservoir rock pore-throat structures. We carried out numerical simulations to study the NMR T2 distribution of water-saturated rocks....We built a three-dimensional irregular network model which can adequately describe reservoir rock pore-throat structures. We carried out numerical simulations to study the NMR T2 distribution of water-saturated rocks. The results indicate that there is a good correlation between T2 distribution and the pore radius frequency histogram. The total T2 distribution can be partitioned into pore body and pore throat parts. The effect of parameters including throat radius, pore-throat ratio, and coordination number of the micro- pore structure on the T2 distribution can be evaluated individually. The result indicates that: 1 ) with the increase of the pore throat radius, the T2 distribution moves toward longer relaxation times and its peak intensity increases; 2) with the increase of the pore-throat ratio, the T2 distribution moves towards longer T2 with the peak intensity increasing and the overlap between pore body T2 and pore throat T2 decreasing; 3) With the increase of connectivity, the short T2 component increases and peak signal intensity decreases slightly.展开更多
We modeled and studied the permeability of methane hydrate bearing formations as a function of methane hydrate concentration by artificially varying the T2 distribution as well as using a tube-sphere model.We varied t...We modeled and studied the permeability of methane hydrate bearing formations as a function of methane hydrate concentration by artificially varying the T2 distribution as well as using a tube-sphere model.We varied the proportion of irreducible and movable water as well as the total porosity associated with the T2 distribution and found the normalized permeability as a function of methane hydrate concentration is dependent of these variations.Using a tube-sphere model,we increased the methane hydrate concentration by randomly placing methane hydrate crystals in the pore spaces and computed the permeability using either the Schlumberger T2 relaxation time formula or a direct calculation based on Darcy's law assuming Poiseuille flow.Earlier experimental measurements reported in the literature show there is a methane hydrate concentration range where the permeability remains relatively constant.We found that when the Schlumberger T2 relaxation time formula is used the simulation results show a curve of normalized permeability versus methane hydrate concentration quite close to that predicted by the Masuda model with N = 15.When the permeability was directly calculated based on Darcy's law,the simulation results show a much higher normalized permeability and only show a trend consistent with the experimental results,i.e.,with a permeability plateau,when the methane hydrate crystals are preferentially placed in the tubes,and the higher the preferential probability,the larger the range where the permeability has a plateau.展开更多
Development of microstructure of early cement paste (0–6 h) was investigated with 1H low-field NMR. It was found that T 2 (transverse relaxation time) distributions of fresh cement paste were bimodal and two peaks we...Development of microstructure of early cement paste (0–6 h) was investigated with 1H low-field NMR. It was found that T 2 (transverse relaxation time) distributions of fresh cement paste were bimodal and two peaks were ‘long component’ and ‘short component’. Separation degree of two peaks was a sign of exchange of water within flocculation and outside flocculation. Factors such as water cement ratio, specific surface area and dosage of superplasticizer had influences on the separation degree: the separation degree increased with the water cement ratio; the separation degree of cement paste prepared with cement with a high specific surface area was zero; dosage of superplasticizer will decrease separation degree. Results also suggested that T 2 distribution gradually moved to the left and T 2 of long component and initial fluidity were linearly correlated.展开更多
文摘We built a three-dimensional irregular network model which can adequately describe reservoir rock pore-throat structures. We carried out numerical simulations to study the NMR T2 distribution of water-saturated rocks. The results indicate that there is a good correlation between T2 distribution and the pore radius frequency histogram. The total T2 distribution can be partitioned into pore body and pore throat parts. The effect of parameters including throat radius, pore-throat ratio, and coordination number of the micro- pore structure on the T2 distribution can be evaluated individually. The result indicates that: 1 ) with the increase of the pore throat radius, the T2 distribution moves toward longer relaxation times and its peak intensity increases; 2) with the increase of the pore-throat ratio, the T2 distribution moves towards longer T2 with the peak intensity increasing and the overlap between pore body T2 and pore throat T2 decreasing; 3) With the increase of connectivity, the short T2 component increases and peak signal intensity decreases slightly.
基金funded by National Basic Research Program of China(973Program,No.2009CB219505)
文摘We modeled and studied the permeability of methane hydrate bearing formations as a function of methane hydrate concentration by artificially varying the T2 distribution as well as using a tube-sphere model.We varied the proportion of irreducible and movable water as well as the total porosity associated with the T2 distribution and found the normalized permeability as a function of methane hydrate concentration is dependent of these variations.Using a tube-sphere model,we increased the methane hydrate concentration by randomly placing methane hydrate crystals in the pore spaces and computed the permeability using either the Schlumberger T2 relaxation time formula or a direct calculation based on Darcy's law assuming Poiseuille flow.Earlier experimental measurements reported in the literature show there is a methane hydrate concentration range where the permeability remains relatively constant.We found that when the Schlumberger T2 relaxation time formula is used the simulation results show a curve of normalized permeability versus methane hydrate concentration quite close to that predicted by the Masuda model with N = 15.When the permeability was directly calculated based on Darcy's law,the simulation results show a much higher normalized permeability and only show a trend consistent with the experimental results,i.e.,with a permeability plateau,when the methane hydrate crystals are preferentially placed in the tubes,and the higher the preferential probability,the larger the range where the permeability has a plateau.
基金Funded by the National Natural Science Foundation of China(No.51178339)the National Basic Research Program(No.2009CB623104-5)
文摘Development of microstructure of early cement paste (0–6 h) was investigated with 1H low-field NMR. It was found that T 2 (transverse relaxation time) distributions of fresh cement paste were bimodal and two peaks were ‘long component’ and ‘short component’. Separation degree of two peaks was a sign of exchange of water within flocculation and outside flocculation. Factors such as water cement ratio, specific surface area and dosage of superplasticizer had influences on the separation degree: the separation degree increased with the water cement ratio; the separation degree of cement paste prepared with cement with a high specific surface area was zero; dosage of superplasticizer will decrease separation degree. Results also suggested that T 2 distribution gradually moved to the left and T 2 of long component and initial fluidity were linearly correlated.