期刊文献+
共找到893篇文章
< 1 2 45 >
每页显示 20 50 100
Prediction of the thermal conductivity of Mg–Al–La alloys by CALPHAD method 被引量:1
1
作者 Hongxia Li Wenjun Xu +5 位作者 Yufei Zhang Shenglan Yang Lijun Zhang Bin Liu Qun Luo Qian Li 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CSCD 2024年第1期129-137,共9页
Mg-Al alloys have excellent strength and ductility but relatively low thermal conductivity due to Al addition.The accurate prediction of thermal conductivity is a prerequisite for designing Mg-Al alloys with high ther... Mg-Al alloys have excellent strength and ductility but relatively low thermal conductivity due to Al addition.The accurate prediction of thermal conductivity is a prerequisite for designing Mg-Al alloys with high thermal conductivity.Thus,databases for predicting temperature-and composition-dependent thermal conductivities must be established.In this study,Mg-Al-La alloys with different contents of Al2La,Al3La,and Al11La3phases and solid solubility of Al in the α-Mg phase were designed.The influence of the second phase(s) and Al solid solubility on thermal conductivity was investigated.Experimental results revealed a second phase transformation from Al_(2)La to Al_(3)La and further to Al_(11)La_(3)with the increasing Al content at a constant La amount.The degree of the negative effect of the second phase(s) on thermal diffusivity followed the sequence of Al2La>Al3La>Al_(11)La_(3).Compared with the second phase,an increase in the solid solubility of Al in α-Mg remarkably reduced the thermal conductivity.On the basis of the experimental data,a database of the reciprocal thermal diffusivity of the Mg-Al-La system was established by calculation of the phase diagram (CALPHAD)method.With a standard error of±1.2 W/(m·K),the predicted results were in good agreement with the experimental data.The established database can be used to design Mg-Al alloys with high thermal conductivity and provide valuable guidance for expanding their application prospects. 展开更多
关键词 magnesium alloy thermal conductivity thermodynamic calculations materials computation
下载PDF
Boron nitride silicone rubber composite foam with low dielectric and high thermal conductivity
2
作者 Shuilai Qiu Hang Wu +1 位作者 Fukai Chu Lei Song 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第4期224-230,共7页
Silicone rubber(SR)is widely used in the field of electronic packaging because of its low dielectric properties.In this work,the porosity of the SR was improved,and the dielectric constant of the SR foam was reduced b... Silicone rubber(SR)is widely used in the field of electronic packaging because of its low dielectric properties.In this work,the porosity of the SR was improved,and the dielectric constant of the SR foam was reduced by adding expanded microspheres(EM).Then,the thermal conductivity of the system was improved by combining the modified boron nitride(f-BN).The results showed that after the f-BN was added,the dielectric constant and dielectric loss were much lower than those of pure SR.Micron-sized modified boron nitride(f-mBN)improved the dielectric and thermal conductivity of the SR foam better than that of nano-sized modified boron nitride(f-nBN),but f-nBN improved the volume resistivity,tensile strength,and thermal stability of the SR better than f-mBN.When the mass ratio of f-mBN and fnBN is 2:1,the thermal conductivity of the SR foam reaches the maximum value of 0.808 W·m^(-1)·K^(-1),which is 6.5 times that before the addition.The heat release rate and fire growth index are the lowest,and the improvement in flame retardancy is mainly attributed to the high thermal stability and physical barrier of f-BN. 展开更多
关键词 Foam COMPOSITES Dielectric properties thermal conductivity Mechanical properties Flame retardant
下载PDF
Preparation of Polyurea Elastomer with Flame Retardant, Insulation and Thermal Conductivity Properties
3
作者 方今 DONG Yang +3 位作者 LU Shangkai LIU Junbang AI Lianghui 刘平 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第3期781-789,共9页
By using 6,6-((sulfonylbis(4,1-phenylene)bis(azanediyl))bis(thiophen-2-ylm-ethylene))bis6H-di-benzo[c,e][1,2]oxaphosphinine 6-oxide(DOPO-N)as phosphorus-nitrogen flame retardant,the polyurea(PUA)with flame retardant p... By using 6,6-((sulfonylbis(4,1-phenylene)bis(azanediyl))bis(thiophen-2-ylm-ethylene))bis6H-di-benzo[c,e][1,2]oxaphosphinine 6-oxide(DOPO-N)as phosphorus-nitrogen flame retardant,the polyurea(PUA)with flame retardant properties(PUA/DOPO-N)was prepared.In addition,organically modified montmorillonite(OMMT)and magnesium hydroxide(MH)were used as co-effectors respectively,and the flame retardant PUA(PUA/DOPO-N/OMMT and PUA/DOPO-N/MH)were also prepared.Thermal properties,flame retardant properties,flame retardant mechanism and mechanical properties of PUA/DOPO-N,PUA/DOPO-N/OMMT and PUA/DOPO-N/MH were investigated by thermogravimetric(TG)analysis,limiting oxygen index(LOI),UL 94,cone calorimeter test,scanning electron microscopy(SEM),and tensile