Trains are prone to delays and deviations from train operation plans during their operation because of internal or external disturbances. Delays may develop into operational conflicts between adjacent trains as a resu...Trains are prone to delays and deviations from train operation plans during their operation because of internal or external disturbances. Delays may develop into operational conflicts between adjacent trains as a result of delay propagation, which may disturb the arrangement of the train operation plan and threaten the operational safety of trains. Therefore, reliable conflict prediction results can be valuable references for dispatchers in making more efficient train operation adjustments when conflicts occur. In contrast to the traditional approach to conflict prediction that involves introducing random disturbances, this study addresses the issue of the fuzzification of time intervals in a train timetable based on historical statistics and the modeling of a high-speed railway train timetable based on the concept of a timed Petri net. To measure conflict prediction results more comprehensively, we divided conflicts into potential conflicts and certain conflicts and defined the judgment conditions for both. Two evaluation indexes, one for the deviation of a single train and one for the possibility of conflicts between adjacent train operations, were developed using a formalized computation method. Based on the temporal fuzzy reasoning method, with some adjustment, a new conflict prediction method is proposed, and the results of a simulation example for two scenarios are presented. The results prove that conflict prediction after fuzzy processing of the time intervals of a train timetable is more reliable and practical and can provide helpful information for use in train operation adjustment, train timetable improvement, and other purposes.展开更多
Accurate prediction of future events brings great benefits and reduces losses for society in many domains,such as civil unrest,pandemics,and crimes.Knowledge graph is a general language for describing and modeling com...Accurate prediction of future events brings great benefits and reduces losses for society in many domains,such as civil unrest,pandemics,and crimes.Knowledge graph is a general language for describing and modeling complex systems.Different types of events continually occur,which are often related to historical and concurrent events.In this paper,we formalize the future event prediction as a temporal knowledge graph reasoning problem.Most existing studies either conduct reasoning on static knowledge graphs or assume knowledges graphs of all timestamps are available during the training process.As a result,they cannot effectively reason over temporal knowledge graphs and predict events happening in the future.To address this problem,some recent works learn to infer future events based on historical eventbased temporal knowledge graphs.However,these methods do not comprehensively consider the latent patterns and influences behind historical events and concurrent events simultaneously.This paper proposes a new graph representation learning model,namely Recurrent Event Graph ATtention Network(RE-GAT),based on a novel historical and concurrent events attention-aware mechanism by modeling the event knowledge graph sequence recurrently.More specifically,our RE-GAT uses an attention-based historical events embedding module to encode past events,and employs an attention-based concurrent events embedding module to model the associations of events at the same timestamp.A translation-based decoder module and a learning objective are developed to optimize the embeddings of entities and relations.We evaluate our proposed method on four benchmark datasets.Extensive experimental results demonstrate the superiority of our RE-GAT model comparing to various base-lines,which proves that our method can more accurately predict what events are going to happen.展开更多
Predicting potential facts in the future,Temporal Knowledge Graph(TKG)extrapolation remains challenging because of the deep dependence between the temporal association and semantic patterns of facts.Intuitively,facts(...Predicting potential facts in the future,Temporal Knowledge Graph(TKG)extrapolation remains challenging because of the deep dependence between the temporal association and semantic patterns of facts.Intuitively,facts(events)that happened at different timestamps have different influences on future events,which can be attributed to a hierarchy among not only facts but also relevant entities.Therefore,it is crucial to pay more attention to important entities and events when forecasting the future.However,most existing methods focus on reasoning over temporally evolving facts or mining evolutional patterns from known facts,which may be affected by the diversity and variability of the evolution,and they might fail to attach importance to facts that matter.Hyperbolic geometry was proved to be effective in capturing hierarchical patterns among data,which is considered to be a solution for modelling hierarchical relations among facts.To this end,we propose ReTIN,a novel model integrating real-time influence of historical facts for TKG reasoning based on hyperbolic geometry,which provides low-dimensional embeddings to capture latent hierarchical structures and other rich semantic patterns of the existing TKG.Considering both real-time and global features of TKG boosts the adaptation of ReTIN to the ever-changing dynamics and inherent constraints.Extensive experiments on benchmarks demonstrate the superiority of ReTIN over various baselines.The ablation study further supports the value of exploiting temporal information.展开更多