test.The results show that the LOI value of PUA/20%DOPO-N,PUA/18%DOPO-N/2%OMMT and PUA/15%DOPO-N/5%MH are 27.1%,27.7%,and 28.3%,respectively,and UL 94 V-0 rating is attained.Compared with PUA,the peak heat release rate(pk-HRR),total heat release(THR)and average effective heat combustion(av-EHC)of PUA/20%DOPO-N,PUA/18%DOPO-N/2%OMMT and PUA/15%DOPO-N/5%MH decrease significantly.SEM results indicate that the residual chars of PUA/20%DOPO-N,PUA/18%DOPO-N/2%OMMT and PUA/15%DOPO-N/5%MH are completer and more compact.The complex of DOPO-N/OMMT and DOPO-N/MH have synergistic flame retardancy.The mechanical properties of PUA can be improved by the addition of DOPO-N,DOPO-N/OMMT and DOPO-N/MH,respectively.The insulation performance test shows that the volume resistivity of PUA/20%DOPO-N is 6.25×10^(16)Ω.cm.Furthermore,by using modified boron nitride(MBN)as heat dissipating material,the complex of PUA/MBN was prepared,and the thermal conductivity of PUA/MBN was investigated.The thermal conductivity of PUA/8%MBN complex coating at room temperature is 0.166 W/(M·K),which is a 163%improvement over pure PUA. 展开更多
关键词 POLYUREA organic flame retardant inorganic flame retardant synergistic flame retardancy INSULATION thermal conductivity
下载PDF
GaInX_3(X=S,Se,Te):Ultra-low thermal conductivity and excellent thermoelectric performance
4
作者 段志福 丁长浩 +6 位作者 丁中科 肖威华 谢芳 罗南南 曾犟 唐黎明 陈克求 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第8期460-465,共6页
Seeking intrinsically low thermal conductivity materials is a viable strategy in the pursuit of high-performance thermoelectric materials.Here,by using first-principles calculations and semiclassical Boltzmann transpo... Seeking intrinsically low thermal conductivity materials is a viable strategy in the pursuit of high-performance thermoelectric materials.Here,by using first-principles calculations and semiclassical Boltzmann transport theory,we systemically investigate the carrier transport and thermoelectric properties of monolayer Janus GaInX_(3)(X=S,Se,Te).It is found that the lattice thermal conductivities can reach values as low as 3.07 W·m^(-1)·K^(-1),1.16 W·m^(-1)·K^(-1)and 0.57 W·m^(-1)·K^(-1)for GaInS_(3),GaInSe_(3),and GaInTe_(3),respectively,at room temperature.This notably low thermal conductivity is attributed to strong acoustic-optical phonon coupling caused by the presence of low-frequency optical phonons in GaInX_(3) materials.Furthermore,by integrating the charac teristics of electronic and thermal transport,the dimensionless figure of merit ZT can reach maximum values of 0.95,2.37,and 3.00 for GaInS_(3),GaInSe_(3),and GaInTe_(3),respectively.Our results suggest that monolayer Janus GaInX_(3)(X=S,Se,Te)is a promising candidate for thermoelectric and heat management applications. 展开更多
关键词 thermoelectric performance thermal conductivity Boltzmann transport two-dimensional materials
下载PDF
Multi-scale Modeling and Finite Element Analyses of Thermal Conductivity of 3D C/SiC Composites Fabricating by Flexible-Oriented Woven Process
5
作者 Zheng Sun Zhongde Shan +5 位作者 Hao Huang Dong Wang Wang Wang Jiale Liu Chenchen Tan Chaozhong Chen 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第3期275-288,共14页
Thermal conductivity is one of the most significant criterion of three-dimensional carbon fiber-reinforced SiC matrix composites(3D C/SiC).Represent volume element(RVE)models of microscale,void/matrix and mesoscale pr... Thermal conductivity is one of the most significant criterion of three-dimensional carbon fiber-reinforced SiC matrix composites(3D C/SiC).Represent volume element(RVE)models of microscale,void/matrix and mesoscale proposed in this work are used to simulate the thermal conductivity behaviors of the 3D C/SiC composites.An entirely new process is introduced to weave the preform with three-dimensional orthogonal architecture.The 3D steady-state analysis step is created for assessing the thermal conductivity behaviors of the composites by applying periodic temperature boundary conditions.Three RVE models of cuboid,hexagonal and fiber random distribution are respectively developed to comparatively study the influence of fiber package pattern on the thermal conductivities at the microscale.Besides,the effect of void morphology on the thermal conductivity of the matrix is analyzed by the void/matrix models.The prediction results at the mesoscale correspond closely to the experimental values.The effect of the porosities and fiber volume fractions on the thermal conductivities is also taken into consideration.The multi-scale models mentioned in this paper can be used to predict the thermal conductivity behaviors of other composites with complex structures. 展开更多
关键词 3D C/SiC composites Finite element analyses Multi-scale modeling thermal conductivity
下载PDF
Theoretical study on the effective thermal conductivity of silica aerogels based on a cross-aligned and cubic pore model
6
作者 郑坤灿 李震东 +2 位作者 曹豫通 刘犇 胡君磊 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第6期28-36,共9页
Aerogel nanoporous materials possess high porosity, high specific surface area, and extremely low density due to their unique nanoscale network structure. Moreover, their effective thermal conductivity is very low, ma... Aerogel nanoporous materials possess high porosity, high specific surface area, and extremely low density due to their unique nanoscale network structure. Moreover, their effective thermal conductivity is very low, making them a new type of lightweight and highly efficient nanoscale super-insulating material. However, prediction of their effective thermal conductivity is challenging due to their uneven pore size distribution. To investigate the internal heat transfer mechanism of aerogel nanoporous materials, this study constructed a cross-aligned and cubic pore model(CACPM) based on the actual pore arrangement of SiO_(2) aerogel. Based on the established CACPM, the effective thermal conductivity expression for the aerogel was derived by simultaneously considering gas-phase heat conduction, solid-phase heat conduction, and radiative heat transfer. The derived expression was then compared with available experimental data and the Wei structure model. The results indicate that, according to the model established in this study for the derived thermal conductivity formula of silica aerogel, for powdery silica aerogel under the conditions of T = 298 K, a_(2)= 0.85, D_(1)= 90 μm, ρ = 128 kg/m^(3), within the pressure range of 0–10^(5)Pa, the average deviation between the calculated values and experimental values is 10.51%. In the pressure range of 10^(3)–10^(4)Pa, the deviation between calculated values and experimental values is within 4%. Under these conditions, the model has certain reference value in engineering verification. This study also makes a certain contribution to the research of aerogel thermal conductivity heat transfer models and calculation formulae. 展开更多
关键词 silica aerogel effective thermal conductivity two pore-size structure model porous medium heat transfer
下载PDF
Flexible and Robust Functionalized Boron Nitride/Poly(p‑Phenylene Benzobisoxazole)Nanocomposite Paper with High Thermal Conductivity and Outstanding Electrical Insulation
7
作者 Lin Tang Kunpeng Ruan +3 位作者 Xi Liu Yusheng Tang Yali Zhang Junwei Gu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第2期423-437,共15页
With the rapid development of 5G information technology,thermal conductivity/dissipation problems of highly integrated electronic devices and electrical equipment are becoming prominent.In this work,“high-temperature... With the rapid development of 5G information technology,thermal conductivity/dissipation problems of highly integrated electronic devices and electrical equipment are becoming prominent.In this work,“high-temperature solid-phase&diazonium salt decomposition”method is carried out to prepare benzidine-functionalized boron nitride(m-BN).Subsequently,m-BN/poly(pphenylene benzobisoxazole)nanofiber(PNF)nanocomposite paper with nacremimetic layered structures is prepared via sol–gel film transformation approach.The obtained m-BN/PNF nanocomposite paper with 50 wt%m-BN presents excellent thermal conductivity,incredible electrical insulation,outstanding mechanical properties and thermal stability,due to the construction of extensive hydrogen bonds andπ–πinteractions between m-BN and PNF,and stable nacre-mimetic layered structures.Itsλ∥andλ_(⊥)are 9.68 and 0.84 W m^(-1)K^(-1),and the volume resistivity and breakdown strength are as high as 2.3×10^(15)Ωcm and 324.2 kV mm^(-1),respectively.Besides,it also presents extremely high tensile strength of 193.6 MPa and thermal decomposition temperature of 640°C,showing a broad application prospect in high-end thermal management fields such as electronic devices and electrical equipment. 展开更多
关键词 Poly(p-phenylene-2 6-benzobisoxazole)nanofiber Boron nitride thermal conductivity Electrical insulation
下载PDF
Local thermal conductivity of inhomogeneous nano-fluidic films:A density functional theory perspective
8
作者 孙宗利 康艳霜 康艳梅 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第4期594-603,共10页
Combining the mean field Pozhar-Gubbins(PG)theory and the weighted density approximation,a novel method for local thermal conductivity of inhomogeneous fluids is proposed.The correlation effect that is beyond the mean... Combining the mean field Pozhar-Gubbins(PG)theory and the weighted density approximation,a novel method for local thermal conductivity of inhomogeneous fluids is proposed.The correlation effect that is beyond the mean field treatment is taken into account by the simulation-based empirical correlations.The application of this method to confined argon in slit pore shows that its prediction agrees well with the simulation results,and that it performs better than the original PG theory as well as the local averaged density model(LADM).In its further application to the nano-fluidic films,the influences