As the research of knowledge graph(KG)is deepened and widely used,knowledge graph com-pletion(KGC)has attracted more and more attentions from researchers,especially in scenarios of in-telligent search,social networks ...As the research of knowledge graph(KG)is deepened and widely used,knowledge graph com-pletion(KGC)has attracted more and more attentions from researchers,especially in scenarios of in-telligent search,social networks and deep question and answer(Q&A).Current research mainly fo-cuses on the completion of static knowledge graphs,and the temporal information in temporal knowl-edge graphs(TKGs)is ignored.However,the temporal information is definitely very helpful for the completion.Note that existing researches on temporal knowledge graph completion are difficult to process temporal information and to integrate entities,relations and time well.In this work,a rotation and scaling(RotatS)model is proposed,which learns rotation and scaling transformations from head entity embedding to tail entity embedding in 3D spaces to capture the information of time and rela-tions in the temporal knowledge graph.The performance of the proposed RotatS model have been evaluated by comparison with several baselines under similar experimental conditions and space com-plexity on four typical knowl good graph completion datasets publicly available online.The study shows that RotatS can achieve good results in terms of prediction accuracy.展开更多
In order to find the completeness threshold which offers a practical method of making bounded model checking complete, the over-approximation for the complete threshold is presented. First, a linear logic of knowledge...In order to find the completeness threshold which offers a practical method of making bounded model checking complete, the over-approximation for the complete threshold is presented. First, a linear logic of knowledge is introduced into the past tense operator, and then a new temporal epistemic logic LTLKP is obtained, so that LTLKP can naturally and precisely describe the system's reliability. Secondly, a set of prior algorithms are designed to calculate the maximal reachable depth and the length of the longest of loop free paths in the structure based on the graph structure theory. Finally, some theorems are proposed to show how to approximate the complete threshold with the diameter and recurrence diameter. The proposed work resolves the completeness threshold problem so that the completeness of bounded model checking can be guaranteed.展开更多
Coalition logic (CL) is one of the most influential logical formalisms for strategic abilities of multi-agent systems. CL can specify what a group of agents can achieve through choices of their actions, denoted by ...Coalition logic (CL) is one of the most influential logical formalisms for strategic abilities of multi-agent systems. CL can specify what a group of agents can achieve through choices of their actions, denoted by [C]φ to state that a group of agents C can have a strategy to bring about φ by collective actions, no matter what the other agents do. However, CL lacks the temporal dimension and thus can not capture the dynamic aspects of a system. Therefore, CL can not formalize the evolvement of rational mental attitudes of the agents such as knowledge, which has been shown to be very useful in specifications and verifications of distributed systems, and has received substantial amount of studies. In this paper, we introduce coalition logic of temporal knowledge (CLTK), by incorporating a temporal logic of knowledge (Halpern and Vardi's logic of CKLn) into CL to equip CL with the power to formalize how agents' knowledge (individual or group knowledge) evolves over the time by coalitional forces and the temporal properties of strategic abilities as well. Furthermore, we provide an axiomatic system for CLTK and prove that it is sound and complete, along with the complexity of the satisfiability problem which is shown to be EXPTIME-complete.展开更多
In this paper,a methodology for Leaf Area Index(LAI) estimating was proposed by assimilating remote sensed data into crop model based on temporal and spatial knowledge.Firstly,sensitive parameters of crop model were c...In this paper,a methodology for Leaf Area Index(LAI) estimating was proposed by assimilating remote sensed data into crop model based on temporal and spatial knowledge.Firstly,sensitive parameters of crop model were calibrated by Shuffled Complex Evolution method developed at the University of Arizona(SCE-UA) optimization method based on phenological information,which is called temporal knowledge.The calibrated crop model will be used as the forecast operator.Then,the Taylor′s mean value theorem was applied to extracting spatial information from the Moderate Resolution Imaging Spectroradiometer(MODIS) multi-scale data,which was used to calibrate the LAI inversion results by A two-layer Canopy Reflectance Model(ACRM) model.The calibrated LAI result was used as the observation operator.Finally,an Ensemble Kalman Filter(EnKF) was used to assimilate MODIS data into crop model.The results showed that the method could significantly improve the estimation accuracy of LAI and the simulated curves of LAI more conform to the crop growth situation closely comparing with MODIS LAI products.The root mean square error(RMSE) of LAI calculated by assimilation is 0.9185 which is reduced by 58.7% compared with that by simulation(0.3795),and before and after assimilation the mean error is reduced by 92.6% which is from 0.3563 to 0.0265.All these experiments indicated that the methodology proposed in this paper is reasonable and accurate for estimating crop LAI.展开更多