of fluid parameters and pore parameters on the thermal conductivity are calculated and investigated.It is found that both the local thermal conductivity and the overall thermal conductivity can be significantly modulated by these parameters.Specifically,in the supercritical states,the thermal conductivity of the confined fluid shows positive correlation to the bulk density as well as the temperature.However,when the bulk density is small,the thermal conductivity exhibits a decrease-increase transition as the temperature is increased.This is also the case in which the temperature is low.In fact,the decrease-increase transition in both the small-bulk-density and low-temperature cases arises from the capillary condensation in the pore.Furthermore,smaller pore width and/or stronger adsorption potential can raise the critical temperature for condensation,and then are beneficial to the enhancement of the thermal conductivity.These modulation behaviors of the local thermal conductivity lead immediately to the significant difference of the overall thermal conductivity in different phase regions. 展开更多
关键词 thermal conductivity nano-fluidic films density functional theory
下载PDF
Thermal conductivity of GeTe crystals based on machine learning potentials
9
作者 张健 张昊春 +1 位作者 李伟峰 张刚 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第4期104-107,共4页
GeTe has attracted extensive research interest for thermoelectric applications.In this paper,we first train a neuroevolution potential(NEP)based on a dataset constructed by ab initio molecular dynamics,with the Gaussi... GeTe has attracted extensive research interest for thermoelectric applications.In this paper,we first train a neuroevolution potential(NEP)based on a dataset constructed by ab initio molecular dynamics,with the Gaussian approximation potential(GAP)as a reference.The phonon density of states is then calculated by two machine learning potentials and compared with density functional theory results,with the GAP potential having higher accuracy.Next,the thermal conductivity of a GeTe crystal at 300 K is calculated by the equilibrium molecular dynamics method using both machine learning potentials,and both of them are in good agreement with the experimental results;however,the calculation speed when using the NEP potential is about 500 times faster than when using the GAP potential.Finally,the lattice thermal conductivity in the range of 300 K-600 K is calculated using the NEP potential.The lattice thermal conductivity decreases as the temperature increases due to the phonon anharmonic effect.This study provides a theoretical tool for the study of the thermal conductivity of GeTe. 展开更多
关键词 machine learning potentials thermal conductivity molecular dynamics
下载PDF
Characterization of rock thermophysical properties and factors affecting thermal conductivity−A case study of Datong Basin,China
10
作者 Meng-lei Ji Shuai-chao Wei +5 位作者 Wei Zhang Feng Liu Yu-zhong Liao Ruo-xi Yuan Xiao-xue Yan Long Li 《Journal of Groundwater Science and Engineering》 2024年第1期4-15,共12页
Rock thermal physical properties play a crucial role in understanding deep thermal conditions,modeling the thermal structure of the lithosphere,and discovering the evolutionary history of sedimentary basins.Recent adv... Rock thermal physical properties play a crucial role in understanding deep thermal conditions,modeling the thermal structure of the lithosphere,and discovering the evolutionary history of sedimentary basins.Recent advancements in geothermal exploration,particularly the identification of high-temperature geothermal resources in Datong Basin,Shanxi,China,have opened new possibilities.This study aims to characterize the thermal properties of rocks and explore factors influencing thermal conductivity in basins hosting high-temperature geothermal resources.A total of 70 groups of rock samples were collected from outcrops in and around Datong Basin,Shanxi Province.Thermal property tests were carried out to analyze the rock properties,and the influencing factors of thermal conductivity were studied through experiments at different temperature and water-filled states.The results indicate that the thermal conductivity of rocks in Datong,Shanxi Province,typically ranges from 0.690 W/(m·K)to 6.460 W/(m·K),the thermal diffusion coefficient ranges from 0.441 mm^(2)/s to 2.023 mm^(2)/s,and the specific heat capacity of the rocks ranges from 0.569 KJ/(kg·℃)to 1.117 KJ/(kg·°C).Experimental results reveal the impact of temperature and water saturation on the thermal conductivity of the rock.The thermal conductivity decreases with increasing temperature and rises with high water saturation.A temperature correction formula for the thermal conductivity of different lithologies in the area is proposed through linear fitting.The findings from this study provide essential parameters for the assessment and prediction,development,and utilization of geothermal resources in the region and other basins with typical high-temperature geothermal resource. 展开更多