Question answering is an important problem that aims to deliver specific answers to questions posed by humans in natural language.How to efficiently identify the exact answer with respect to a given question has becom...Question answering is an important problem that aims to deliver specific answers to questions posed by humans in natural language.How to efficiently identify the exact answer with respect to a given question has become an active line of research.Previous approaches in factoid question answering tasks typically focus on modeling the semantic relevance or syntactic relationship between a given question and its corresponding answer.Most of these models suffer when a question contains very little content that is indicative of the answer.In this paper,we devise an architecture named the temporality-enhanced knowledge memory network(TE-KMN) and apply the model to a factoid question answering dataset from a trivia competition called quiz bowl.Unlike most of the existing approaches,our model encodes not only the content of questions and answers,but also the temporal cues in a sequence of ordered sentences which gradually remark the answer.Moreover,our model collaboratively uses external knowledge for a better understanding of a given question.The experimental results demonstrate that our method achieves better performance than several state-of-the-art methods.展开更多
文摘Trains are prone to delays and deviations from train operation plans during their operation because of internal or external disturbances. Delays may develop into operational conflicts between adjacent trains as a result of delay propagation, which may disturb the arrangement of the train operation plan and threaten the operational safety of trains. Therefore, reliable conflict prediction results can be valuable references for dispatchers in making more efficient train operation adjustments when conflicts occur. In contrast to the traditional approach to conflict prediction that involves introducing random disturbances, this study addresses the issue of the fuzzification of time intervals in a train timetable based on historical statistics and the modeling of a high-speed railway train timetable based on the concept of a timed Petri net. To measure conflict prediction results more comprehensively, we divided conflicts into potential conflicts and certain conflicts and defined the judgment conditions for both. Two evaluation indexes, one for the deviation of a single train and one for the possibility of conflicts between adjacent train operations, were developed using a formalized computation method. Based on the temporal fuzzy reasoning method, with some adjustment, a new conflict prediction method is proposed, and the results of a simulation example for two scenarios are presented. The results prove that conflict prediction after fuzzy processing of the time intervals of a train timetable is more reliable and practical and can provide helpful information for use in train operation adjustment, train timetable improvement, and other purposes.
基金supported by the National Natural Science Foundation of China under grants U19B2044National Key Research and Development Program of China(2021YFC3300500).
文摘Accurate prediction of future events brings great benefits and reduces losses for society in many domains,such as civil unrest,pandemics,and crimes.Knowledge graph is a general language for describing and modeling complex systems.Different types of events continually occur,which are often related to historical and concurrent events.In this paper,we formalize the future event prediction as a temporal knowledge graph reasoning problem.Most existing studies either conduct reasoning on static knowledge graphs or assume knowledges graphs of all timestamps are available during the training process.As a result,they cannot effectively reason over temporal knowledge graphs and predict events happening in the future.To address this problem,some recent works learn to infer future events based on historical eventbased temporal knowledge graphs.However,these methods do not comprehensively consider the latent patterns and influences behind historical events and concurrent events simultaneously.This paper proposes a new graph representation learning model,namely Recurrent Event Graph ATtention Network(RE-GAT),based on a novel historical and concurrent events attention-aware mechanism by modeling the event knowledge graph sequence recurrently.More specifically,our RE-GAT uses an attention-based historical events embedding module to encode past events,and employs an attention-based concurrent events embedding module to model the associations of events at the same timestamp.A translation-based decoder module and a learning objective are developed to optimize the embeddings of entities and relations.We evaluate our proposed method on four benchmark datasets.Extensive experimental results demonstrate the superiority of our RE-GAT model comparing to various base-lines,which proves that our method can more accurately predict what events are going to happen.
基金Major Key Project of Pengcheng Laboratory,Grant/Award Number:PCL2022A03。
文摘Predicting potential facts in the future,Temporal Knowledge Graph(TKG)extrapolation remains challenging because of the deep dependence between the temporal association and semantic patterns of facts.Intuitively,facts(events)that happened at different timestamps have different influences on future events,which can be attributed to a hierarchy among not only facts but also relevant entities.Therefore,it is crucial to pay more attention to important entities and events when forecasting the future.However,most existing methods focus on reasoning over temporally evolving facts or mining evolutional patterns from known facts,which may be affected by the diversity and variability of the evolution,and they might fail to attach importance to facts that matter.Hyperbolic geometry was proved to be effective in capturing hierarchical patterns among data,which is considered to be a solution for modelling hierarchical relations among facts.To this end,we propose ReTIN,a novel model integrating real-time influence of historical facts for TKG reasoning based on hyperbolic geometry,which provides low-dimensional embeddings to capture latent hierarchical structures and other rich semantic patterns of the existing TKG.Considering both real-time and global features of TKG boosts the adaptation of ReTIN to the ever-changing dynamics and inherent constraints.Extensive experiments on benchmarks demonstrate the superiority of ReTIN over various baselines.The ablation study further supports the value of exploiting temporal information.
基金the National Natural Science Foundation of China(No.6187022153).
文摘As the research of knowledge graph(KG)is deepened and widely used,knowledge graph com-pletion(KGC)has attracted more and more attentions from researchers,especially in scenarios of in-telligent search,social networks and deep question and answer(Q&A).Current research mainly fo-cuses on the completion of static knowledge graphs,and the temporal information in temporal knowl-edge graphs(TKGs)is ignored.However,the temporal information is definitely very helpful for the completion.Note that existing researches on temporal knowledge graph completion are difficult to process temporal information and to integrate entities,relations and time well.In this work,a rotation and scaling(RotatS)model is proposed,which learns rotation and scaling transformations from head entity embedding to tail entity embedding in 3D spaces to capture the information of time and rela-tions in the temporal knowledge graph.The performance of the proposed RotatS model have been evaluated by comparison with several baselines under similar experimental conditions and space com-plexity on four typical knowl good graph completion datasets publicly available online.The study shows that RotatS can achieve good results in terms of prediction accuracy.
基金The National Natural Science Foundation of China (No.10974093)the Scientific Research Foundation for Senior Personnel of Jiangsu University (No.07JDG014)the Natural Science Foundation of Higher Education Institutions of Jiangsu Province (No.08KJD520015)
文摘In order to find the completeness threshold which offers a practical method of making bounded model checking complete, the over-approximation for the complete threshold is presented. First, a linear logic of knowledge is introduced into the past tense operator, and then a new temporal epistemic logic LTLKP is obtained, so that LTLKP can naturally and precisely describe the system's reliability. Secondly, a set of prior algorithms are designed to calculate the maximal reachable depth and the length of the longest of loop free paths in the structure based on the graph structure theory. Finally, some theorems are proposed to show how to approximate the complete threshold with the diameter and recurrence diameter. The proposed work resolves the completeness threshold problem so that the completeness of bounded model checking can be guaranteed.