关键词 Datong Basin Rock thermal conductivity thermal diffusivity Specific heat capacity Influencing factors
下载PDF
Self-Modifying Nanointerface Driving Ultrahigh Bidirectional Thermal Conductivity Boron Nitride-Based Composite Flexible Films 被引量:2
11
作者 Taoqing Huang Xinyu Zhang +5 位作者 Tian Wang Honggang Zhang Yongwei Li Hua Bao Min Chen Limin Wu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第1期14-24,共11页
While boron nitride(BN) is widely recognized as the most promising thermally conductive filler for rapidly developing high-power electronic devices due to its excellent thermal conductivity and dielectric properties,a... While boron nitride(BN) is widely recognized as the most promising thermally conductive filler for rapidly developing high-power electronic devices due to its excellent thermal conductivity and dielectric properties,a great challenge is the poor vertical thermal conductivity when embedded in composites owing to the poor interracial interaction causing severe phonon scattering.Here,we report a novel surface modification strategy called the "self-modified nanointerface" using BN nanocrystals(BNNCs) to efficiently link the interface between BN and the polymer matrix.Combining with ice-press assembly method,an only 25 wt% BNembedded composite film can not only possess an in-plane thermal conductivity of 20.3 W m-1K-1but also,more importantly,achieve a through-plane thermal conductivity as high as 21.3 W m-1K-1,which is more than twice the reported maximum due to the ideal phonon spectrum matching between BNNCs and BN fillers,the strong interaction between the self-modified fillers and polymer matrix,as well as ladder-structured BN skeleton.The excellent thermal conductivity has been verified by theoretical calculations and the heat dissipation of a CPU.This study provides an innovative design principle to tailor composite interfaces and opens up a new path to develop high-performance composites. 展开更多
关键词 thermal management materials Boron nitride thermal conductivity Interfacial thermal resistance
下载PDF
Effect of Zn content on microstructure,mechanical properties and thermal conductivity of extruded Mg-Zn-Ca-Mn alloys 被引量:1
12
作者 Bei Tang Jinlong Fu +3 位作者 Jingkai Feng Xiting Zhong Yangyang Guo Haili Wang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第12期2411-2420,共10页
Mg-Zn-Ca-Mn series alloys are developed as promising candidates of 5G communication devices with excellent thermal conductivities,great ductility,and acceptable strength.In present paper,Mg-x Zn-0.4Ca-0.2Mn(x=2wt%,4wt... Mg-Zn-Ca-Mn series alloys are developed as promising candidates of 5G communication devices with excellent thermal conductivities,great ductility,and acceptable strength.In present paper,Mg-x Zn-0.4Ca-0.2Mn(x=2wt%,4wt%,6wt%)alloys were prepared by a near-solidus extrusion and the effect of Zn content on mechanical and thermal properties were investigated.The results showed that the addition of minor Ca led to the formation of Ca_(2)Mg_(6)Zn_(3) eutectic phase at grain boundaries.A type of bimodal microstructure occurred in the as-extruded alloys,where elongated coarse deformed grains were embedded in refined recrystallized grains matrix.Correspondingly,both yield strength and ductility of the alloys were significantly enhanced after extrusion due to the great grain refinement.Specially,higher Zn content led to the increment in yield strength and a slight reduction in elongation due to the larger fractions of second phase particles.The room temperature thermal conductivity of as-extruded alloys was also improved compared with that of as-cast counterparts.The increment of Zn content decreased the thermal conductivity of both as-cast and as-extruded alloys,which was due to the increased second phase fraction and solution atoms in the matrix,that hindering the motion of electrons.The as-extruded Mg-2Zn-0.4Ca-0.2Mn(wt%)alloy exhibited the highest elongation of 27.7% and thermal conductivity of 139.2 W/(m·K),combined with an acceptable ultimate tensile strength of 244.0 MPa.The present paper provides scientific guidance for the preparation of lightweight materials with high ductility and high thermal conductivity. 展开更多
关键词 Mg–Zn-Ca-Mn alloys MICROSTRUCTURE mechanical properties thermal conductivity extrusion
下载PDF
Enhancement of thermal rectification by asymmetry engineering of thermal conductivity and geometric structure for multi-segment thermal rectifier 被引量:1
13
作者 杜甫烨 张望 +1 位作者 王惠琼 郑金成 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第6期34-43,共10页
Thermal rectification is an exotic thermal transport phenomenon,an analog to electrical rectification,in which heat flux along one direction is larger than that in the other direction and is of significant interest in... Thermal rectification is an exotic thermal transport phenomenon,an analog to electrical rectification,in which heat flux along one direction is larger than that in the other direction and is of significant interest in electronic device applications.However,achieving high thermal rectification efficiency or rectification ratio is still a scientific challenge.In this work,we performed a systematic simulation of thermal rectification by considering both efforts of thermal conductivity asymmetry and geometrical asymmetry in a multi-segment thermal rectifier.It is found that the high asymmetry of thermal conductivity and the asymmetry of the geometric structure of multi-segment thermal rectifiers can significantly enhance the thermal rectification,and the combination of both thermal conductivity asymmetry and geometrical asymmetry can further improve thermal rectification efficiency.This work suggests a possible way for improving thermal rectification devices by asymmetry engineering. 展开更多
关键词 thermal conductivity SIMULATION thermal rectification multi-segment thermal rectifier
下载PDF
An optimized smearing scheming for first Brillouin zone sampling and its application on thermal conductivity prediction of graphite 被引量:1
14
作者 李承业 赵长颖 顾骁坤 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第6期342-351,共10页
We propose an optimized scheme to determine the smearing parameter in the Gaussian function that is used to replace the Dirac δ function in the first Brillouin zone sampling. The broadening width is derived by analyz... We propose an optimized scheme to determine the smearing parameter in the Gaussian function that is used to replace the Dirac δ function in the first Brillouin zone sampling. The broadening width is derived by analyzing the difference of the results from the phase-space method and Gaussian broadening method. As a demonstration, using the present approach,we investigate the phonon transport in a typical layered material, graphite. Our scheme is benchmarked by comparing with other zone sampling methods. Both the three-phonon phonon scattering rates and thermal conductivity are consistent with the prediction from the widely used tetrahedron method and adaptive broadening method. The computational efficiency of our scheme is more than one order of magnitude higher than the two other methods. Furthermore, the effect of fourphonon scattering in phonon transport in graphite is also investigated. It is found that four-phonon scattering reduces the through-plane thermal conductivity by 10%. Our methods could be a reference for the prediction of thermal conductivity of anisotropic material in the future. 展开更多
关键词 GRAPHITE thermal conductivity phonon transport Boltzmann transport equation
下载PDF
Temperature-mediated structural evolution of vapor–phase deposited cyclosiloxane polymer thin films for enhanced mechanical properties and thermal conductivity 被引量:1
15
作者 Weiwei Du Jing Tu +4 位作者 Mingjun Qiu Shangyu Zhou Yingwu Luo Wee-Liat Ong Junjie Zhao 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2023年第2期216-228,共13页
Polymer-derived ceramic(PDC) thin films are promising wear-resistant coatings for protecting metals and carbon-carbon composites from corrosion and oxidation.However,the high pyrolysis temperature hinders the applicat... Polymer-derived ceramic(PDC) thin films are promising wear-resistant coatings for protecting metals and carbon-carbon composites from corrosion and oxidation.However,the high pyrolysis temperature hinders the applications on substrate materials with low melting points.We report a new synthesis route for PDC coatings using initiated chemical vapor deposited poly(1,3,5-trivinyl-1,3,5-trimethylcyclotrisiloxane)(pV_3D_3) as the precurs or.We investigated the changes in siloxane moieties and the network topology,and proposed a three-stage mechanism for the thermal annealing process.The rise of the connectivity number for the structures obtained at increased annealing temperatures was found with strong correlation to the enhanced mechanical properties and thermal conductivity.Our PDC films obtained via annealing at 850℃ exhibit at least 14.6% higher hardness than prior reports for PDCs synthesized below 1100℃.Furthermore,thermal conductivity up to 1.02 W(mK)^(-1) was achieved at the annealing temperature as low as 700℃,which is on the same order of magnitude as PDCs obtained above 1100℃.Using minimum thermal conductivity models,we found that the thermal transport is dominated by diffusons in the films below the percolation of rigidity,while ultra-short mean-free path phonons contribute to the thermal conductivity of the films above the percolation threshold.The findings of this work provide new insights for the development of wear-resistant and thermally conductive PDC thin films for durable protection coatings. 展开更多
关键词 polymer-derived ceramics vapor–phase deposition mechanical properties thermal conductivity thin films
下载PDF
Controllable rectification on the thermal conductivity of porous YBa_(2)Cu_(3)O_(7−x) superconductors from 3D-printing 被引量:1
16