基金This work was supported by National Basic Research Program of China (973 Program) (2010CB328103) the National Natural Science Foundation of China (Grant Nos. 61272415, 61003056, 71271061 and 61370177) ARC Future Fellowship (FT0991785) and Business Intelligence Key Team of Guangdong University of Foreign Studies (TD 1202).
文摘Coalition logic (CL) is one of the most influential logical formalisms for strategic abilities of multi-agent systems. CL can specify what a group of agents can achieve through choices of their actions, denoted by [C]φ to state that a group of agents C can have a strategy to bring about φ by collective actions, no matter what the other agents do. However, CL lacks the temporal dimension and thus can not capture the dynamic aspects of a system. Therefore, CL can not formalize the evolvement of rational mental attitudes of the agents such as knowledge, which has been shown to be very useful in specifications and verifications of distributed systems, and has received substantial amount of studies. In this paper, we introduce coalition logic of temporal knowledge (CLTK), by incorporating a temporal logic of knowledge (Halpern and Vardi's logic of CKLn) into CL to equip CL with the power to formalize how agents' knowledge (individual or group knowledge) evolves over the time by coalitional forces and the temporal properties of strategic abilities as well. Furthermore, we provide an axiomatic system for CLTK and prove that it is sound and complete, along with the complexity of the satisfiability problem which is shown to be EXPTIME-complete.
基金Under the auspices of Major State Basic Research Development Program of China(No.2007CB714407)National Natural Science Foundation of China(No.40801070)Action Plan for West Development Program of Chinese Academy of Sciences(No.KZCX2-XB2-09)
文摘In this paper,a methodology for Leaf Area Index(LAI) estimating was proposed by assimilating remote sensed data into crop model based on temporal and spatial knowledge.Firstly,sensitive parameters of crop model were calibrated by Shuffled Complex Evolution method developed at the University of Arizona(SCE-UA) optimization method based on phenological information,which is called temporal knowledge.The calibrated crop model will be used as the forecast operator.Then,the Taylor′s mean value theorem was applied to extracting spatial information from the Moderate Resolution Imaging Spectroradiometer(MODIS) multi-scale data,which was used to calibrate the LAI inversion results by A two-layer Canopy Reflectance Model(ACRM) model.The calibrated LAI result was used as the observation operator.Finally,an Ensemble Kalman Filter(EnKF) was used to assimilate MODIS data into crop model.The results showed that the method could significantly improve the estimation accuracy of LAI and the simulated curves of LAI more conform to the crop growth situation closely comparing with MODIS LAI products.The root mean square error(RMSE) of LAI calculated by assimilation is 0.9185 which is reduced by 58.7% compared with that by simulation(0.3795),and before and after assimilation the mean error is reduced by 92.6% which is from 0.3563 to 0.0265.All these experiments indicated that the methodology proposed in this paper is reasonable and accurate for estimating crop LAI.
基金supported by the National Basic Research Program(973)of China(No.2015CB352302)the National Natural Science Foundation of China(Nos.61625107,U1611461,U1509206,and 61402403)+2 种基金the Key Program of Zhejiang Province,China(No.2015C01027)the Chinese Knowledge Center for Engineering Sciences and Technologythe Fundamental Research Funds for the Central Universities,China
文摘Question answering is an important problem that aims to deliver specific answers to questions posed by humans in natural language.How to efficiently identify the exact answer with respect to a given question has become an active line of research.Previous approaches in factoid question answering tasks typically focus on modeling the semantic relevance or syntactic relationship between a given question and its corresponding answer.Most of these models suffer when a question contains very little content that is indicative of the answer.In this paper,we devise an architecture named the temporality-enhanced knowledge memory network(TE-KMN) and apply the model to a factoid question answering dataset from a trivia competition called quiz bowl.Unlike most of the existing approaches,our model encodes not only the content of questions and answers,but also the temporal cues in a sequence of ordered sentences which gradually remark the answer.Moreover,our model collaboratively uses external knowledge for a better understanding of a given question.The experimental results demonstrate that our method achieves better performance than several state-of-the-art methods.