作者 Yanbin Ma Baoqiang Zhang +1 位作者 Xingyi Zhang You-He Zhou 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2023年第1期182-191,共10页
Superconducting YBa_(2)Cu_(3)O_(7−x)(YBCO)bulks have promising applications in quasi-permanent magnets,levitation,etc.Recently,a new way of fabricating porous YBCO bulks,named direct-ink-writing(DIW)3D-printing method... Superconducting YBa_(2)Cu_(3)O_(7−x)(YBCO)bulks have promising applications in quasi-permanent magnets,levitation,etc.Recently,a new way of fabricating porous YBCO bulks,named direct-ink-writing(DIW)3D-printing method,has been reported.In this method,the customized precursor paste and programmable shape are two main advantages.Here,we have put forward a new way to customize the YBCO 3D-printing precursor paste which is doped with Al_(2)O_(3)nanoparticles to obtain YBCO with higher thermal conductivity.The great rheological properties of precursor paste after being doped with Al_(2)O_(3)nanoparticles can help the macroscopic YBCO samples with high thermal conductivity fabricated stably with high crystalline and lightweight properties.Test results show that the peak thermal conductivity of Al_(2)O_(3)-doped YBCO can reach twice as much as pure YBCO,which makes a great effort to reduce the quench propagation speed.Based on the microstructure analysis,one can find that the thermal conductivity of Al_(2)O_(3)-doped YBCO has been determined by its components and microstructures.In addition,a macroscopic theoretical model has been proposed to assess the thermal conductivity of different microstructures,whose calculated results take good agreement with the experimental results.Meanwhile,a microstructure with high thermal conductivity has been found.Finally,a macroscopic YBCO bulk with the presented high thermal conductivity microstructure has been fabricated by the Al_(2)O_(3)-doped method.Compared with YBCO fabricated by the traditional 3D-printed,the Al_(2)O_(3)-doped structural YBCO bulks present excellent heat transfer performances.Our customized design of 3D-printing precursor pastes and novel concept of structural design for enhancing the thermal conductivity of YBCO superconducting material can be widely used in other DIW 3D-printing materials. 展开更多
关键词 Al_(2)O_(3)-doped YBCO thermal conductivity theoretical model controllable design DIW 3D-printing
下载PDF
Impacts of anisotropy coefficient and porosity on the thermal conductivity and P-wave velocity of calcarenites used as building materials of historical monuments in Morocco
17
作者 Abdelaali Rahmouni Abderrahim Boulanouar +6 位作者 Younes El Rhaffari Mohammed Hraita Aziz Zaroual Yves Géraud Jamal Sebbani Abdellah Rezzouk Bassem S.Nabawy 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第7期1687-1699,共13页
It is essential to study the porosity,thermal conductivity,and P-wave velocity of calcarenites,as well as the anisotropy coefficients of the thermal conductivity and P-wave velocity,for civil engineering,and conservat... It is essential to study the porosity,thermal conductivity,and P-wave velocity of calcarenites,as well as the anisotropy coefficients of the thermal conductivity and P-wave velocity,for civil engineering,and conservation and restoration of historical monuments.This study focuses on measuring the thermal conductivity using the thermal conductivity scanning(TCS)technique and measuring the P-wave ve-locity using portable equipment.This was applied for some dry and saturated calcarenite samples in the horizontal and vertical directions(parallel and perpendicular to the bedding plane,respectively).The calcarenites were selected from some historical monuments in Morocco.These physical properties were measured in the laboratory to find a reliable relationship between all of these properties.As a result of the statistical analysis of the obtained data,excellent linear relationships were observed between the porosity and both the thermal conductivity and porosity.These relationships are characterized by relatively high coefficients of determination for the horizontal and vertical samples.Based on the thermal conductivity and P-wave velocity values in these two directions,the anisotropy coefficients of these two properties were calculated.The internal structure and the pore fabric of the calcarenite samples were delineated using scanning electron microscopy(SEM),while their chemical and mineral compositions were studied using the energy dispersive X-ray analysis(EDXA)and X-ray diffraction(XRD)techniques. 展开更多
关键词 Moroccan historical monuments Calcarenite thermal conductivity P-wave velocity POROSITY Anisotropy coefficient Water saturation
下载PDF
Factors Influencing the Thermal Conductivity of Silt in the Yellow River Delta
18
作者 YANG Xiuqing DENG Shenggui +2 位作者 GUO Lei ZHANG Yan LIU Tao 《Journal of Ocean University of China》 SCIE CAS CSCD 2023年第4期1003-1011,共9页
The thermal conductivity of marine sediments is an important thermophysical parameter in the study of seafloor heat flow and marine engineering construction.Understanding the effect of thermal conductivity of marine s... The thermal conductivity of marine sediments is an important thermophysical parameter in the study of seafloor heat flow and marine engineering construction.Understanding the effect of thermal conductivity of marine sediments in the environment has a major engineering value and theoretical significance.In this work,a modified test method was used to measure the thermal conductivity of silt in the Yellow River Delta under different void ratios,moisture contents,temperatures,and salinities.Results showed that the thermal conductivity of silt in the Yellow River Delta decreased with the increase in the void ratio and increased with the water content.Compared with sand and clay,silt in the Yellow River Delta was the least affected by the void ratio and moisture content.Under low temperatures,the heat transfer of soil was controlled by the average velocity of the phonons;therefore,the thermal conductivity of silt in the Yellow River Estuary increased with temperature.The thermal conductivity of pore water decreased with increasing salinity.Moreover,certain salinity levels resulted in a phenomenon known as the‘compressing twin electrical layer’,which led to an increase in the contact area between soil particles.With the increase in salinity,the thermal conductivity of silt in the Yellow River Delta experiences an initial decline and a subsequent increase.The proposed thermal conductivity test method is more accurate than the existing technique,and the findings provide a basis for further study on the thermal characteristics of submarine sediments. 展开更多
关键词 silt in the Yellow River Delta thermal conductivity void ratio water content TEMPERATURE SALINITY
下载PDF
Molecular dynamics study on the dependence of thermal conductivity on size and strain in GaN nanofilms
19
作者 唐莹 刘俊坤 +2 位作者 于子皓 孙李刚 朱林利 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第6期454-458,共5页
The thermal conductivity of GaN nanofilm is simulated by using the molecular dynamics(MD)method to explore the influence of the nanofilm thickness and the pre-strain field under different temperatures.It is demonstrat... The thermal conductivity of GaN nanofilm is simulated by using the molecular dynamics(MD)method to explore the influence of the nanofilm thickness and the pre-strain field under different temperatures.It is demonstrated that the thermal conductivity of GaN nanofilm increases with the increase of nanofilm thickness,while decreases with the increase of temperature.Meanwhile,the thermal conductivity of strained GaN nanofilms is weakened with increasing the tensile strain.The film thickness and environment temperature can affect the strain effect on the thermal conductivity of GaN nanofilms.In addition,the analysis of phonon properties of GaN nanofilm shows that the phonon dispersion and density of states of GaN nanofilms can be significantly modified by the film thickness and strain.The results in this work can provide the theoretical supports for regulating the thermal properties of GaN nanofilm through tailoring the geometric size and strain engineering. 展开更多
关键词 molecular dynamics simulation GaN nanofilm thermal conductivity phonon properties size effect strain effect
下载PDF
Tailoring Carbon Distribution inα/γPhase of Ductile Iron and Its Effects on Thermal Conductivity
20
作者 刘琛 杜玉洲 +4 位作者 YING Tao ZHANG Liandong ZHANG Xinyu DONG Dan JIANG Bailing 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2023年第3期645-651,共7页
The effects of carbon distribution on the microstructure and thermal conductivity of ductile iron were investigated in the present study.The microstructure of as-cast and quenched ductile iron were characterized by OM... The effects of carbon distribution on the microstructure and thermal conductivity of ductile iron were investigated in the present study.The microstructure of as-cast and quenched ductile iron were characterized by OM and SEM.Results showed that the microstructure of as-cast ductile iron was composed of spheroidal graphite,ferrite with the volume of 80%,and a small amount of pearlite,and quenched ductile iron was composed of spheroidal graphite,coarse/fine acicular martensite(α_(M)phase)and high-carbon retained austenite(γphase).The volume fraction of retained austensite and its carbon content for direct quenched ductile iron and tepmered ductile iron were quantitatively analysed by XRD.Results revealed that carbon atoms diffused fromα_(M)phase toγphase during tempering at low temperatures,which resulted in carbon content in retainedγphase increasing from 1.2 wt%for the direct quenched sample to about 1.9 wt%for the tempered samples.Consequently,the lattice distortion was significantly reduced and gave rise to an increase of thermal conductivity for ductile iron. 展开更多
关键词 ductile iron carbon distribution retained austenite thermal conductivity lattice distortion
下载PDF
上一页 1 2 45 下一页 到第
使用帮助 返回顶部